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Abstract

The elliptic modular function j(t) enjoys many beautiful properties. Its Fourier
coefficients are related to the Monster group, and its CM values generate abelian
extensions over imaginary quadratic fields. Kaneko gave an arithmetic formula for the
Fourier coefficients expressed in terms of the traces of the CM values. In this article, we
are concerned with analogues of Kaneko's result for the McKay-Thompson series of
square-free level.
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1 Introduction
Let d be a positive integer such that —d is congruent to 0 or 1 modulo 4, and Q the set of
positive definite binary quadratic forms Q(X, Y) = [a, b, c] := aX? + bXY +cY? (a, b, c €

7Z) of discriminant —d. The group SLy(Z) acts on O, by Qo )O/l §:| = QaX+8Y, yX+8Y).

For each Q € Q,, we define the corresponding CM point «q as the unique root in the
upper half-plane § of Q(X, 1) = 0. We write I'g for the stabilizer of Q in a group I'. Let
j(t) (t € $) be the elliptic modular function with Fourier expansion

1
j(t) = — + 744 + 196884q + 21493760q> + 8642999704° + - - -,
q

where g := €77, For a positive integer 1, let ¢,,,(j) be the unique polynomial in j satisfying
om(j(t)) = g7 + O(q). For each m, we define the modular trace function by

1
tud) = Y —————uliaQ))
eamata TS @al

Zagier [13, Theorem 1, 5] showed that the generating function

gn(®) = > tuld)g® +2010m) — > kg™~ (1.1)
d>0 K|lm
—d=0,1(4)

is a weakly holomorphic modular form of weight 3/2 for the congruence subgroup I'o(4),
where o1(n) := Zd‘n d. By virtue of this theorem, Kaneko [6] established an identity

among modular forms of weight 2,
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1 4, 1
77 771 = 5 (@601 Ua)(0),

where 6y(7) := Y,y q"z, and U; is the operator Y a,q" +— Y aw,q" preserving mod-
ularity. In particular, the Fourier coefficients on both sides coincide. Let ¢, be the nth
Fourier coefficient of ¢1(j(t)) = j(r) — 744, then we have

2nc, = Z ty(4n — r?) (1.2)
rez
for any n > —1 where t3(0) = 6, to(—1) = —1, t3(—4) = —2, and ta(d) = 0 for all other
negative d. Note that this sum is finite.
On the other hand, the Fourier coefficients of the j-function are related to the degrees
of irreducible representations of the Monster group M, the largest of the sporadic simple

groups. This is known as monstrous moonshine. The first few observations are
c1 = 196884 =1 4 196883,
¢y = 21493760 = 1 + 196883 + 21296876,
c3 = 864299970 = 2 x 1 4+ 2 x 196883 + 21296876 + 842609326,
where the sequence {1, 196883, 21296876, 842609326, ...} consists of degrees of irre-

ducible representations of the Monster group. Conway and Norton [4] formulated the

monstrous moonshine conjecture as follows.

» There exists a graded infinite-dimensional M-module
o0
vi= P vi
n=—1

which satisfies dim Vj = ¢, for n > —1. It is called the monster module.
« For each g € M, we define the McKay—Thompson series

Ty(r):= ) TrglViq"

n=—1

Then there exists a genus 0 subgroup I'y C SLy(R) such that T,(z) is a hauptmodul
on I'y. In other words, The fields Ag(I'y) of modular functions on I, is generated by
Ty, that is, Ao(['y) = C(Ty).

In 1992, Borcherds [1] proved this conjecture.
Remark (i) For the identity element e € M, we have T.(t) = j(t) — 744.

