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Abstract

We study the dynamics of the Hénon map defined over complete, locally compact
non-Archimedean fields of odd residue characteristic. We establish basic properties of
its one-sided and two-sided filled Julia sets, and we determine, for each Hénon map,
whether these sets are empty or nonempty, whether they are bounded or unbounded,
and whether they are equal to the unit ball or not. On a certain region of the parameter
space we show that the filled Julia set is an attractor. We prove that, for infinitely many
distinct Hénon maps over Q3, this attractor is infinite and supports an SRB-type
measure describing the distribution of all nearby forward orbits. We include some
numerical calculations which suggest the existence of such infinite attractors over Q5
and Q7 as well. On a different region of the parameter space, we show that the Hénon
map is topologically conjugate on its filled Julia set to the two-sided shift map on the
space of bisequences in two symbols.
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1 Introduction
1.1 Summary of results

Let K be a field which is complete and locally compact with respect to a nontrivial,
non-Archimedean absolute value | · |, and such that the associated residue field has odd
characteristic. Familiar examples include the field Qp of p-adic numbers for some odd
prime p, and the fraction field Fp((T )) of the formal power series ring Fp[[T ]] over the finite
field Fp for some odd prime p. More generally, K could be any finite extension of Qp or
Fp((T )).
In this paper we study the dynamics of the Hénon map φa,b : K 2 → K 2 defined by

φa,b(x, y) = (a + by − x2, x), a, b ∈ K, b �= 0 (1)

over such fields. It is easily checked that φa,b is an automorphism of the plane K 2, with
inverse φ−1

a,b : K 2 → K 2 defined by

φ−1
a,b (x, y) = (y, 1b (−a + x + y2)). (2)
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The definition (1) represents one of several standard forms for the Hénon map which
are commonly found in the literature. As described in Friedland-Milnor [10], it can be
shown that every quadratic polynomial automorphism of K 2 of dynamical degree > 1
(in the sense of [10]) is affine-conjugate to a map of the form (1); and moreover, no two
distinct maps of the form (1) are affine-conjugate to one another. It is therefore natural to
set

H = {(a, b) ∈ K × K | b �= 0}

and to considerH as the space parametrizing all distinct Hénon maps over K .
For each integer n ≥ 1, denote by φn

a,b the n-fold composition of φa,b with itself, and
by φ−n

a,b the n-fold composition of φ−1
a,b with itself. Naturally, φ0

a,b is interpreted to be the
identity map on K 2. Consider the three sets

J+(φa,b) = {(x, y) ∈ K 2 | ‖φn
a,b(x, y)‖ is bounded as n → +∞},

J−(φa,b) = {(x, y) ∈ K 2 | ‖φn
a,b(x, y)‖ is bounded as n → −∞},

J (φa,b) = J+(φa,b) ∩ J−(φa,b),

(3)

the forward filled Julia set, backward filled Julia set, and (two-sided) filled Julia set,
respectively. As these boundedness properties are shared by all elements of the orbit
{φn

a,b(x, y) | n ∈ Z} of any given point (x, y) ∈ K 2, each of the three sets J, J± is φa,b-
invariant; in other words φa,b(J ) = J , and similarly for J±.
The main goal of this work is to describe the filled Julia sets J (φa,b) and J±(φa,b), to

describe the dynamical behavior of the map φa,b on these sets, and to study how the
dynamical properties of φa,b vary as the parameters a and b range over all possible values
in the parameter spaceH.
In order to state our main results, we must describe a partition of the parameter space

H into the four regions (Fig. 1)

Fig. 1 The partition of the parameter spaceH into the four regionsHI ,H+
II ,H−

II , andHIII , depicted in the
(|a|, |b|)-plane
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HI = {(a, b) ∈ H | |a| ≤ 1, |b| = 1},
H+

II = {(a, b) ∈ H | |a| ≤ 1, |b| < 1},
H−

II = {(a, b) ∈ H | |a| ≤ |b|2, |b| > 1}, (4)

HIII = {(a, b) ∈ H | |a| > max(1, |b|2)}.

To give some intuition for the partition described in (4), we first point out that the
inverse of a Hénonmap φa,b in standard form (1) is not a map occurring in the same form.
But as observed by Devaney-Nitecki [9], φ−1

a,b is linearly conjugate to the map φa/b2 ,1/b.
This idea gives rise naturally to the involution

ι : H → H, ι(a, b) = ( a
b2 ,

1
b ) (5)

on the parameter space of all Hénon maps; see Proposition 5 for more details. Using the
involution, we may alternately characterize the partition (4) by

HI = {(a, b) ∈ H | ‖(a, b)‖ ≤ 1, ‖ι(a, b)‖ ≤ 1}
H+

II = {(a, b) ∈ H | ‖(a, b)‖ ≤ 1, ‖ι(a, b)‖ > 1}
H−

II = {(a, b) ∈ H | ‖(a, b)‖ > 1, ‖ι(a, b)‖ ≤ 1}
HIII = {(a, b) ∈ H | ‖(a, b)‖ > 1, ‖ι(a, b)‖ > 1}.

(6)

Next, we observe thatHI is precisely the region in which both the Hénon map φa,b and
its inverse φ−1

a,b have coefficients in the ringO of integers ofK . Using properties of the non-
Archimedean absolute value it follows that φa,b restricts to a bijection φa,b : O2 → O2,
and reduces to a Hénon map φa,b : F2

K → F2
K defined over the residue field FK of K .

When (a, b) ∈ H+
II , the map φa,b has coefficients in O, but φ−1

a,b does not. As a con-
sequence, the restriction φa,b : B1(0, 0) → B1(0, 0) to the closed unit ball of K 2 fails to
be surjective, which leads to an asymmetry in the forward and backward dynamics of
φa,b. For example, J−(φa,b) is bounded while J+(φa,b) is unbounded, and J (φa,b) has the
structure of a trapped attracting set in the sense of Milnor [15].
When (a, b) ∈ H−

II , the map φa,b does not have coefficients in O, but φ−1
a,b is linearly

conjugate to φι(a,b) for ι(a, b) ∈ H+
II . Consequently, maps in regions H+

II and H−
II exhibit

identical dynamics but with a reversal of the (discrete) time direction.
Finally, when (a, b) ∈ HIII, neither φa,b nor φ−1

a,b is linearly conjugate to a Hénon map in
the form (1)with coefficients inO. Aswe shall see, this leads to rich dynamics related to the
Smale horseshoe map ([8] §2.3). Our main result for (a, b) ∈ HIII is a non-Archimedean
analogue of a theorem on the real Hénon map due to Devaney-Nitecki [9].
We now state a theorem which summarizes the general results of this paper. See Sect.

4.1 for the definition of a recurrent point, and see Sect. 4.2 for the definition of an attractor.

Theorem 1 Let (a, b) ∈ H and let φa,b : K 2 → K 2 be the associated Hénon map defined
in (1).

(a) J (φa,b) is compact. It is empty if and only if (a, b) ∈ HIII and a is not a square in K .
(b) (a, b) ∈ HI if and only if J (φa,b)is equal to the closed unit ball B1(0, 0).
(c) If (a, b) ∈ HI ∪ H+

II then J (φa,b) is equal to the set of recurrent points associated to
φa,b.
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(d) If (a, b) ∈ H+
II then J (φa,b) is an attractor for φa,b.

(e) If (a, b) ∈ HIII and a is a square in K , then the restriction of φa,b to J (φa,b) is topologi-
cally conjugate to the two-sided shift map on the space of bisequences in two symbols.

The requirement in part (e) that a is a square in K is not limiting, as this situation can
always be obtained by replacing K with its (at most quadratic) extension K (

√
a).

Since Hénon [12] introduced his namesake map in 1976, it has been the object of no
small amount of study in the real and complex settings. This deceptively simple family of
polynomial maps has given rise to a surprising number of interesting dynamical features;
see the surveys Robinson [18] and Devaney [8].
Devaney-Nitecki [9] proved in 1979 that, for certain values of its coefficients, the real

Hénon map is topologically conjugate to the two-sided shift map on the space of bise-
quences in two symbols. Their proof relies on the fact that the realHénonmap is essentially
an algebraic manifestation of the Smale horseshoemap ([8] §2.3). Our proof of Theorem 1
(e) follows a fairly close parallel with the proof of Devaney-Nitcki [9] (see alsoMoser [17]),
but the details are rather complicated, and the analogy is not always so straightforward,
as some of the analytic tools available over R do not carry over to the non-Archimedean
situation.
The existence of a strange attractor admitted by the real Hénon map was proposed by

Hénon [12] himself in 1976, and the first proof of the existence of such an attractor was
given by Benedicks-Carleson [5] in 1991. Mora-Viana [16] showed the existence of an
infinite class of parameter values inducing a strange attractor.
To study the attractors desribed inTheorem1, in Sect. 4we relate the structure of J (φa,b)

to periodic cycles with respect to the finite dynamical systems that φa,b induces on balls
in B1(0, 0), borrowing ideas from Anashin-Khrennikov [1]. We conjecture that, for each
complete, locally compact non-Archimedean field with odd residue characteristic, there
always exist some values of (a, b) inH+

II for which J (φa,b) is an infinite set. The following
theorem verifies this conjecture over the field Q3 of 3-adic numbers.

Theorem 2 Suppose that a ∈ Q3 satisfies |a − 2|3 ≤ 1/9, and define φ : Q2
3 → Q2

3 by
φ(x, y) = (a + 3y − x2, x). The attractor J (φ) is uncountably infinite, has Haar measure
zero in Q2

3, and contains no periodic points. Each point of J (φ) has dense forward orbit in
J (φ). There exists a probability measure μφ supported on J (φ) with the property that the
forward orbit of any point in Z2

3 is μφ-equidistributed.

The measure μφ describing the distribution of forward orbits near the attractor plays a
role analogous to that of the SRBmeasure (Sinai–Ruelle–Bowen) originating in the theory
of Anosov and Axiom A dynamical systems; see [22].
While there seems to be no consensus among dynamicists on the proper definition of

a strange attractor (see for example [19]), certainly many of the properties listed in the
statement of Theorem 2 are typical of attractors to which the term “strange” is gener-
ally applied. On the other hand, unlike the real Hénon map, the dynamics described in
Theorem 2 are not chaotic: for any (a, b) in region H+

II of parameter space, the Hénon
map φa,b is nonexpanding on J (φa,b) and hence the forward orbits of nearby points do not
diverge from one another. Moreover, inspection of the proof of Theorem 2 shows that the
Hausdorff dimension of the attractor J (φ) is 1.
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In Sect. 4.4 we include some numerical calculationswhich suggest that attractors similar
to the one described in Theorem 2 also exist over Q5 and Q7. A proof that such attractors
exist for all odd primes p would be extremely interesting and a significant advance over
the somewhat ad hoc proof of Theorem 2. In Sect. 4.3 we also give an infinite family of
distinct 3-adic Hénon maps for which the attractor J (φa,b) is finite (in fact an attracting
2-cycle).
Some researchers have studied the arithmetic aspects of the Hénon map and more

general plane polynomial automorphisms, e.g. Silverman [20], Denis [7], Ingram [13] and
others. The purely local dynamics of the Hénon map over non-Archimedean fields has
been relatively neglected; but see Marcello [14]. Woodcock-Smart [21] and Arrowsmith-
Vivaldi [2] have studied p-adic automorphisms related to horseshoe dynamics, but for
differentmaps than the standardHénonmap (1). One of the inspirations behind our work
is the paper of Benedetto–Briend–Perdry [4], which is an analogous study in the somewhat
simpler (non-invertible) setting of quadratic polynomial maps in one non-Archimedean
variable.
Our standing assumption of odd residue characteristic unifies our exposition and sim-

plifies many of our proofs. But the residue characteristic two case would also be very
interesting to consider, and much of this work would apply with suitable modifications.
Wehave chosen to focus on the settingof a locally compact groundfield, but itwould also

be interesting to consider the dynamics of Hénon maps over a complete and algebraically
closed non-Archimedean field, both on the classical affine plane, and in the sense of
Berkovich. Some of our results should carry over easily; for example, the criterion for
good reduction stated in Theorem 1 (b) should still hold with basically the same proof.
We also point out that, in the setting of Theorem 1 (e), the topological conjugacy with the
shift map implies that extending the ground field K does not produce any new points in
the filled Julia set.

