RESEARCH

On the diophantine equation $la^x + mb^y = nc^z$

Sivanarayanapandian Subburam*

*Correspondence: ssrammaths@gmail.com Gandhi Nagar, Aruppukottai, Tamil Nadu 626 101, India

Abstract

In this paper, we give an upper bound for the solutions x, y, z of the equation in the title, of magnitude $(\log \max\{a, b, c\})^{2+\epsilon}$. This yields an improvement of earlier results of Hu and Le, where the bound is cubic in log max $\{a, b, c\}$.

Keyword: Exponential diophantine equation

Mathematics Subject Classification: 11D41, 11D45

1 Introduction

Let *a*, *b* and *c* be coprime integers greater than one and let (*x*, *y*, *z*) be any positive integral solution of the equation $a^x + b^y = c^z$. In 2015, Hu and Le [2] proved that max{*x*, *y*, *z*} $\leq \kappa (\log \max\{a, b, c\})^3$, where $\kappa = 155,000$. Recently, the same authors improved the result as $\kappa = 6500$, in [3]. In this paper, we prove the following theorem:

Theorem 1 For each $0 < \epsilon < 1$, there exists an effectively computable constant $\kappa(\epsilon) > 0$ such that

 $\max\{x, y, z\} \le \kappa(\epsilon) (\log \max\{a, b, c\})^{2+\epsilon}.$

Moreover, if l, m and n are positive integers such that one of $(a \mod 2, m, n)$, $(b \mod 2, l, n)$ and $(c \mod 2, l, m)$ is (0, 1, 1), then all positive integral solutions (x, y, z) of the equation

 $la^x + mb^y = nc^z$

satisfy the inequality with $\kappa(\epsilon) = \kappa(\epsilon, l, m, n)$, an effectively computable constant depends only on ϵ , l, m and n.

2 Proof of Theorem 1

Though there are better lower bounds in the literature than what Lemma 1 gives, it is sufficient for the present purposes.

Lemma 1 (Corollary B.1 of Shorey-Tijdeman [4]) Let $\alpha_1, \alpha_2, ..., \alpha_n$ be non-zero rational numbers of heights not exceeding $A_1, A_2, ..., A_n$, respectively. We assume $A_j \ge 3$ for $1 \le j \le n$. Put

$$\Omega = \prod_{j=1}^{n} \log A_j \text{ and } \Omega' = \prod_{j=1}^{n-1} \log A_j.$$

© SpringerNature 2018.

Then, there exist computable absolute constants κ_0 and κ_1 such that the inequalities

$$0 < \left| \alpha_1^{\beta_1} \alpha_2^{\beta_2} \cdots \alpha_n^{\beta_n} - 1 \right| < \exp\left(-(\kappa_0 n)^{\kappa_1 n} \Omega \log \Omega' \log B \right)$$

have no solution in rational integers β_1 , β_2 , ..., β_n of absolute values not exceeding $B \ge 2$.

For a prime number p and a non-zero integer α , $\operatorname{ord}_p(\alpha)$ is the largest non-negative integer l such that $p^l \mid \alpha$.

Lemma 2 (Bugeaud [1]) Let α_1 and α_2 be non-zero multiplicatively independent integers and let β_1 and β_2 be positive integers. Assume that there exist a positive integer g and a real number E such that

$$\operatorname{ord}_p\left(\alpha_1^g-1\right) \ge E > 1/(p-1)$$

and

$$\operatorname{ord}_p\left(\alpha_2^g-1\right)>0.$$

Let $A_1 > 1$ and $A_2 > 1$ be real numbers such that

 $\log A_i \geq \max\{\log |\alpha_i|, E \log p\}$

for i = 1, 2. Put

$$\beta = \log\left(\frac{\beta_1}{\log A_2} + \frac{\beta_2}{\log A_1}\right) + \log(E\log p) + 0.4.$$

Consider

$$\Lambda' = \alpha_1^{\beta_1} - \alpha_2^{\beta_2}.$$

Then, we have

$$\operatorname{ord}_{p} \Lambda' \leq \frac{36.1g}{E^{3}(\log p)^{4}} (\max\{\beta, 6E \log p, 5\})^{2} (\log A_{1})(\log A_{2}),$$