(ii) For other McKay—Thompson series, similar connections are observed (see [10, Sec-
tion 7.3: More Monstrous Moonshine]). For instance, the Fourier coefficients of

1
Toa(t) := — + 4372g + 962564° + 12400024> + - - -
q

can be expressed in terms of the degrees of irreducible representations of the Baby
Monster group, that is, 4372 = 1 4 4371, 96256 = 1 + 96255, 1240002 = 2 x 1 +
4371 4+ 96255 + 1139374, ..., where the sequence {1, 4371, 96255, 1139374, ...}
consists of degrees of irreducible representations of the Baby Monster group.
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In this paper, we are concerned with the analogues of Kaneko’s formula (1.2) for the
McKay—-Thompson series of level N such that N is a square-free integer and the genus of
the congruence subgroup I'g(N) is 0, that is, N = 2, 3, 5, 6, 7, 10, and 13 (Kaneko’s result
is the case of N = 1). For these N, let I'§(N\) be the Fricke group, which is generated
by I'o(N) and all Atkin-Lehner involutions W, for e such that e|N and (e, N/e) =

Here W, is a matrix of the form - ¥ V| with detW, = 1 and x,y,z,w € Z. Let
Ve | zN we

d be a positive integer such that —d is congruent to a square modulo 4N. We denote
by Qan = {[a b,c] € Q; | a = 0 (mod N)} on which I'j(N) acts. Moreover, we fix
an integer # (mod 2N) with 4> = —d (mod 4N) and denote by Qunn = {labc] €
Qun b =h (mod 2N)} onwhich I'g(N) acts. For genus zero groups I'o(N) and I'§ (N), the
corresponding hauptmoduln jy (7) and j},(t) can be described by means of the Dedekind
n-function n(z) == gV [[°2,(1 — ¢"),

nm)ﬁ 24

jp(f) = TpB(T) = < ) + [: (N=p=2235713),

ok ( ) 24 12 ) 1%

]p( pA(T < ! ) P + prt (nn((p.:) ) (N=p=235713),
je(0) (n(2f)n(31)3)

o o n20n(67)\°
Je(t) = Tea(r) = <T](2T)77(6 )) +T6+2 < n(t)n(37) ) ’
‘ _ n(51)°

]10(1’) = TIOE(T) (n(r)n(lof)5> ?

o _( n(nGr) \* o n27)n(07)\*
Jiol) = Troalr) = (n(zr)n(lor)) Tt ( 70)n(50) > '

For a weakly holomorphic modular function f on I'g(N), we define a modular trace
function by

Y= Y e fle)
%%mmm|d)d
and for a weakly holomorphic modular function f on I'j(N), we define another trace
function by

ti(d) = (aq@)
! Lo <N>Q|f e

QeQuN/TG(N)

where T := I'/{=I}. Note that tf )(d) is independent of the choice of / for above N in the

particular case of f € Ag(['5(N)), then we can write t;(d) = tj(,h)(d) simply. Moreover in
the special case of f = @,,(jy), it is the unique polynomial in j}; satisfying ¢, (i3, (7)) =

" + O(g), we put £, (d) = t;(d) and t},”(d) := £/(d). Ohta [12] and the author and
Osana1 [11] obtained the analogues of Kaneko’s formula (1.2) in the cases of N = p =
2, 3, and 5, first found experimentally, and then showed the coincidence of g-series by
using the Riemann-Roch theorem In the present paper, we use the theory of Jacobi forms

(N (N'*)

to generalize (1.2). Let ¢, ) and ¢y be the nth Fourier coefficients of jx(t) and j3,(7),

respectively.
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Theorem 1.1 For anyn > —1, we have

24(3 2
2ned) = 3" 89 4n - r?) L HB=pn@/p) | Yoy (p=235713),
p—1
reZ
2nc® = 3" 65 @n — %) + 700 (n) + 2607 (n/2) — 30,7 (n/3),
reZ
210 = 3" £ (4n — r?) + 40" (n) + 1207 (n/2),
rez
e = Z{tg”*) (4n — r?) — £ (4pn — r2)} (p=235713)
reZ

2nc(p1pz* _ Z{t(zplpz*)(4n —) - t(zplp2*)(4p1n — )
reZ

_t(zp‘m*)(élmn -+ (plm )(4191192" —r } (p1p2 = 6, 10),

where O'I(N)(}’l) =Y 4 dfora positive integer n. If x ¢ Z>o, the value ofo(N) () is 0,
d#0(N)

and we put 01 (0) (N — 1)/24. Furthermore, we define additional values as follows,

5 N=2
0= 13 N=35713 £ (1) =1 £ (-4):= -2,
5/2 N = 6,10,

and t(zN*)(d) := 0 for other negative d.