1.2 Plan of the paper

In Sect. 2 we establish some notation and terminology and discuss properties of non-
Archimedean fields. In Sect. 3 we study fixed points and 2-cycles, and following Devaney-
Nitecki [9] andBedford-Smillie [3]we establish afiltrationproperty satisfiedby theHénon
map. Using this filtration we investigate basic topological and set-theoretic properties of
thefilled Julia sets J±(φa,b) and J (φa,b) as (a, b) ranges over the four regionsof theparameter
space. In Sect. 4 we consider the case (a, b) ∈ HI ∪H+

II , and we study the dynamics of the
restriction φa,b : B1(0, 0) → B1(0, 0) to the closed unit ball of K 2, leading to a proof that
J (φa,b) is equal to the recurrent set of φa,b. Restricting to the case (a, b) ∈ H+

II we prove
that J (φa,b) is an attractor, and we study the question of whether or not this attractor
is a finite union of attracting cycles. Over Q3, we prove that both situations can occur
for infinitely many distinct Hénon maps. Finally, in Sect. 5 we prove Theorem 1 (e),
establishing horseshoe dynamics in regionHIII.

2 Non-Archimedean fields
Throughout this paper, K is a field which is complete and locally compact with respect
to a nontrivial, non-Archimedean absolute value | · |, and such that the associated residue
field has odd characteristic. In particular, we have the strong triangle inequality |x +
y| ≤ max(|x|, |y|) for all x, y ∈ K , and a standard argument ([11] Prop. 2.3.3) shows
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that |x + y| = max(|x|, |y|) whenever |x| �= |y|. Our assumption that K has odd residue
characteristic can be characterized by the assumption that |2| = 1.
We denote by O = {x ∈ K | |a| ≤ 1} the ring of integers of K , we let π ∈ O be

a uniformizing parameter. Let FK = O/πO denote the residue field and let x �→ x
denote the reduction map O → FK . It follows from the local compactness of K that a
uniformizing parameter exists and that the residue field is finite. By assumption, FK has
odd characteristic.
Given c ∈ K and an element r ∈ |K×| of the value group of K , we define the “closed”

and “open” discs with center c and radius r by

Dr(c) = {x ∈ K | |x − c| ≤ r}
D◦
r (c) = {x ∈ K | |x − c| < r}. (7)

We use the non-Archimedean norm ‖ · ‖ on K 2 defined by ‖(x, y)‖ = max(|x|, |y|).
Given a point (c1, c2) ∈ K 2 and an element r ∈ |K×| of the value group of K , we define
the “closed” and “open” balls with center (c1, c2) and radius r by

Br(c1, c2) = {(x, y) ∈ K 2 | ‖(x, y) − (c1, c2)‖ ≤ r},
B◦
r (c1, c2) = {(x, y) ∈ K 2 | ‖(x, y) − (c1, c2)‖ < r}. (8)

Given two elements r1, r2 ∈ |K×| of the value group, denote by

Dr1 ,r2 (c1, c2) = {(x, y) ∈ K 2 | |x − c1| ≤ r1, |x − c2| ≤ r2} (9)

the polydisc in K 2 with center (c2, c2) and radii r1, r2. Of course, properties of the non-
Archimedean topology on K show that all of the sets defined in (7), (8), and (9) are
topologically both open and closed in K .

3 General properties of the Hénonmap
3.1 Fixed points and 2-cycles

In this section we describe criteria for the existence of fixed points and 2-cycles. The proof
of the following proposition follows from straightforward calculations arising from the
equations φa,b(x, y) = (x, y) and φ2

a,b(x, y) = (x, y). We let K̄ denote an algebraic closure of
K .

Proposition 3 Let (a, b) ∈ H and let φ = φa,b : K 2 → K 2 be the associated Hénon map.

(a) The only fixed points of φ in K̄ 2 are (α,α), where α is a root of

x2 − (b − 1)x − a = 0.

In particular, φ has no fixed points in K 2 when (b − 1)2 + 4a is not a square in K , a
single fixed point in K 2 when (b − 1)2 + 4a = 0, and two distinct fixed points in K 2

when (b − 1)2 + 4a is a nonzero square in K .
(b) The only solutions in K̄ 2 to the equation φ2(x, y) = (x, y) are the fixed points described

in part (a), and the points (β1,β2) and (β2,β1), where β1,β2 are the roots of

x2 + (b − 1)x + (b − 1)2 − a = 0.



Allen et al. Res. Number Theory (2018) 4:5 Page 7 of 30 5

In particular, φ has no 2-cycles in K 2 when 4a − 3(b − 1)2 is not a square in K ,
and φ has one 2-cycle in K 2 when 4a − 3(b − 1)2 is a nonzero square in K . When
4a − 3(b − 1)2 = 0, φ has fixed points ( 12 (1 − b), 12 (1 − b)) and ( 32 (b − 1), 32 (b − 1))
but no 2-cycles in K 2.

The following proposition gives a selection of sample applications of Proposition 3,
showing that periodic points and 2-cycles can be easily obtained for certain subregions of
the parameter spaceH.

Proposition 4 Let (a, b) ∈ H and let φ = φa,b : K 2 → K 2 be the associated Hénon map.

(a) Suppose that |a| < 1, |b| ≤ 1, and b �= 1 in FK . Then φ has two distinct fixed points
in K 2. Moreover, if K has residue characteristic not equal to 3 and if −3 is a square
in K , then φ has a 2-cycle in K 2.

(b) Suppose that (a, b) ∈ H−
II and that |a| < |b|2. Then φ has two distinct fixed points in

K 2. Moreover, if K has residue characteristic not equal to 3 and if −3 is a square in
K , then φ has a 2-cycle in K 2.

(c) Suppose that (a, b) ∈ HIII and that a is a square in K . Then φ has two distinct fixed
points in K 2 and a 2-cycle in K 2.

Proof We prove (a). Substituting x = (b− 1)t in the fixed-point and two-cycle equations
leads to t2 − t −a(b−1)−2 = 0 and t2 + t + (1−a(b−1)−2) = 0. The former has roots in
K by inspection of its Newton polygon, and under the additional hypotheses, K contains
a primitive 3-rd root of unity, and hence the latter has roots in K by Krasner’s lemma.
The proofs of (b) and (c) are similar, using the substitutions x = (b − 1)t and x = t

√
a,

respectively. ��

In fact, much more than Proposition 4 part (c) is true. When (a, b) is in HIII and a
is a square in K , it follows from the results of Sect. 5 that φa,b has 2� distinct points of
period � in K 2 for each � ≥ 1, that all possible minimal periods occur in K 2, and that all
φa,b-periodic points in K̄ 2 occur in K 2. On the other hand, the proof of Proposition 4 part
(c) is fairly elementary and does not rely on the machinery of Sect. 5.
We also remark that the following converse of Proposition 4 part (c) is true: if (a, b)

is in HIII and a is not a square in K , then φa,b has no periodic points at all in K 2. The
non-existence of fixed points and 2-cycles could be obtained easily from Proposition 3,
but the non-existence of any periodic points whatsoever follows from Theorem 12 part
(d), as filled Julia sets contain all periodic points.

3.2 An involution of the parameter space

In this section we record a proposition summarizing the basic properties of the involution
ι : H → H of the parameter space described in the introduction. We omit the proof
which consists of routine calculations.

Proposition 5 The function ι : H → H defined by ι(a, b) = ( a
b2 ,

1
b ) is an involution, it

restricts to involutions ι : HI → HI and ι : HIII → HIII, and it restricts to bijections
ι : H+

II → H−
II and ι : H−

II → H+
II . Given (a, b) ∈ H, the maps φι(a,b) and φ−1

a,b are
linearly conjugate to one another by the automorphism λ : K 2 → K 2 defined by λ(x, y) =
(−by,−bx); more precisely, φι(a,b) = λ−1 ◦ φ−1

a,b ◦ λ.



5 Page 8 of 30 Allen et al. Res. Number Theory (2018) 4:5

3.3 A filtration satisfied by the Hénonmap

For each (a, b) ∈ H, set

R = Ra,b = max(1, |a|1/2, |b|) (10)

and divide the plane K 2 into the three subsets (Fig. 2)

SR = {(x, y) ∈ K 2 | ‖(x, y)‖ ≤ R},
S+
R = {(x, y) ∈ K 2 | ‖(x, y)‖ > R, |x| ≥ |y|},
S−
R = {(x, y) ∈ K 2 | ‖(x, y)‖ > R, |x| ≤ |y|}.

(11)

Clearly K 2 = SR ∪ S+
R ∪ S−

R , but this is not technically a partition: SR intersects neither S+
R

nor S−
R , but S

+
R intersects S−

R where |x| = |y| > R.
Following the trajectories of φa,b-orbits though the sets (11) leads to the following useful

facts: every point in K 2 either has a bounded forward orbit eventually contained in SR,
or else its forward orbit eventually gets filtered through S+

R to infinity. Similarly, every
point in K 2 either has a bounded backward orbit eventually contained in SR, or else its
backward orbit eventually gets filtered through S−

R to infinity. We describe this filtration
in more detail in Proposition 7, which has been adapted to our purposes from Bedford-
Smillie [3], who give a treatment of such a filtration for more general plane polynomial
automorphisms over C. A similar filtration is used by Devaney-Nitecki [9] in their work
on the real Hénon map.
Before we state Proposition 7, we require the following lemma, which shows how the

parameter R and the sets SR and S±
R interact with the involution ι : H → H described in

Proposition 5. The proof consists of elementary calculations which we omit.

Lemma 6 Let (a, b) ∈ H, and define R, SR, S+
R , and S−

R as in (10) and (11). Let ι(a, b) =
( a
b2 ,

1
b ) = (a∗, b∗), and similarly set R∗ = max(1, |a∗|1/2, |b∗|) and define SR∗ , S+

R∗ , and
S−
R∗ as in (11). Define λ : K 2 → K 2 by λ(x, y) = (−by,−bx). The following identities
hold.

Fig. 2 The filtration sets SR , S
+
R , and S−

R depicted in the (|x|, |y|)-plane
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R∗ = 1
|b|R,

SR∗ = λ−1(SR),

S+
R∗ = λ−1(S−

R ),

S−
R∗ = λ−1(S+

R ).

Proposition 7 Let (a, b) ∈ H and let φ = φa,b : K 2 → K 2 be the associated Hénon
map. Set R = max(1, |a|1/2, |b|), and define SR, S+

R , and S−
R as in (11). Then φ satisfies the

following properties related to forward iteration.

(a) If (x, y) ∈ S+
R , then φ(x, y) ∈ S+

R and limn→+∞‖φn(x, y)‖ = +∞.
(b) If (x, y) ∈ SR, then φ(x, y) /∈ S−

R .
(c) If (x, y) ∈ S−

R , then φn(x, y) ∈ S−
R for only finitely many n ≥ 0.

Moreover, φ satisfies the following properties related to backward iteration.

(d) If (x, y) ∈ S−
R , then φ−1(x, y) ∈ S−

R and limn→+∞‖φ−n(x, y)‖ = +∞.
(e) If (x, y) ∈ SR, then φ−1(x, y) /∈ S+

R .
(f) If (x, y) ∈ S+

R , then φ−n(x, y) ∈ S+
R for only finitely many n ≥ 0.