if p *is odd or if* p = 2 *and* $ord_2(\alpha_2 - 1) \ge 2$ *.*

Fix min{x, y, z} \geq 4. First, we shall assume that c is even. Then a and b are odd. Here, we work modulo 4. Since $a^x + b^y \equiv 0 \pmod{4}$ and so it is impossible that both x and y are even, $\wedge' = a^x + b^y$ can be written as $\wedge' = \alpha_1^{\beta_1} - \alpha_2^{\beta_2}$, where $\alpha_1, \alpha_2, \beta_1$ and β_2 are integers such that $\alpha_1 \equiv \alpha_2 \equiv 1 \pmod{4}$ and $(\alpha_1, \alpha_2, \beta_1, \beta_2)$ is one of (a, -b, x, y), $(b, -a, y, x), (a^2, -b, x/2, y)$ and $(b^2, -a, y/2, x)$. Furthermore, take p = 2, E = 2, g = 1, $A_1 = \max\{4, |\alpha_1|\}$ and $A_2 = \max\{4, |\alpha_2|\}$ in Lemma 2. Since $gcd(\alpha_1, \alpha_2) = 1$, by Lemma 2, we have

$$\operatorname{ord}_{2}\left(\alpha_{1}^{\beta_{1}}-\alpha_{2}^{\beta_{2}}\right)<\kappa_{2}\left(\log|\alpha_{1}|\right)\left(\log|\alpha_{2}|\right)\left(\log\max\{\beta_{1},\beta_{2}\}\right)^{2},$$

where κ_2 is a computable absolute constant. Also, it is clear that $z \leq \operatorname{ord}_2(c^z)$. Therefore, we conclude that

$$z \leq 4\kappa_2(\log a)(\log b) (\log \max\{x, y\})^2.$$

This provides the bound for max{x, y, z}, since $a^x, b^y \le c^z$.

Next, assume that *c* is odd. Then *a* or *b* is even. Without loss of generality, suppose that *a* is even. Let $\wedge' = c^z - b^y$. Then, similarly as above, we obtain

 $x \leq 4\kappa_2(\log b)(\log c) (\log \max\{y, z\})^2.$

Here, we distinguish two subcases. If $c^z \le a^{2x}$, then the last two inequalities along with the inequality $b^y \le c^z$ give the required bound. Otherwise, the given equation implies that

$$0 < c^{z} - b^{y} < c^{z/2}$$
 and so $0 < 1 - c^{-z}b^{y} < c^{-z/2}$.

Take n = 2, $\alpha_1 = c$, $\alpha_2 = b$, $\beta_1 = -z$, $\beta_2 = y$, $A_1 = \max\{3, c\}$, $A_2 = \max\{3, b\}$ and $B = \max\{y, z\}$ in Lemma 1. Therefore, by the lemma, we write

$$c^{-z/2} \ge 1 - c^{-z}b^{y} > \exp\{-\kappa_{3} (\log b) (\log c) (\log \log \min\{b, c\}) \log \max\{y, z\}\},\$$

where κ_3 is a computable absolute constant. Combine this inequality with $c^z \ge a^{2x}$ and $b^y \le c^z$ to have the bound.

Next, fix min{x, y, z} ≤ 3 . Then, $a^x \leq c^z$ and $b^y \leq c^z$ provide the required bound, if min{x, y, z} = z. Suppose that min{x, y, z} = x. Then, we get $c^z - b^y \leq a^3$ and it can be written as that $0 < c^z b^{-y} - 1 \leq a^3 b^{-y}$ if max{y, z} = y or that $0 < 1 - b^y c^{-z} \leq a^3 c^{-z}$ if max{y, z} = z. Now, apply Lemma 1 by taking n = 2, $\alpha_1 = b$, $\alpha_2 = c$, $A_1 = \max\{3, b\}$, $A_2 = \max\{3, c\}$ and $B = \max\{y, z\}$. Then, we have the bound. Also, similarly as above, we can deal with the case min{x, y, z} = y.

For the proof of the second part of the theorem, in the above arguments replace c^z by nc^z if c is even, a^x by la^x if c is odd and a is even, and b^y by mb^y if c is odd and b is even, respectively.

Acknowlegements

I wish to remember my Ph.D. research supervisors Prof. R. Srikanth (SASTRA University) and Prof. R. Thangadurai (Harish-Chandra Research Institute) with gratitude. I express my sincere thanks to the referees of this paper for their valuable and constructive suggestions.

Received: 8 February 2018 Accepted: 7 May 2018 Published online: 16 May 2018

References

- 1. Bugeaud, Y.: Linear forms in p-adic logarithms and the diophantine equation $(x^n 1)/(x 1) = y^q$. Math. Proc. Cambridge Philos. Soc. **127**, 373–381 (1999)
- 2. Hu, Y., Le, M.: A note on ternary purely exponential diophantine equations. Acta Arith. 171, 173–182 (2015)
- Hu, Y., Le, M.: An upper bound for the number of solutions of ternary purely exponential diophantine equations. J. Number Theory 183, 62–73 (2018)
- 4. Shorey, T.N., Tijdeman, R.: Exponential Diophantine Equations. Cambridge University Press, Cambridge (1986)