Remark By virtue of relations between t(N*)(d) and t N*)(d), (see [6], [7], and [13]), these
formulas can be interpreted as the sum of t(lN*)(d).

The outline of this paper is as follows. In Sections 2 and 3, we give a review of the theory
of Jacobi forms [5] and the work of Bruinier and Funke [2]. In Section 4 we prove Theorem
1.1.

2 The theory of Jacobi forms
In this section, we follow the expositions in [5]. Let k and m be integers. For a function
¢ : $ x C — C, we define slash operators by

ab at+b z ab
<¢|k,m|:cd:|>(r,z) = (¢t +d)” d¢<cr—|—d' m), |:cd:| € SLy(Z),

(@lmlh u))(T,2) 1= XTMOTHRD (1 2 4 ax ), [A ] € Z2

A weak Jacobi form of weight k and index m is a holomorphic function¢ : § x C - C
satisfying

o PlikmM = ¢ (M € SLy(Z)),
o luX =¢ (X €Z?),
« ¢ has a Fourier expansion of the form

o(t,2) = Z cmr)q"c’, (q:= 32””) .= eZniZ)’
n>0
reZ
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where the coefficients c(#, ) depend only on the value of 4mn — r? and on the class of r
(mod 2m), thatis, we can write as ¢(#, r) = ¢,(4mn—r?),anditholdsc, (D) = c,(D) (' = r
(mod 2m)). This property gives us coefficients ¢, (D) for all © € Z/2mZ and all integers
D satisfying D = —u? (mod 4m1), namely

D 2
tr , r), (r € Z, r = (mod 2m)).
m

cu(D) = c(
For D # —u? (mod 4m), we define cu(D) = 0, and set

hu(t) ==Y cu(D)g”'*™, (€ Z/2mZ).
D>—o00

In addition, we put the theta functions

Vo (T, 2) 1= Z 7T, (e Z)2mT),

rel
r=u (mod 2m)

then ¢ has the following decomposition;

2m—1
¢(1,2) = Y (@) (T, 2). 2.1)

n=0

According to [5, Section 5], &1, and ¥, satisfy the following transformation laws;

2
Bt +1) = e > nh, (1),

1 k 2m—1

5= T 2mi ke
hll( ‘L') m VXZ(:) e 2 by (1),

2
Vmu(t +1,2) = it O, (T, 2),

2m—1
1z

l?m,u(_;; ;) = T/2Wll e2m’mz2/r Z e‘zm% ﬁm,v(f; Z)- (22)

v=0
Moreover we have

Theorem 2.1 [5, Theorem 5.1] The decomposition (2.1) gives an isomorphism between the
space of weak Jacobi forms of weight k and index m and the space of vector valued modular
Jorms (h,),, (mod 2m) 01 SLa(Z) satisfying the above transformation laws and some cusp
conditions.

Finally, we show an easy lemma for a proof of Theorem 1.1.

Lemma 2.2 Let ¢(t, z) be a weak Jacobi form of even weight k and index m. Then the map

m—1
$(r.2) > d(r) =Ky (,,(_L ﬁ)
=0

)
mt m

sends a weak Jacobi form to a weakly holomorphic modular form of weight k on T'o(m).
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b
Proof First, for any |:a dj| € I'o(m), we can easily see that
c