Proof In this proof we use the shorthand notation (xn, yn) = φn(x, y) for the nth iterate
of the point (x, y) = (x0, y0) under φ, where n ∈ Z.
To prove (a), suppose that (x0, y0) ∈ S+

R . Note that |x0| > 1, |x0| > |b|, |x0| ≥ |y0|, and
|x20| > |a| by assumption, so

|x1| = |a + by0 − x20| = |x20| > |x0| = |y1|.
Thus, (x1, y1) ∈ S+

R . Iterating this argument we see that |xn+1| = |xn|2 > |xn| = |yn+1| for
all n ≥ 1. Thus ‖(xn, yn)‖ → +∞ as n → +∞.
To prove (b), suppose that (x0, y0) ∈ SR. If (x1, y1) ∈ SR then (x1, y1) /∈ S−

R and we are
done. If (x1, y1) /∈ SR then ‖(x1, y1)‖ > R, but as |y1| = |x0| ≤ R, we must have |x1| > R.
Thus |x1| > |y1| which implies (x1, y1) /∈ S−

R .
To prove (c), suppose that (x0, y0) ∈ S−

R and consider the following exhaustive (but not
mutually exclusive) set of cases:

Case 1: Some forward iterate (xn, yn) is in S+
R ,

Case 2: Some forward iterate (xn, yn) is in SR,
Case 3: All forward iterates (xn, yn) satisfy |yn| > |xn|.
In Case 1, it follows from the proof of part (a) that |xm| > |ym|, and hence (xm, ym) /∈ S−

R ,
for all m > n, and we are done. In Case 2, (b) implies that (xn+1, yn+1) is either in SR or
S+
R ; the latter situation puts us in Case 1, which has been settled, so we may assume that
(xn+1, yn+1) ∈ SR. Iterating, we must have that (xm, ym) is in SR, and therefore not in S−

R ,
for allm ≥ n, and again we are done. Finally, in Case 3 we have ‖(xn+1, yn+1)‖ = |yn+1| =
|xn| < |yn| = ‖(xn, yn)‖ for all n ≥ 0, and thus {‖(xn, yn)‖} is a strictly decreasing sequence
as n → +∞. Since K is discretely valued, this means that (xn, yn) is in SR, and therefore
not S−

R , for all large enough n.
Parts (d), (e) and (f) follow by using Lemmas 5 and 6 to reformulate them as statements

about φι(a,b), and applying parts (a), (b) and (c) to φι(a,b). For example, to prove (d) assume
that (x, y) ∈ S−

R . Adopting the notation of Lemma 6, we have λ−1(x, y) ∈ λ−1(S−
R ) = S+

R∗ .
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Using (a), we have that φι(a,b)(λ−1(x, y)) ∈ S+
R∗ and therefore

φ−1
a,b (x, y) = λ ◦ φι(a,b) ◦ λ−1(x, y) ∈ λ(S+

R∗ ) = S−
R ,

which is the desired inclusion. The second assertion of (d), as well as (e) and (f), follow
analogously. ��
According to the filtration described in Proposition 7, φa,b(SR) does not intersect S−

R ,
and therefore either φa,b(SR) ⊆ SR or else φa,b(SR) intersects S+

R . Similarly, φ−1
a,b (SR) does

not intersect S+
R , and therefore either φ−1

a,b (SR) ⊆ SR or else φ−1
a,b (SR) intersects S

−
R . The

following proposition establishes precisely when each of these cases occurs.

Proposition 8 Let (a, b) ∈ H and let φ = φa,b : K 2 → K 2 be the associated Hénon map.
Set R = max(1, |a|1/2, |b|), and define SR, S+

R , and S−
R as in (11).

(a) φ(SR) ⊆ SR if and only if ‖(a, b)‖ ≤ 1 (or equivalently, (a, b) ∈ HI ∪ H+
II ).

(b) φ−1(SR) ⊆ SR if and only if ‖ι(a, b)‖ ≤ 1 (or equivalently, (a, b) ∈ HI ∪ H−
II ).

Proof of Proposition 8 (a) If (a, b) is in region HI or H+
II , we then have that |a| ≤ 1 and

|b| ≤ 1, so R = 1 and SR = B1(0, 0). Since in this case φ has coefficients in O, we deduce
that φ(SR) ⊆ SR by the strong triangle inequality. Conversely, assume that (a, b) is not in
region HI or H+

II ; this means that either |a| > 1 or |b| > 1. We split into two cases. If
|a|1/2 ≥ |b|, then |a| > 1 and R = |a|1/2, so |a| > R. It follows that φ(0, 0) = (a, 0) ∈ S+

R ,
and therefore φ(SR) � SR. If |a|1/2 < |b|, then |b| > 1 and R = |b|. It follows that
(b, 0) ∈ SR and |a − b2| = |b2| > |b| = R, so φ(b, 0) = (a − b2, b) ∈ S+

R . Thus φ(SR) � SR
in this case as well.
(b) We adopt the notation of Lemma 6. It follows from Proposition 5 and Lemma 6

that λ−1(SR) = SR∗ and λ−1(φ−1
a,b (SR)) = φa∗ ,b∗ (SR∗ ), and consequently φ−1

a,b (SR) ⊆ SR if
and only if φa∗ ,b∗ (SR∗ ) ⊆ SR∗ . By Proposition 5, (a, b) is in region HI or H−

II if and only if
(a∗, b∗) is in regionHI orH+

II . Together these facts imply that (b) follows from (a) applied
to φa∗ ,b∗ . ��
Proposition 9 Let (a, b) ∈ H and let φ = φa,b : K 2 → K 2 be the associated Hénon map.
Set R = max(1, |a|1/2, |b|), and define SR, S+

R , and S−
R as in (11). Then the following holds.

J+(φ) = K 2
∖( ⋃

n≥0
φ−n(S+

R )
)

⊆ S−
R ∪ SR,

J−(φ) = K 2
∖( ⋃

n≥0
φn(S−

R )
)

⊆ S+
R ∪ SR,

J (φ) ⊆ SR.

In particular, J (φ) is bounded.

Proof Proposition 7 (a) shows that no point in S+
R can have bounded forward orbit, from

which J+(φ) ⊆ S−
R ∪ SR follows. More generally, if (x, y) ∈ J+(φ), then each point φn(x, y)

in its forward orbit also has bounded forward orbit, from which we deduce φn(x, y) /∈ S+
R ;

thus (x, y) /∈ ⋃
n≥0 φ−n(S+

R ). Conversely, if (x, y) /∈ ⋃
n≥0 φ−n(S+

R ), then the points φn(x, y)
(for n ≥ 0) are not in S+

R , and can only be in S−
R for finitely many n by Proposition 7 (c).

Hence φn(x, y) ∈ SR for all but finitely many n ≥ 0, and we deduce that (x, y) has bounded
forward orbit, and so it is in J+(φ).
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The corresponding facts about J−(φ) follow from a similar argument. Finally, since
points with bounded two-sided orbit can occur neither in S+

R nor in S−
R , they can only

occur in SR, from which J (φ) ⊆ SR follows. ��

3.4 General properties of the filled Julia sets

In this section we use the filtration described in Sect. 3.3 to deduce some basic facts about
the filled Julia sets defined in (3). We begin with a lemma which explains how the filled
Julia sets interact with the involution ι : H → H described in Proposition 5.

Lemma 10 Let (a, b) ∈ H and define λ : K 2 → K 2 by λ(x, y) = (−by,−bx). Then

J (φι(a,b)) = λ−1(J (φa,b))

J+(φι(a,b)) = λ−1(J−(φa,b))

J−(φι(a,b)) = λ−1(J+(φa,b)).

Proof For each n ∈ Z, it follows from Proposition 5 that λ ◦ φn
ι(a,b) = φ−n

a,b ◦ λ. Together
with the easily checked identity ‖λ(x, y)‖ = |b|‖(x, y)‖, we deduce that

|b|‖φn
ι(a,b)(x, y)‖ = ‖φ−n

a,b (λ(x, y))‖ (12)

for each (x, y) ∈ K 2. It follows that (x, y) has bounded forward (resp. backward) φι(a,b)-
orbit if and only if λ(x, y) has bounded backward (resp. forward) φa,b-orbit, from which
the desired identities follow. ��

Our next result shows that, when (a, b) ∈ HI, the filled Julia sets take a particularly
simple form; and in fact these conditions characterize the regionHI.

Theorem 11 Let (a, b) ∈ H and let φ = φa,b : K 2 → K 2 be the associated Hénon map.
The following conditions are equivalent:

(a) (a, b) ∈ HI,
(b) J (φ) = B1(0, 0),
(c) J+(φ) = B1(0, 0),
(d) J−(φ) = B1(0, 0),
(e) φ(B1(0, 0)) = B1(0, 0).

Proof (a) ⇒ (b): Suppose that (a, b) ∈ HI; thus |a| ≤ 1 and |b| = 1. We then have R = 1
in Corollary 9 and hence J (φ) ⊆ S1 = B1(0, 0). Conversely, suppose (x, y) ∈ B1(0, 0).
Then ‖φ(x, y)‖ = max{|a + by − x2|, |x|} ≤ 1, and iterating we have ‖φn(x, y)‖ ≤ 1 for
all n ≥ 0. Similarly, ‖φ−1(x, y)‖ = max{|y|, |− a

b + 1
bx + 1

b y
2|} ≤ 1, and iterating we have

‖φ−n(x, y)‖ ≤ 1 for all n ≥ 1. We conclude that (x, y) ∈ J (φ).
(b) ⇒ (e): If J (φ) = B1(0, 0), then φ(B1(0, 0)) = B1(0, 0) follows from the φ-invariance

of J (φ).
(e) ⇒ (a): Suppose that φ(B1(0, 0)) = B1(0, 0). Then because (a, 0) = φ(0, 0) ∈ B1(0, 0),

it must be true that |a| ≤ 1. Also, (a + b, 0) = φ(0, 1) ∈ B1(0, 0), so it must be true that
|a + b| ≤ 1. Therefore |b| ≤ max(|a + b|, | − a|) ≤ 1. Finally, note that φ−1(B1(0, 0)) =
B1(0, 0). So (0, 1b ) = φ−1(a + 1, 0) ∈ B1(0, 0), so we must have | 1b | ≤ 1 and thus |b| = 1.
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(a) ⇒ (c): Suppose that (a, b) ∈ HI. Then R = 1 and SR = B1(0, 0) in Proposition 9.
Sincewe have already proved that J (φ) = B1(0, 0)whenever (a, b) ∈ HI, we haveB1(0, 0) ⊆
J+(φ). If J+(φ) contains some point (x0, y0) which is not in B1(0, 0), then Proposition 9
implies that (x0, y0) ∈ S−

R . By Proposition 7 part (c) and Proposition 9, there exists some
point (xn, yn) in the forward orbit of (x0, y0) such that (xn, yn) ∈ SR. In particular, (x0, y0) /∈
B1(0, 0) and (xn, yn) ∈ B1(0, 0). This is impossible, because we have already proved that
φ(B1(0, 0)) = B1(0, 0).
(a)⇒ (d): This is identical to the proof of (a)⇒ (c) except with the direction of iteration

reversed.
(c) ⇒ (e) and (d) ⇒ (e): These are the same as the proof of (b) ⇒ (e). Because the

filled Julia sets J+(φ) and J−(φ) are φ-invariant, φ(B1(0, 0)) = B1(0, 0) follows if either
J+(φ) = B1(0, 0) or J−(φ) = B1(0, 0). ��

Theorem 11 gives complete information about the filled Julia sets in the regionHI. The
following proposition explains, for the other three regions H+

II , H−
II , and HIII, whether

the filled Julia sets are empty or nonempty, bounded or unbounded, and under what
conditions it occurs that J±(φa,b) = J (φa,b).

Theorem 12 Let (a, b) ∈ H and let φ = φa,b : K 2 → K 2 be the associated Hénon map.

(a) If (a, b) ∈ H+
II then J+(φ), J−(φ), and J (φ) are nonempty, J+(φ) is unbounded, and

J−(φ) = J (φ) = ⋂
n≥0 φn(SR); in particular J−(φ) is bounded.

(b) If (a, b) ∈ H−
II then J+(φ), J−(φ), and J (φ) are nonempty, J−(φ) is unbounded, and

J+(φ) = J (φ) = ⋂
n≥0 φ−n(SR); in particular J+(φ) is bounded.

(c) If (a, b) ∈ HIII and a is a square in K then J+(φ), J−(φ), and J (φ) are nonempty, and
J+(φ) and J−(φ) are unbounded.

(d) If (a, b) ∈ HIII and a is not a square in K then J+(φ), J−(φ), and J (φ) are empty.

Proof In this proof we use the shorthand notation (xn, yn) = φn(x, y) for the nth iterate
of the point (x, y) = (x0, y0) under φ, where n ∈ Z.

(a) Suppose that (a, b) ∈ H+
II . We first show that J+(φ) is unbounded. Proposition 8

implies in this case that

φ(SR) ⊆ SR (13)

and

φ−1(SR) � SR. (14)

The non-inclusion (14) means that there exists (x0, y0) /∈ SR for which φ(x0, y0) ∈ SR.
The inclusion (13) shows that (x0, y0) has forward orbit contained in SR and so
(xn, yn) ∈ J+(φ) for all n ∈ Z. On the other hand, because (x0, y0) is in J+(φ) but not
in SR, Proposition 9 shows that (x0, y0) ∈ S−

R . Proposition 7 part (d) then implies that
‖(xn, yn)‖ → +∞ as n → −∞, and hence J+(φ) is unbounded.
We next show that J−(φ) = J (φ). It is trivial that J (φ) ⊆ J−(φ). If (x0, y0) ∈ J−(φ),
then by Propositions 7 and 9 part (f), some backward iterate (xn, yn) is in SR. But
then (xn, yn) has bounded forward orbit by (13). Consequently (x0, y0) has bounded
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forward orbit; that is (x0, y0) ∈ J+(φ) and hence (x0, y0) ∈ J (φ), completing the proof
that J−(φ) = J (φ).
Finally, we show that J (φ) is nonempty, which trivially implies that J+(φ) and J−(φ)
are nonempty. In fact we have

J (φ) =
⋂
n≥0

φn(SR). (15)

For if (x, y) is an element of the right hand side of (15), then φ−n(x, y) ∈ SR for all
n ≥ 0, so (x, y) ∈ J−(φ) = J (φ). Conversely, if (x, y) ∈ J (φ), thenφ−n(x, y) ∈ J (φ) ⊆ SR
for all n ≥ 0 (using the φ-invariance of J (φ) and Proposition 9) and therefore (x, y)
is an element of the right hand side of (15). The inclusion (13) implies that the right
hand side of (15) is a nested intersection of compact sets, and so it is nonempty.

(b) When (a, b) ∈ H−
II , we have ι(a, b) ∈ H+

II . So applying part (a) of this Proposition to
φι(a,b) and using Lemma 10, we obtain the statements in part (b) of this Proposition.

(c) If (a, b) ∈ HIII and a is a square in K , then J+(φ), J−(φ), and J (φ) are nonempty
because, by Proposition 3, φ has fixed points in K 2. We delay the proof that J+(φ)
and J−(φ) are unbounded until Sect. 5.5.

(d) Assume that (a, b) ∈ HIII. Thus |a| > max(1, |b|2), and in the notation of Sect. 3.3
we have R = |a|1/2.

We first show that if J+(φ) is nonempty, then a is a square in K . Assume that (x0, y0) ∈
J+(φ). Then by Proposition 9 and Proposition 7 part (c), all but finitelymany points (xn, yn)
in the forward orbit of (x0, y0) are in SR, so replacing (x0, y0) with some forward iterate,
without loss of generality we may assume that (xn, yn) ∈ SR for all n ≥ 0. In particular this
implies that

|x0| = |a|1/2, |x1| ≤ |a|1/2 and |y0| ≤ |a|1/2. (16)

The upper bounds |xn| ≤ |a|1/2 and |yn| ≤ |a|1/2 follow from (xn, yn) ∈ SR, and if
|x0| < |a|1/2 then we would have |x1| = |a + by0 − x20| = |a| > |a|1/2, a contradiction, so
|x0| = |a|1/2. Finally, from x1 = a+by0−x20 we calculate |x20−a| = |by0−x1| < |a| = |x0|2.
By Krasner’s lemma and the preceding inequality, a is so close to the square x20 that a itself
is a square.
If J−(φ) is nonempty, then by Lemma 10, J+(φι(a,b)) is nonempty. As ι(a, b) = ( a

b2 ,
1
b ),

we conclude from the previous case that a
b2 is a square in K , and hence a is a square in K .

Finally, if J (φ) is nonempty then J±(φ) are nonempty, and so again a is a square in K . ��
Proposition 13 Let (a, b) ∈ H and let φ = φa,b : K 2 → K 2 be the associated Hénonmap.
The sets J+(φ), J−(φ), and J (φ) are closed.

Proof Proposition 9 shows that the complement of J+(φ) is a union of open sets, and
hence open. Thus J+(φ) is closed. Similarly, J−(φ) is closed, and we conclude that J (φ) =
J+(φ) ∩ J−(φ) is closed. ��

4 RegionsHI andH+
II : recurrence and attractors

4.1 Recurrence in regionsHI andH+
II

In this section we study the forward dynamics of the Hénon map φ = φa,b for (a, b) in
regionsHI andH+

II of the parameter spaceH; thus we assume |a| ≤ 1 and |b| ≤ 1. By the
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strong triangle inequality, it follows that φ is nonexpanding on B1(0, 0); that is, for each
ball Br(x, y) in B1(0, 0) and each n ≥ 1, φn(Br(x, y)) ⊆ Br(φn(x, y)).
We say a ball Br(x, y) in B1(0, 0) is φ-periodic if φn(Br(x, y)) ⊆ Br(x, y) for some n ≥ 1;

the minimal such n is theminimal period of the ball, which we denote bym(Br(x, y)). If a
ball is not periodic we say it is strictly preperiodic; this is appropriate since there are only
finitely many balls in B1(0, 0) of any given radius, and thus all balls have finite forward
orbit. In the discussion of periodic balls it is convenient to abuse notation slightly and use
φn(Br(x, y)) to refer to the ball Br(φn(x, y)); since Br(φn(x, y)) is the unique ball of radius
r containing φn(Br(x, y)), this causes no harm. (Cycles of periodic balls are called fuzzy
cycles by Anashin-Khrennikov [1]).

Proposition 14 Let (a, b) ∈ HI ∪ H+
II , let φ = φa,b : K 2 → K 2 be the associated Hénon

map, and let (x, y) ∈ K 2. Then (x, y) ∈ J (φ) if and only if every ball Br(x, y) ⊆ B1(0, 0)
containing (x, y) is φ-periodic.

Proof Consider a point (x, y) ∈ J (φ) and a ball Br(x, y) in B1(0, 0) containing it. Since the
entire backward orbit of (x, y) is contained in B1(0, 0), it must meet some ball Br(u, v) in
B1(0, 0) at least twice [as there are only finitely many balls of radius r in B1(0, 0)]. The ball
Br(u, v) is therefore periodic, and thus Br(x, y) is one of the balls in its cycle.
Conversely, suppose (x, y) /∈ J (φ); thus (x, y) /∈ J−(φ) by Theorems 11 and 12, so

φ−n(x, y) /∈ B1(0, 0) for some n ≥ 1. We may therefore select r ∈ |K×| so small that
φ−n(Br(x, y))∩B1(0, 0) = ∅. Since the ball Br(x, y) does not meet φn(B1(0, 0)), it cannot be
φ-periodic. ��
Let φ : M → M be a continuous self-map of a metric space M. A point α ∈ M is said

to be recurrent for φ if, for each open neighborhood U of α, there exists some n ≥ 1 such
that φn(α) ∈ U . Denote by R(φ) the set of all recurrent points for φ.

Corollary 15 Let (a, b) ∈ HI ∪ H+
II and let φ = φa,b : K 2 → K 2 be the associated Hénon

map. Then J (φ) = R(φ).

Proof Given a point (x, y) ∈ J (φ), consider a ball Br(x, y) in B1(0, 0) containing it. By
Proposition 14, there exists n ≥ 1 for which φn(Br(x, y)) ⊆ Br(x, y), and hence (x, y) is
recurrent.
Conversely, suppose that (x, y) /∈ J (φ). Proposition 7 part (a) implies that no points in S+

R
can be recurrent, and Proposition 7 part (c) implies that no points in S−

R can be recurrent.
We are left with the case (x, y) ∈ B1(0, 0) \ J (φ). By Proposition 14, there exists 0 < r < 1
such that Br(x, y) is not φ-periodic. Thus, Br(x, y) is a neighborhood of (x, y) to which no
forward iterate of (x, y) returns, showing (x, y) is not recurrent. ��

4.2 Attractors in regionH+
II

In this section restrict attention to maps φ = φa,b for (a, b) in regionH+
II ; thus we assume

|a| ≤ 1 and |b| < 1.
Let (M,d) be a metric space and let φ : M → M be a homeomorphism. By an attractor

for φ we mean a subset A ⊆ M satisfying the following properties: (i) A is nonempty
and compact; (ii) A is φ-invariant; (iii) there exists an open set U ⊆ M which properly
containsA, such that for all β ∈ U ,

lim
n→+∞ dist(φn(β),A) = 0
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where dist(x,A) = min{d(x,α) | α ∈ A}. The union of all suchU is the basin of attraction
forA.We say the attractorA is indecomposable if it cannot be expressed as a disjoint union
of two attractors. (Some authors require this condition in the definition of an attractor.)
If A contains only one point we say it is an attracting fixed point of φ. More generally, if
A is a φ-cycle we say it is an attracting cycle.

Theorem 16 Let (a, b) ∈ H+
II and let φ = φa,b : K 2 → K 2 be the associated Hénon map.

Then J (φ) is an attractor for φ, with basin of attraction containing B1(0, 0).

Proof Since |a| ≤ 1 and |b| < 1, φ restricts to a nonsurjective function φ : B1(0, 0) →
B1(0, 0), and we proved in Proposition 12 (a) that J (φ) is nonempty, compact, and it can
be expressed as a properly nested intersection

J (φ) =
⋂
n≥0

φn(B1(0, 0)). (17)

In order to show that J (φ) satisfies part (iii) of the definition of an attractor with U =
B1(0, 0) (which is open and properly contains J (φ)), it suffices to show that

Mn := sup{dist((x, y), J (φ)) | (x, y) ∈ φn(B1(0, 0))} → 0

as n → +∞. The sequence {Mn} is nonincreasing since the intersection (17) is nested. By
compactness we haveMn = dist((αn,βn), J (φ)) for some (αn,βn) ∈ φn(B1(0, 0)), and again
using compactness and passing to a subsequence we have (xnk , ynk ) → (α,β) for some
(α,β) ∈ B1(0, 0). Since each φn(B1(0, 0)) is closed and contains all but finitely many of the
terms {(xnk , ynk )}, we have (α,β) ∈ φn(B1(0, 0)) for all n ≥ 0, and thus (α,β) ∈ J (φ). We
conclude thatMnk ≤ ‖(xnk , ynk ) − (α,β)‖ → 0, and henceMn → 0 since the sequence is
nonincreasing. ��

Attractors arising fromnested intersections of the type (17) are called trapped attracting
sets by Milnor [15].
If the attractor described in Theorem 16 is an infinite set, then it may be considered

a non-Archimedean analogue of the strange attractor admitted by the real Henon map.
Based on Theorem 2 and the calculations described in Sect. 4.4, we venture the following
conjecture.

Conjecture 1 For each complete, locally compact non-Archimedean field K with odd
residue characteristic, there exists (a, b) ∈ H+

II for which J (φa,b) is an infinite set.

To investigate this conjecture further we prove Theorem 18, which gives a necessary
and sufficient condition for the finiteness of J (φa,b) in terms of φ-periodicity. In order to
prove Theorem 18 we require a lemma.

Lemma 17 Let (a, b) ∈ H+
II and let φ = φa,b : K 2 → K 2 be the associated Hénon map.

Let Br(x, y) be a φ-periodic ball in B1(0, 0) of minimal period m.

(a) If Br(x, y) ⊆ Br′ (x, y) ⊆ B1(0, 0), then Br′ (x, y) is φ-periodic with minimal period
m′ | m.

(b) For each 0 < r′ < r in the value group |K×|, there exists at least one φ-periodic ball
Br′ (x′, y′) ⊆ Br(x, y).
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(c) J (φ) ∩ Br(x, y) contains a point which is either non-periodic or periodic of minimal
period at least m.

Proof (a) Since φm(Br(x, y)) ⊆ Br(x, y) and Br(x, y) ⊆ Br′ (x, y), it follows that
φm(Br′ (x, y)) ∩ Br′ (x, y) �= ∅. Since φ is nonexpanding, it follows that φm(Br′ (x, y)) ⊆
Br′ (x, y) and hence Br′ (x, y) is periodic. Letting m′ denote the minimal period of
Br′ (x, y) and letting � denote the minimal period of Br(x, y) with respect to φm′ , we
havem = m′�.

(b) Since φm(Br(x, y)) ⊆ Br(x, y) and φ is nonexpanding, φm induces a self-map on the
set of balls of radius r′ contained in Br(x, y); since this set is finite, there is a periodic
ball.

(c) Iterating part (b), there exists a nested sequence of φ-periodic balls

Br(x, y) ⊇ Br1 (x1, y1) ⊇ Br2 (x2, y2) ⊇ . . .

where rk → 0. By compactness,
⋂
k≥1

Brk (xk , yk ) = {(x0, y0)}

for some (x0, y0) ∈ Br(x, y). By part (a), all balls in B1(0, 0) containing (x0, y0) are
φ-periodic, and so (x0, y0) ∈ J (φ) by Proposition 14. If (x0, y0) is not φ-periodic then
there is nothing left to prove. If (x0, y0) is φ-periodic with minimal period m0, then
φm0 (Br(x, y)) ∩ Br(x, y) �= ∅ as both φm0 (Br(x, y)) and Br(x, y) contain (x0, y0). Since
φ is nonexpanding, it follows that φm0 (Br(x, y)) ⊆ Br(x, y) and hence the minimal
periodm of Br(x, y) is at mostm0.

��

Theorem 18 Let (a, b) ∈ H+
II and let φ = φa,b : K 2 → K 2 be the associated Hénon map.

Then J (φ) is finite if and only if there exists some N ≥ 1 such that m(Br(x, y)) ≤ N for all
φ-periodic balls Br(x, y) in B1(0, 0).

Proof If J (φ) is finite then it contains only periodic points; let N be the largest minimal
period amongall of these points. IfBr(x, y) is aφ-periodic ball, then it intersects nontrivially
with J (φ) by Lemma 17, and so it must contain a periodic point (α,β). Theminimal period
of Br(x, y) cannot be greater than theminimal period of (α,β), and hencem(Br(x, y)) ≤ N .
Conversely, assume that J (φ) is an infinite set. Let n ≥ 1 be arbitrary, and let (x, y) ∈

J (φ) be a point which is either not periodic, or else periodic with minimal period at
least n. Such a point must exist because, by a Bezout theorem argument (e.g. [10]), φ

has only finitely many periodic points of any given minimal period. Since the points
(x, y),φ(x, y), . . . ,φm−1(x, y) are distinct, there exists r ∈ |K×| so small that the balls

Br(x, y),φ(Br (x, y)), . . . ,φn−1(Br(x, y)) (18)

are disjoint. We know that Br(x, y) is φ-periodic by Proposition 14 and the fact that
(x, y) ∈ J (φ), and the minimal φ-period of Br(x, y) must be at least n, because the balls (18)
are disjoint. As n was arbitrary, it follows that the N described in the statement of the
theorem does not exist. ��



Allen et al. Res. Number Theory (2018) 4:5 Page 17 of 30 5

Recalling our assumptions that |a| ≤ 1 and |b| < 1, we now prove a result which
further specializes to the case |a| < 1. In this case the attractor J (φa,b) is the union of two
attractors, one of which is an attracting fixed point.

Proposition 19 Let (a, b) ∈ H+
II and assume further that |a| < 1. Letφ = φa,b : K 2 → K 2

be the associated Hénon map.

(a) φ has an attracting fixed point (c, c) ∈ B◦
1(0, 0).

(b) A = J (φ) \ {(c, c)} is an attractor for φ.
(c) B1(0, 0) is the smallest polydisc in K 2 containing J (φ).

Proof (a) Inspectionof theNewtonpolygonof thefixedpoint equationx2−(b−1)x−a = 0
shows that it has one root c ∈ K with |c| = |a| < 1, and another root d with |d| = 1,
and thus (c, c) and (d, d) are fixed points. To verify that {(c, c)} is attracting, we partition
B1(0, 0) into the two sets

U = {(x, y) ∈ B1(0, 0) | |x| < 1},
V = {(x, y) ∈ B1(0, 0) | |x| = 1} (19)

andwewill show thatU is a basinof attraction for (c, c).Conjugatingby (x, y) �→ (x+c, y+c)
(which preserves the sets U and V ), it suffices to show that (0, 0) is attracting for the map

ψ(x, y) = φ(x + c, y + c) − (c, c) = (by − 2cx − x2, x).

If (x, y) ∈ U with |x| ≤ r < 1, set X = by − 2cx − x2 and Y = x. Then
|X | ≤ max(|b|r, |c|r, r2) and |Y | ≤ r, so

‖ψ2(x, y)‖ = ‖ψ(X, Y )‖ ≤ max(|b|r, |c|r, r2). (20)

Since |b| < 1 and |c| = |a| < 1, we conclude ψn(x, y) → (0, 0) as n → +∞.
(b) It is easy to see using the strong triangle inequality that φ(V ) ⊆ V . We now claim

that J (φ)∩U = {(c, c)}; in other words, no point ofU is in J (φ) except the attracting fixed
point (c, c) itself. For if there exists some (x, y) ∈ J (φ) ∩ U with (x, y) �= (c, c), then the
entire backward orbit {φ−n(x, y) | n ≥ 0}must be contained inU by Proposition 9 and the
fact that φ(V ) ⊆ V . Again conjugating as in part (a), it follows that ψ−n(x − c, y− c) ∈ U
for all n ≥ 1. But then ‖ψ−2n(x − c, y − c)‖ would be strictly increasing as n → +∞ by
(20), an impossibility as U is bounded and K is discretely valued.
SetA = J (φ)\{(c, c)}, which is nonempty because it contains the fixed point (d, d). Since

A ⊆ V , it now follows from (17) that A = ⋂
n≥0 φn(V ). The proof that A is an attractor

now follows from the same argument used to prove Theorem 16.
(c) Suppose D is a polydisc such that J (φ) ⊂ D. Then (c, c) ∈ D and so we may write

D = Dr1 ,r2 (c, c) for some radii r1, r2. But (d, d) ∈ D as well and |c − d| = |d| = 1 and so
r1 ≥ 1 and r2 ≥ 1. ��

4.3 Examples in Q3

In this section we explore two examples over the field Q3 of 3-adic numbers. As usual,
denote by | · |3 the absolute value on Q3, normalized so that |3|3 = 1/3, and set Z3 = {x ∈
Q3 | |x|3 ≤ 1}.
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Theorem 20 For a ∈ D1/9(2), define φ = φa,3 : Q2
3 → Q2

3 by φ(x, y) = (a + 3y − x2, x).

(a) B1/3(1, 1) is fixed by φ and the other eight balls of radius 1/3 in B1(0, 0) are strictly
preperiodic. For each k ≥ 1, there is a cycle of balls of radius 1/3k+1 in B1/3(1, 1)
of minimal period 3k , and all other balls of radius 1/3k+1 in B1/3(1, 1) are strictly
preperiodic.Moreover, eachperiodic ball of radius1/3k contains exactly three periodic
balls of radius 1/3k+1.

(b) The attractor J (φ) is uncountably infinite, has Haarmeasure zero inQ2
3, and contains

no periodic points. Each point of J (φ) has dense forward orbit in J (φ). In particular,
J (φ) is indecomposable.

(c) There exists a probability measure μφ supported on J (φ) with the property that the
forward orbit of any point in B1(0, 0) is μφ-equidistributed; in other words,

lim
n→+∞

1
n

n∑
i=1

f (φi(x, y)) =
∫

f dμφ

for all (x, y) ∈ B1(0, 0) and all continuous f : B1(0, 0) → R.

Since the automorphism h(x, y) = (x+ 1, x+ y+ 1) fixes B1(0, 0) and permutes the balls
of any given radius in B1(0, 0), we may replace φ with its conjugate

ψ(x, y) = h−1 ◦ φ ◦ h(x, y) = (a + 1 − 2x + 3y − x2,−a − 1 + 3x − 3y + x2)

and replace the ball B1/3(1, 1) which is fixed by φ, with B1/3(0, 0) which is fixed by ψ .

Lemma 21 For each k ≥ 1, there exists ck ∈ Z3 and a polynomial map ψk : B1(0, 0) →
B1(0, 0) which has coefficients in Z3 and has the following properties.

• ψ1 = ψ and c1 = −1.
• ψk+1 = h−1

k ◦ ψ3
k ◦ hk for all k ≥ 1, where hk (x, y) = (3x, 3y + 3ck ).

• ψk fixes B1/3(0, 0), has a 3-cycle {B1/9(0,−3ck ), B1/9(3,−3ck ), B1/9(6,−3ck )} of balls
of radius 1/9, and all other balls of radius 1/9 in B1/3(0, 0) are strictly preperiodic to
this cycle.

Proof It will be useful to define the ideal I = (9, 3x, 3y, x2, xy, y2) of Z3[x, y]. Thus a
polynomial A + Bx + Cy + · · · ∈ Z3[x, y] is an element of I if and only if 9 | A, 3 | B, and
3 | C in Z3. Given a polynomial map f : B1/3(0, 0) → B1/3(0, 0) having coefficients in Zp,
the action of f on the nine balls of radius 1/9 contained in B1/3(0, 0) depends only on the
congruence class of f modulo I ; this observation will simplify the calculations.
In addition to the properties in the statement of the Lemma, we will also show that

ψk (x, y) ≡ (3 + x, 3ck ) (mod I) (21)

for all k ≥ 1. With ψ1 = ψ and c1 = −1, then using the assumption that a ≡ 2 (mod 9),
we have ψ1(x, y) ≡ (3 + x,−3) (mod I), which is (21), and from which it follows that ψ1
has a 3-cycle {B1/9(0, 6), B1/9(3, 6), B1/9(6, 6)}, and that all of the other six balls of radius 1

9
in B1/3(0, 0) are strictly preperiodic into this cycle.
Assuming ψk and ck have already been constructed as in the statement of the Lemma

and satisfying (21), set ψk+1 = h−1
k ◦ ψ3

k ◦ hk , where

hk (x, y) = (3x, 3y + 3ck ). (22)
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Using (21) and the definition of I we may write

ψk (x, y) = (3 + x + 9ak + F (x, y), 3ck + 9bk + G(x, y))

where ak , bk ∈ Z3, and both F and G are in I and have vanishing constant term. We
calculate

h−1
k ◦ ψk ◦ hk (x, y) = (1 + 3ak + x + 1

3F (3x, 3y + 3ck ), 3bk + 1
3G(3x, 3y + 3ck )).

Since both F and G have vanishing constant term and are in I , it follows that both
1
3F (3x, 3y + 3ck ) and 1

3G(3x, 3y + 3ck ) are in I , and we deduce

h−1
k ◦ ψk ◦ hk (x, y) ≡ (1 + 3ak + x, 3bk ) (mod I).

Finally, iterating we arrive at

ψk+1(x, y) = h−1
k ◦ ψ3

k ◦ hk (x, y) ≡ (3 + x, 3bk ) (mod I),

and thus we set ck+1 = bk , establishing the desired congruence (21). The final sentence
of the Lemma follows easily from the congruence (21). ��

Proof of Theorem 20 (a) As explained above, it suffices to prove the analogous statement
for ψ instead of φ. Using ψ(x, y) ≡ (−2x − x2, x2) (mod 3), it is elementary to check that
B1/3(0, 0) is fixed by ψ and all of the other eight balls of radius 1

3 in B1(0, 0) are strictly
preperiodic into this fixed ball.
We proceed by induction on k . The k = 1 case follows from the Lemma 21 and the

fact that ψ1 = ψ . Fix k ≥ 1, and assume that ψ has a cycle of balls of radius 1/3k+1 in
B1/3(0, 0) of minimal period 3k , that all other balls of radius 1/3k+1 in B1/3(0, 0) are strictly
preperiodic into this cycle, and that each periodic ball of radius 1/3k contains exactly three
periodic balls of radius 1/3k+1.
Note thatψk+1 = H−1

k ◦ψ3k ◦Hk whereHk = h1◦h2◦· · ·◦hk . By (22), the automorphism
Hk takes discs of radius 1/3r to discs of radius 1/3r+k . It then follows from the final
sentence of Lemma 21 that ψ3k has a 3-cycle

{B1/3k+2 (x0, y0),ψ3k (B1/3k+2 (x0, y0)),ψ3k2(B1/3k+2 (x0, y0))} (23)

of balls of radius 1/3k+2, all of which are contained in the ball B1/3k+1 (x0, y0) which is
fixed by ψ3k , and that B1/3k+1 (x0, y0) contains no periodic balls of radius 1/3k+2 except
the three balls in (23). In particular,

{B1/3k+2 (x0, y0),ψ(B1/3k+2 (x0, y0)), . . . ,ψ3k+1−1(B1/3k+2 (x0, y0))} (24)

is a 3k+1-cycle for ψ . By the induction hypothesis, it follows that

{B1/3k+1 (x0, y0),ψ(B1/3k+1 (x0, y0)), . . . ,ψ3k−1(B1/3k+1 (x0, y0))} (25)

is a 3k-cycle for ψ , and the only periodic balls of radius 1/3k+1 are in the cycle (25).
Suppose that B1/3k+2 (x′

0, y
′
0) is a periodic ball of radius 1/3k+2 not occurring in the cycle

(24); then the cycle containing B1/3k+2 (x′
0, y

′
0) is disjoint from the cycle (24). Since the

larger ball B1/3k+1 (x′
0, y

′
0) is periodic, it is equal to one of the balls in (25), whereby some

ball in the cycle of B1/3k+2 (x′
0, y

′
0) would be contained in the ball B1/3k+1 (x0, y0) but would
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not be equal to one of the three balls in (23), a contradiction. So (24) are the only periodic
balls of radius 1/3k+2.
Finally, we observe that each ball ψ r(B1/3k+1 (x0, y0)) in (25) contains the three balls

ψ r(B1/3k+2 (x0, y0)), ψ r+3k (B1/3k+2 (x0, y0)), and ψ r+3k2(B1/3k+2 (x0, y0)) from the cycle (24).
��

Proof of Theorem 20 (b). For each k ≥ 1 define Perk to be the set of φ-periodic balls in
B1(0, 0) of radius 1/3k . By Theorem 14,

J (φ) =
⋂
k≥1

⋃
B∈Perk

B.

Each ball in Perk contains exactly three balls in Perk+1, so arbitrarily indexing each such
triple of balls using the set {1, 2, 3}, we see that J (φ) is in bijective correspondence with
{1, 2, 3}N, and hence is uncountable. Since |Perk | = 3k−1 and a ball of radius 1/3k in Q2

3
has Haar measure 1/32k , we see that for each k ≥ 1 the Haar measure of J (φ) is at most
(3k−1)(1/32k ) = 3−k−1 → 0 as k → +∞, and therefore the Haar measure of J (φ) is zero.
If J (φ) contains a periodic point (x0, y0), then Lemma 17 implies that its minimal period

is at least the minimal period of B1/3k (x0, y0) for all k ≥ 1. But every ball in Perk has
minimal period 3k−1, a contradiction as k → +∞.
If (x0, y0) and (x′

0, y
′
0) are two points in J (φ) and B1/3k (x′

0, y
′
0) is a neighborhood of

(x′
0, y

′
0), then some point in the forward orbit orbit of (x0, y0) lies in B1/3k (x′

0, y
′
0), because

both B1/3k (x0, y0) and B1/3k (x′
0, y

′
0) are balls in the same 3k−1-cycle. This shows that the

forward orbit of (x0, y0) is dense in J (φ). In particular this implies the indecomposability
of J (φ), for if J (φ) = A1 ∪A2 for disjoint attractorsA1 andA2, then asA1 is φ-invariant,
the forward orbit of any point ofA1 cannot be dense in J (φ). ��
Proof of Theorem 20 (c) We now construct the measure μφ . For each nonempty finite
subsetX of B1(0, 0), denote by [X] = 1

|X |
∑

(x,y)∈X δ(x,y), the probability measure supported
equally on each point of X . Here δ(x,y) denotes the Dirac measure supported at a point
(x, y) ∈ B1(0, 0).
For each k ≥ 1, let Xk be a subset of B1(0, 0) consisting of precisely one point from

each φ-periodic ball B ∈ Perk . Thus |Xk | = 3k−1 by part (a). Given a continuous function
f : B1(0, 0) → R, we will show that the limit

Lf = lim
k→+∞

∫
fd[Xk ] (26)

exists. Fix ε > 0, and let k ≥ 1 be an integer so large that |f (x′, y′)− f (x, y)| ≤ ε whenever
‖(x′, y′) − (x, y)‖ ≤ 1/3k ; such uniform continuity is guaranteed by the compactness of
B1(0, 0). If k ′ ≥ k , then by part (a), Xk ′ consists of 3k ′−1 points, precisely 3k ′−k of which
occur in each ball in Perk . Of course, Xk contains precisely one point in each ball B in
Perk ; call this point (xB , yB). We then have

∣∣∣∣
∫

fd[Xk ′ ] −
∫

fd[Xk ]
∣∣∣∣ =

∣∣∣∣
1

3k ′−1

( ∑
(x′,y′)∈Xk′

f (x′, y′) − 3k
′−k

∑
(x,y)∈Xk

f (x, y)
)∣∣∣∣

≤ 1
3k ′−1

∑
B∈Perk

∑
(x′ ,y′)∈Xk′ ∩B

|f (x′, y′) − f (xB , yB)|

≤ ε. (27)
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We conclude that the sequence {∫ fd[Xk ]} is Cauchy and hence the limit (26) exists.
By Prokhorov’s theorem ([6] Thm 5.1), the sequence {[Xk ]} of measures has a subse-

quence {[Xk�
]} converging weakly to some probability measure μφ . Since the limit (26)

exists for each continuous f : B1(0, 0) → R, wemust therefore have Lf = ∫
fdμφ , showing

that in fact [Xk ] → μφ weakly.
Finally, we show that the forward orbit of any point (x0, y0) ∈ B1(0, 0) is equidistributed

with respect to μφ . In other words, for each integer n ≥ 1, let

Yn = {φ(x0, y0),φ2(x0, y0), . . . ,φn(x0, y0)}
be the first n points in the forward orbit of (x0, y0). We will show that [Yn] → μφ weakly
as n → +∞.
We first remark that (x0, y0) is not periodic, because we have shown that the attractor

J (φ) contains no periodic points, and that B1(0, 0) is a basin of attraction for this attractor.
Fix ε > 0 and a continuous function f : B1(0, 0) → R. Let k be an integer so large
that |f (x′, y′) − f (x, y)| ≤ ε whenever ‖(x′, y′) − (x, y)‖ ≤ 1/3k . Since there are only
finitely many balls in B1(0, 0) of radius 1/3k , there exists an integer n0 ≥ 1 for which
B = B1/3k (φn0 (x0, y0)) is a φ-periodic ball (hence with minimal φ-period 3k−1).
Setm = 3k−1. For each integer n ≥ n0, we may partition the partial orbit Yn as

Yn = T ∪ C1 ∪ C2 ∪ · · · ∪ Cr ∪ C∗
r+1, (28)

where

T = {φ(x0, y0),φ2(x0, y0), . . . ,φn0−1(x0, y0)},
each set Ci is a segment of the partial orbit Yn consisting of precisely one point from each
ball in the φ-cycle {B,φ(B), . . . ,φm−1(B)}, and C∗

r+1 consists of the finalm∗ points of Yn,
where 0 ≤ m∗ < m. Thus C∗

r+1 is either the empty set, or it consists of precisely one point
from each ball in the incomplete cycle {B,φ(B), . . . ,φm∗−1(B)}.
Each setCi (for 1 ≤ i ≤ r)may be taken as the setXk in (27), and taking k ′ → +∞ in that

estimate and using the weak convergence [Xk ′ ] → μφ , we have deduced | ∫ fd[Ci]−Lf | ≤
ε. By the partition (28) and the definition of the probability measures [X], we have

[Yn] = n0 − 1
n

[T ] +
r∑

i=1

m
n
[Ci] + m∗

n
[C∗

r+1]. (29)

Therefore
∫

fd[Yn] − Lf =
∫
(f − Lf )d[Yn] = I1 + I2,

where

I1 = m
n

r∑
i=1

(∫
fd[Ci] − Lf

)

and

I2 = n0 − 1
n

∫
(f − Lf )d[T ] + m∗

n

∫
(f − Lf )d[C∗

r+1].



5 Page 22 of 30 Allen et al. Res. Number Theory (2018) 4:5

Since the sets C1, . . . , Cr each contain m points, we have rm ≤ n, and therefore |I1| ≤
rm
n ε ≤ ε. Since f is bounded, and since both n0 and m∗ < m = 3k−1 are bounded
independently of n, taking n → +∞ we deduce

lim sup
n→+∞

∣∣∣∣
∫

fd[Yn] − Lf
∣∣∣∣ ≤ ε.

As ε was arbitrary, we conclude limn→+∞ | ∫ fd[Yn]− Lf | = 0, and as f was arbitrary and
Lf = ∫

fdμφ , we have established the weak convergence [Yn] → μφ . ��

Theorem 22 For a ∈ D1/3(1), define φ = φa,3 : Q2
3 → Q2

3 by φ(x, y) = (a + 3y − x2, x).
Then J (φ) is an attracting 2-cycle.

Proof Since |a|3 = 1 and |3|3 < 1, (a, 3) is in region H+
II , and so J (φ) is an attractor.

It follows from Proposition 3 that φ has a 2-cycle {(c, d), (d, c)}, where c ∈ D1/3(0) and
d ∈ D1/3(1) are the two roots of x2+2x+(4−a) = 0. These roots exist byHensel’s lemma,
as x2 + 2x+ (4− a) ≡ x(x− 1) (mod 3). Our goal is to show that J (φ) = {(c, d), (d, c)}. In
other words, J (φ) is an attracting 2-cycle.
By elementary calculations modulo 3, each of the nine balls of radius 1/3 in B1(0, 0) is

mapped into one of the two balls B1/3(0, 1) = B1/3(c, d) or B1/3(1, 0) = B1/3(d, c) after two
iterations of φ. In other words

φ2(B1(0, 0)) ⊆ B1/3(c, d) ∪ B1/3(d, c). (30)

Since (c, d) is a fixed point of φ2, we may write

ψ(x, y) := φ2(x + c, y + d) − (c, d) = (A1x + B1y + F1(x, y), A2x + B2y + F2(x, y)),

where the Fi ∈ Z3[x, y] have vanishing constant and linear part. A straightforward
calculation shows that |Ai|3 ≤ 1/3 and |Bi|3 ≤ 1/3, from which it follows that
‖ψ(x, y)‖ ≤ 1

3‖(x, y)‖ for (x, y) ∈ B1/3(0, 0). Hence

‖φ2(x, y) − (c, d)‖ ≤ 1
3‖(x, y) − (c, d)‖ whenever (x, y) ∈ B1/3(c, d), (31)

and iterating this last inequality gives

φ2n(B1/3(c, d)) ⊆ B1/3n+1 (c, d) (32)

for all n ≥ 0. Using (32) we also have, for n ≥ 1,

φ2n(B1/3(d, c)) = φ2n−1(φ(B1/3(d, c)))

⊆ φ2n−1(B1/3(c, d))

= φ(φ2(n−1)(B1/3(c, d)))

⊆ φ(B1/3n (c, d))

⊆ B1/3n (d, c).

(33)

using φ(c, d) = (d, c) and that φ is nonexpanding. It now follows from (17), (30), (32), and
(33) that
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J (φ) ⊆
⋂
n≥1

φ2n+2(B1(0, 0))

⊆
⋂
n≥1

φ2n(B1/3(c, d) ∪ B1/3(d, c))

=
( ⋂

n≥1
φ2n(B1/3(c, d))

)
∪

( ⋂
n≥1

φ2n(B1/3(d, c))
)

⊆
( ⋂

n≥1
B1/3n+1 (c, d)

)
∪

( ⋂
n≥1

B1/3n (d, c)
)

= {(c, d), (d, c)}.

Thus J (φ) = {(c, d), (d, c)}, since periodic points are always elements of J (φ). ��

4.4 Further speculation on the attractor J(φa,b)

We now record some numerical calculations which are suggestive of further examples
similar to Theorems 20 and 22. In Table 1, p is an odd prime, (a, b) is a point in regionH+

II
of the parameter space overQp, φa,b : Q2

p → Q2
p is the corresponding Hénonmap, and Pk

denotes the largest minimal period among all balls of radius 1/pk in B1(0, 0). Recall from
Theorem 18 that the attractor J (φa,b) is an infinite set if and only if the sequence {Pk} is
unbounded.
For reference, the first line of this table refers to a map φ2,3 which is included in The-

orem 20. Again let Perk denote the set of periodic balls of radius 1/pk in B1(0, 0). There
are some notable differences in the cycle structures of Perk for the three 3-adic maps
occurring in this table. As we know from Theorem 20, for φ2,3, Perk is a single 3k−1-
cycle for all k ≥ 1. For the map φ8,3, our calculations show that Per1 contains one fixed
point; Per2 contains three fixed points; Per3 contains one 3-cycle and six fixed points; Per4
contains one 9-cycle, four 3-cycles, and six fixed points; and Per5 contains one 27-cycle,
four 9-cycles, four 3-cycles, and six fixed points. For the map φ2,9, our calculations show
that Per1 contains one fixed point; Per2 contains three fixed points; Per3 contains three
3-cycles; Per4 contains three 9-cycles; and Per5 contains three 27-cycles.
Over Q5, the map φ4,5 : Q2

5 → Q2
5 has the property that Perk is a single 3-cycle for all

1 ≤ k ≤ 6. Thus J (φ4,5) is likely an attracting 3-cycle. The map φ1,5 : Q2
5 → Q2

5 has the
property that Perk contains a single 2-cycle and a single 5k−1-cycle for all 1 ≤ k ≤ 4. If this
pattern continues, then J (φ1,5) is the union of an attracting 2-cycle and an indecomposable
attractor similar to the 3-adic attractor described in Theorem 20.

Table 1 Themaximal cycle lengths Pk of balls of radius 1/pk , for 1 ≤ k ≤ 6 and various
examples of p-adic Hénonmaps

p φa,b P1 P2 P3 P4 P5 P6

3 φ2,3 1 3 9 27 81 243

3 φ8,3 1 1 3 9 27 81

3 φ2,9 1 1 3 9 27 81

5 φ4,5 3 3 3 3 3 3

5 φ1,5 2 5 25 125 625∗ 3125∗

7 φ1,7 2 2 2 2 2 2

7 φ2,7 1 6 42 294∗ 2058∗ 14,406∗

An entrym∗ indicates that we have only verified that Pk ≥ m



5 Page 24 of 30 Allen et al. Res. Number Theory (2018) 4:5

Over Q7, the table suggests that J (φ1,7) is an attracting 2-cycle. It would be straightfor-
ward to give a proof of this with an adaptation of the proof of Theorem 22. The example
φ2,7 is notable in that Perk contains large cycle lengths that are not powers of 7; it appears
that all cycles lengths in Perk are of the form 1, 3 · 7�, or 6 · 7� for � ≥ 0.

5 RegionHIII: a non-Archimedean horseshoemap
5.1 Overview

Let {±}Z be the set of bisequences
s = (sk ) = (. . . s−3s−2s−1.s0s1s2s3 . . .)

in the two symbols + and −. The set {±}Z is naturally a compact topological space,
endowed with the metric d(s, s′) = e−min{|k||sk �=s′k }. The shift map on {±}Z is the homeo-
morphism σ : {±}Z → {±}Z defined by the rule σ (s)k = sk+1; in other words

σ (. . . s−3s−2s−1.s0s1s2s3 . . .) = (. . . s−3s−2s−1s0.s1s2s3 . . .).
The purpose of this section is to prove that, when (a, b) is in the region HIII of the

parameter space H and a is a square in K , the dynamical system obtained by restricting
the Hénon map φa,b : K 2 → K 2 to its filled Julia set J (φa,b) is topologically conjugate
to the shift map σ : {±}Z → {±}Z. More precisely, there exists a homeomorphism
ω : {±}Z → J (φa,b) such that ω ◦ σ = φa,b ◦ ω.

{±}Z σ−−−−→ {±}Z
ω

⏐⏐�
⏐⏐�ω

J (φa,b)
φa,b−−−−→ J (φa,b)

5.2 Assumptions and definitions

Throughout Sect. 5, φ = φa,b denotes a Hénon map for (a, b) in the region HIII of the
parameter space H. Thus |a| > max(1, |b|2), and so in the notation of Sect. 3.3 we have
R = |a|1/2 and SR = B|a|1/2 (0, 0). Since we know from Theorem 12 part (d) that J (φa,b) is
empty when a is not a square in K , we also assume that a is a square in K .
To summarize, the following notation and assumptions are in effect throughout Sect. 5:

• a, b ∈ K , b �= 0, and φ = φa,b : K 2 → K 2 is defined as in (1),
• a = γ 2 for some γ ∈ K,
• |γ | > 1 and |γ | > |b|,
• I = {x ∈ K | |x| ≤ |γ |},
• S = I × I = {(x, y) ∈ K 2 | ‖(x, y)‖ ≤ |γ |}.

5.3 Curves and tubes in S

Given a function f : I → I and some δ > 0, define the sets

V (f ) = {(f (t), t) ∈ S | t ∈ I},
Vδ(f ) = {(f (t) + θ , t) ∈ S | t ∈ I, |θ | ≤ δ}.

We call V (f ) the vertical curve in S associated to f , and Vδ(f ) the vertical tube of radius δ

in S associated to f . Similarly, we define

H (f ) = {(t, f (t)) ∈ S | t ∈ I},
Hδ(f ) = {(t, f (t) + θ ) ∈ S | t ∈ I, |θ | ≤ δ},
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the horizontal curve in S associated to f , and the horizontal tube of radius δ in S associated
to f .
Given a setD ⊆ K , we say a function f : D → K isC-Lipschitz if |f (t)− f (t ′)| ≤ C|t− t ′|

for all t, t ′ ∈ D and some constant C > 0.
The following lemma is a non-Archimedean analogue of [17] Ch. 2 Lemma 2.

Lemma 23 Let f : I → I be a Cf -Lipschitz function, let g : I → I be a Cg-Lipschitz
function, and assume that Cf Cg < 1. Then V (f ) ∩ H (g) contains exactly one point.

Proof The functions f ◦ g : I → I and g ◦ f : I → I are Cf Cg -Lipschitz, and so by
our assumption that Cf Cg < 1, it follows from the Banach fixed point theorem that they
have unique fixed points, say f (g(x0)) = x0 and g(f (y0)) = y0, respectively. Applying f to
the first equation we have f (g(f (y0))) = f (y0) showing that f (y0) = x0 by uniqueness of
x0; similarly y0 = g(x0). Since (x0, y0) = (f (y0), y0) = (x0, g(x0)), it is clear that (x0, y0) is
in both V (f ) and H (g). If (x, y) is an arbitrary point in V (f ) ∩ H (g), then y = g(x) and
x = f (y), and hence x is a fixed point of f ◦ g and y is a fixed point of g ◦ f . It follows that
x = x0 and y = y0, confirming uniqueness. ��

5.4 Horseshoe dynamics in S

The following lemma illustrates the characteristic “horseshoe” property of the Hénon
map; it states that the inverse image of a vertical tube meets S at two thinner vertical
tubes. Following this lemma we deduce the analogous statement for horizontal tubes.

Lemma 24 Let f : I → I be a |b/γ |-Lipschitz function and let 0 < ρ ≤ |γ |. There exist
two |b/γ |-Lipschitz functions f ± : I → I such that f ±(t) ∈ D◦|γ |(±γ ) for all t ∈ I and

φ−1(Vρ(f )) ∩ S = Vρ/|γ |(f +) ∪ Vρ/|γ |(f −).

Proof Let r = max(1, |b|) < |γ | and fix t ∈ I . Define two (r/|γ |)-Lipschitz functions

T±
t : Dr(±γ ) → Dr(±γ ),

T±
t (x) = x ± 1

2γ
(a + bt − x2 − f (x)).

If x = γ + θ with |θ | ≤ r, then |T+
t (x) − γ | = |−θ2+bt−f (γ+θ )

2γ | ≤ r, verifying that
T+
t (Dr(γ )) ⊆ Dr(γ ). To check the Lipschitz condition, note that for distinct x1, x2 ∈ Dr(γ )

we have
∣∣∣∣
T+
t (x1) − T+

t (x2)
x1 − x2

∣∣∣∣ = 1
|γ |

∣∣∣∣2γ − (x1 + x2) − f (x1) − f (x2)
x1 − x2

∣∣∣∣ ≤ r
|γ |

using the estimate |2γ − (x1 +x2)| ≤ max(|γ −x1|, |γ −x2|) ≤ r, and the assumption that
f is |b/γ |-Lipschitz and | b

γ
| < r. Similar calculations show that T−

t (Dr(−γ )) ⊆ Dr(−γ )
and that T−

t is (r/|γ |)-Lipschitz.
Since T+

t is contracting, it has a unique fixed point in Dr(γ ) by the Banach fixed-point
theorem; call this point f +(t), and similarly define f −(t) ∈ Dr(γ ) to be the unique fixed
point of T−

t . We conclude that f ±(t) ∈ D◦|γ |(±γ ) and

a + bt − f ±(t)2 − f (f ±(t)) = 0. (34)
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We then have

φ−1(Vρ(f )) ∩ S = {(x, y) ∈ S | φ(x, y) ∈ Vρ(f )}
= {(x, y) ∈ S | |a + by − x2 − f (x)| ≤ ρ}
= Vρ/|γ |(f +) ∪ Vρ/|γ |(f −). (35)

To see the last equality in (35), note that using (34) we have

|a + by − x2 − f (x)| = |a + by − x2 − f (x) − (a + by − f ±(y)2 − f (f ±(y)))|
= |(f ±(y) + x)(f ±(y) − x) + f (f ±(y)) − f (x)|. (36)

If (x, y) ∈ Vρ/|γ |(f +) then |x − f +(y)| ≤ ρ/|γ |. It follows using (36) that
|a + by − x2 − f (x)| ≤ ρ

because |f +(y) + x| ≤ |γ | and

|f (f +(y)) − f (x)| ≤ |b/γ ||f +(y) − x| ≤ ρ|b|/|γ |2 < ρ; (37)

similarly if (x, y) ∈ Vρ/|γ |(f −).
Conversely, if (x, y) /∈ Vρ/|γ |(f +)∪Vρ/|γ |(f −), then both R± := |x− f ±(y)| > ρ/|γ |. We

observe that one of the two identities |f +(y) + x| = |γ | or |f −(y) + x| = |γ | must hold.
Otherwise, both |f ±(y) + x| < |γ | hold, which implies |f +(y) − f −(y)| < |γ |. But then

|f +(y) − f −(y)| = |2γ + (f +(y) − γ ) − (f −(y) + γ )| = |2γ | = |γ |,
a contradiction. If |f +(y) + x| = |γ |, we deduce using (36) and (37) that

|a + by − x2 − f (x)| = |γ |R+ > ρ,

and similarly if |f −(y) + x| = |γ |.
It remains to show that f ± are Lipschitz. For distinct t1, t2 ∈ I , set ui = f ±(ti).

Thus u1, u2 ∈ D◦|γ |(±γ ), so |u1 + u2| = | ± 2γ | = |γ | and hence

|f (u1) − f (u2)|/|u1 − u2| ≤ |b/γ | < 1 < |γ |.
Using (34) we deduce

|b||t1 − t2|
|u1 − u2| =

∣∣∣∣u1 + u2 + f (u1) − f (u2)
u1 − u2

∣∣∣∣ = |γ |

and thus |f ±(t1) − f ±(t2)| = |b/γ ||t1 − t2|. ��

Lemma 25 Let g : I → I be a |1/γ |-Lipschitz function and let 0 < ρ ≤ |γ |. There exist
two |1/γ |-Lipschitz functions g± : I → I such that g±(t) ∈ D◦|γ |(±γ ) for all t ∈ I and

φ(Hρ(g)) ∩ S = Hρ|b|/|γ |(g+) ∪ Hρ|b|/|γ |(g−). (38)
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Proof We conjugate by the automorphism λ(x, y) = (−by,−bx) and use the involution
ι : H → H described in Proposition 5. Set γ∗ = −γ /b, I∗ = {x ∈ K | |x| ≤ |γ∗|},
and S∗ = I∗ × I∗. Thus λ(S∗) = S, and λ takes vertical tubes in S∗ to horizontal tubes
in S. More precisely, considering the |b/γ∗|-Lipschitz function f∗ : I∗ → I∗ defined by
f∗(t) = − 1

b g(−bt), we have

λ(Vδ(f∗)) = H|b|δ(g). (39)

We now apply Lemma 24 to f∗ and the Hénon map φι(a,b), with ρ∗ = ρ/|b|. We obtain

φ−1
ι(a,b)(Vρ∗ (f∗)) ∩ S∗ = Vρ∗/|γ∗|(f +∗ ) ∪ Vρ∗/|γ∗|(f −∗ )

for |b/γ∗|-Lipschitz functions f ±∗ : I∗ → I∗ such that f ±∗ (t) ∈ D◦|γ∗|(±γ∗) for all t ∈ I∗.
Applying λ to this identity we obtain

(λ ◦ φ−1
ι(a,b) ◦ λ−1)(λ(Vρ∗ (f∗))) ∩ λ(S∗) = λ(Vρ∗/|γ∗|(f +∗ )) ∪ λ(Vρ∗/|γ∗|(f −∗ )). (40)

By Proposition 5, φ = λ ◦φ−1
ι(a,b) ◦λ−1, thus the desired identity (38) follows from (39) and

(40), with g± : I → I defined by g±(t) = −bf ±∗ (−t
b ). ��

The next lemma describes the forward filled Julia set in S as an uncountable union
of vertical curves, indexed by the set of sequences in two symbols. We then prove the
analogous statement describing the backward filled Julia set in terms of horizontal curves.

Lemma 26 There exists a family of |b/γ |-Lipschitz functions f s : I → I , indexed by the
set of all sequences s = (s0s1s2 . . .), where each si ∈ {±}, and a pair V± of disjoint subsets
of S such that

V (f s) = {(x, y) ∈ S | φk (x, y) ∈ V sk for all k ≥ 0}. (41)

Moreover, J+(φ) ∩ S = ⋃
s=(s0s1s2...) V (f s).

Proof To ease notation set δn = 1/|γ |n. We first construct a family of |b/γ |-Lipschitz
functions f sn : I → I , indexed by sequences s = (s0s1s2 . . .) in the two symbols {±} and
integers n ≥ 0. When n = 0, we apply Lemma 24 with f : I → I equal to the identically
zero function and ρ = |γ |; thus V|γ |(f ) = S, and we obtain |b/γ |-Lipschitz functions
f ± : I → I with f ±(t) ∈ D◦|γ |(±γ ). Define V± = V1(f ±) and f s0 = f s0 . We then have

φ−1(S) ∩ S = V+ ∪ V−. (42)

Fix n ≥ 0 and assume that the functions f sn : I → I have been constructed for all
sequences s = (s0s1s2 . . .) in the two symbols {±}. We apply Lemma 24 with f = f σ (s)

n and
ρ = δn = 1/|γ |n, where σ (s0s1s2 . . .) = (s1s2s3 . . .). We obtain |b/γ |-Lipschitz functions
f ± : I → I with f ±(t) ∈ D◦|γ |(±γ ). Set f sn+1 = f s0 . We then have

φ−1(Vδn (f σ (s)
n )) ∩ S = Vδn+1 (f sn+1) ∪ Vδn+1 (f s

′
n+1) (43)

where s′ is obtained from s = (s0s1s2 . . . ) by changing s0 from ± to ∓.
When n ≥ 1, using (43), we see that a point (x, y) is in Vδn (f sn ) if and only if (x, y) ∈ V s0

and φ(x, y) ∈ Vδn−1 (f
σ (s)
n−1 ). It follows from this and a simple induction that
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Vδn (f sn ) = {(x, y) ∈ S | φk (x, y) ∈ V sk for all 0 ≤ k ≤ n}. (44)

In other words, Vδn (f sn ) is the set of points in S whose partial forward orbit follows a
particular trajectory through the two disjoint sets V±.
From (44) it is clear that

Vδn+1 (f sn+1) ⊆ Vδn (f sn ),

fromwhich it follows that the limit f s(t) := limn→+∞ f sn (t) exists, and a standard argument
shows that a limit of |b/γ |-Lipschitz functions is |b/γ |-Lipschitz. We conclude using (44)
that

V (f s) =
⋂
n≥0

Vδn (f sn ) = {(x, y) ∈ S | φk (x, y) ∈ V sk for all k ≥ 0}. (45)

It follows from Proposition 7 that J+(φ)∩ S is the set of points in S whose forward orbit
is contained in S. Using (42) we have

J+(φ) ∩ S ⊆ φ−1(S) ∩ S = V+ ∪ V−.

Thus every point in J+(φ) ∩ S has a forward orbit which follows some trajectory through
the two sets V±, and hence J+(φ) ∩ S ⊆ ⋃

s=(s0s1s2... ) V (f s) using (45). Conversely, (45)
also shows that any point in some V (f s) has forward orbit contained in S and hence is in
J+(φ) ∩ S. ��

Lemma 27 There exists a family of |1/γ |-Lipschitz functions gs : I → I , indexed by the
set of all sequences s = (. . . s−3s−2s−1), where each si ∈ {±}, and a pair H± of disjoint
subsets of S such that

H (gs) = {(x, y) ∈ S | φk+1(x, y) ∈ Hsk for all k ≤ −1}. (46)

Moreover, J−(φ) ∩ S = ⋃
s=(...s−3s−2s−1)H (gs).

Proof This proof differs from Lemma 26 only in technical details, which we summarize.
To ease notation set εn = |b|n+1/|γ |n. We first construct a family of |1/γ |-Lipschitz
functions gsn : I → I , indexed by the set of sequences s = (. . . s−3s−2s−1) in the two
symbols {±} and integers n ≥ 0. When n = 0, we apply Lemma 25 with g : I → I
equal to the identically zero function and ρ = |γ |. We obtain |1/γ |-Lipschitz functions
g± : I → I with g±(t) ∈ D◦|γ |(±γ ). Define H± = H|b|(g±) and gs0 = gs−1 . We then have
φ(S) ∩ S = H+ ∪ H−.
Fixing n ≥ 0 and assuming that the functions gsn : I → I have been constructed for all

sequences s = (. . . s−3s−2s−1) in the two symbols {±}, we apply Lemma25with g = gσ−1(s)
n

and ρ = εn = |b|n+1/|γ |n, where σ−1(. . . s−3s−2s−1) = (. . . s−4s−3s−2). We obtain |1/γ |-
Lipschitz functions g± : I → I with g±(t) ∈ D◦|γ |(±γ ). Setting gsn+1 = gs−1 , we have

φ(Hεn (gσ−1(s)
n )) ∩ S = Hεn+1 (gsn+1) ∪ Hεn+1 (gs

′
n+1) (47)

where s′ is obtained from s = (. . . s−3s−2s−1) by changing s−1 from ± to ∓.
An induction argument using (47) shows that

Hεn (gsn) = {(x, y) ∈ S | φk+1(x, y) ∈ Hsk for all − (n + 1) ≤ k ≤ −1}, (48)
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from which it follows that Hεn+1 (gsn+1) ⊆ Hεn (gsn). The limit gs(t) = limn→+∞ gsn(t) exists
and is |1/γ |-Lipschitz, and since H (gs) = ⋂

n≥0Hεn (gsn) we obtain (46). The proof that
J−(φ) ∩ S = ⋃

s=(...s−3s−2s−1)H (gs) follows from the same argument used in Lemma 26. ��
Remark 1 It will be necessary in the proof of Theorem 28 to observe the following
relationship between the sets V± and H± occurring in Lemmas 26 and 27. Since
φ−1(S)∩S = V+ ∪V− and φ(S)∩S = H+ ∪H−, we obtain φ(V+)∪φ(V−) = H+ ∪H−.
By construction, H± ⊆ I × D◦|γ |(±γ ) and V± ⊆ D◦|γ |(±γ ) × I , and it follows easily that
φ(V±) ⊆ I × D◦|γ |(±γ ) as well. As I × D◦|γ |(±γ ) are disjoint, we conclude φ(V±) = H±.

5.5 The topological conjugacy to the shift map

We are ready to prove the main result of this section, a non-Archimedean analogue of a
theorem on the real Hénon map due to Devaney-Nitecki [9].

Theorem 28 Let (a, b) ∈ HIII, suppose that a is a square inK , and letφ = φa,b : K 2 → K 2

be the associated Hénon map. There exists a homeomorphism ω : {±}Z → J (φ) such that
ω ◦ σ = φ ◦ ω.

Proof Given s = (. . . s−2s−1s0s1s2 . . .) ∈ {±}Z, since the functions f (s0s1s2...) : I → I
and g (...s−3s−2s−1) : I → I are |b/γ |-Lipschitz and |1/γ |-Lipschitz, respectively, and
|b/γ ||1/γ | = |b|/|γ |2 < 1, Lemma 23 implies that

H (g (...s−3s−2s−1)) ∩ V (f (s0s1s2...)) = {ω(s)}
for some point ω(s) ∈ S. This defines a function ω : {±}Z → J (φ) since, by Lemmas 26
and 27, ω(s) ∈ (J−(φ) ∩ S) ∩ (J+(φ) ∩ S) = J (φ).
If (x, y) ∈ J (φ), then (42) implies that every point in its orbit is contained in one of the

two sets V±, and similarly, every point in its orbit is contained in one of the two sets H±.
Define s = (sk ) ∈ {±}Z by φk (x, y) ∈ V sk for k ≥ 0, and φk+1(x, y) ∈ Hsk for k ≤ −1. The
function (x, y) �→ s defines an inverse ω−1 : J (φ) → {±}Z by Lemmas 26 and 27, and so
ω is bijective.
A neighborhood base for the topology on {±}Z is composed of cylinder sets

�t−N ,...,tN = {s ∈ {±}Z | sk = tk for all |k| ≤ N }.
It follows from (44) and (48) that ω(�t−N ,...,tN ) is the intersection of a vertical tube and
a horizontal tube of positive radii. As tubes of positive radii are topologically open, this
shows that ω−1 is continuous. A standard exercise states that a continuous bijection of
compact sets has a continuous inverse, and thus ω is a homeomorphism.
It remains to show that ω ◦ σ = φ ◦ ω. Fix s ∈ {±}Z and let t = σ (s); thus tk = sk+1. Let

(x, y) = ω(s). By Lemmas 26 and 27, we have φk (x, y) ∈ V sk for all k ≥ 0 and φk+1(x, y) ∈
Hsk for all k ≤ −1. Thus φk (φ(x, y)) ∈ V tk for all k ≥ 0, and φk+1(φ(x, y)) ∈ Htk for all
k ≤ −2. Using Remark 1, we also have φ(x, y) ∈ φ(V s0 ) = Hs0 = Ht−1 . By Lemmas 26
and 27 we conclude

φ(x, y) ∈ H (g (...t−3t−2t−1)) ∩ V (f (t0t1t2...))

and therefore φ(x, y) = ω(t); in other words, φ(ω(s)) = ω(σ (s)). ��
Remark 2 We can now show that the forward and backward filled Julia sets J±(φ) are
unbounded, finishing the proof of Proposition 12 part (c). As described in Remark 1, we
have
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J (φ) ⊆ V+ ∪ V− ⊆ (D◦|γ |(γ ) × I) ∪ (D◦|γ |(−γ ) × I)

In particular, since 0 /∈ D◦|γ |(±γ ), given any s ∈ {±}Z, the point (0, g s(0)) is in
H (gs) ⊆ J−(φ) but is not in J (φ). As J−(φ) is φ-invariant, the entire orbit of (0, g s(0))
is contained in J−(φ), and since this orbit is unbounded, J−(φ) is unbounded; similarly,
J+(φ) is unbounded.
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