(Soem)| c2]- el ) e -Eeten

=0
ab
Next we check for any |: di| € [y(m),
c

m—1 1
[ Eeta) [a]=(Ze0)
o [ ¢ —d ¢/ 01/
= z—o¢(r) Z>) k|:mb c_;n] |:_1 Om]
=Tl

3 Bruinier and Funke’s work
In this section, we give a review of Bruinier and Funke’s work [2] and Kim’s result [9].

3.1 Preliminaries
Let N be a square-free positive integer and V a rational vector space of dimension 3 given
by

X3 —X1

V(Q) = {Xz [’“ 2 :|€M2(Q)}

with a non-degenerate symmetric bilinear form (X, Y) := —N - tr(XY). We write g(X) :=
N - det(X) for the associated quadratic form. We fix an orientation for V once and for all.
The action of G(Q) := Spin(V') ~ SLy(Q) on V is given as a conjugation, namely

gX i=gXg ™!
for X € V and g € G(Q). Let D be the orthogonal symmetric space defined by
D := {span(X) C V(R) | ¢(X) > 0}.

X1 X2

For each line z = span (|:
-1 —x

i|> € D, we can define an element in by 7 =
—x1 + iy/x2 — x2. In particular, this is a bijective map and preserves G(Q)-action, that is,
this map sends g.z := span <g o :|> to gt for any g € G(Q). The image of T under

-1 —x;
the inverse map is given by span(X(z)) where

X(r):[—(r—i—?)/Z 7:?_ ]
-1 (t+71)/2

Page 6 of 16
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Let L C V(Q) be an even lattice of full rank and L* the dual lattice of L defined by
IF={XeVQ]|XY)eZ 'Y € L) Let I' be a congruence subgroup of Spin(L)
which preserves L and acts trivially on the discriminant group L* /L. The set Iso(V/) of all
isotropic lines in V(Q) corresponds to P'(Q) = Q U {oco} via the bijection

2
¥ :PHQ) 3 (o : B) > span<|::(;§ Zﬁ]) € Iso(V).

In particular, we put the isotropic line £+, := ¥ (c0) = span([g (1)]). We orient all lines
¢ € Iso(V) by requiring that o¢.[J ] to be a positively oriented basis vector of ¢, where
we pick oy € SLy(Z) such that 0¢.£ = £. For each £ € Iso(V'), we define three positive
rational numbers oy , B¢, and g. First, we pick «p € Q- ¢ as the width of the cusp ¢, that is,

0[11—‘50'( = {:l: |:(1) k(le| ‘k (S] Z},

where I'; is the stabilizer of the line £ in I". Next, we pick a positively oriented vector
Y € V(Q) such that £ = span(Y) and Y is primitive in L. Then we define 8; € Q-¢
by U[I.Y = [8 %‘ ] Finally, we put e, = «¢/B¢. Note that the quantities « , B¢, and &
depend only on the I'-class of €.

Let M := I'\D be the modular curve. For X € V(Q) with g(X) > 0, we define the
Heegner point in M by Dy := span(X) € D, which corresponds to an imaginary quadratic
irrational in §). For m € Q-¢ and % € L, " acts on Ly :={X € L+ h|qX)=m} with
finitely many orbits. For a weakly holomorphic modular function f on I', we define the
modular trace function by

thm = > ——f(Dx).

XeM\Ljm ITx|

Next, we consider a vector X € V(Q) with g(X) < 0. For such a vector X € V(Q), we
define a geodesic cx in D by

cx ={zeD|z LX)},

and we put ¢(X) := I'x\cx in M. If g(X) € —N - (Q*)?, then X is orthogonal to the two
isotropic lines £x = span(Y) and £x = span(Y) such that Y and ¥ are positively oriented
and the triple (X, ¥, Y) is a positively oriented basis for V. We say £y is the line associated
to X, and write X ~ £x. We now define the modular trace function for negative index.
For X € V(Q) of negative norm g(X) € —N - (Q*)2, we pick m € Q-9 and r € Q such
that UZ;I.X = [0 2] In particular, the geodesic cx is given in D =~ §) by

cx = op{t € H | Re(r) = —r/2m},

and we write Re(c(X)) := —r/2m. For k € Q-0 and a cusp £, we put L, pp2 = {X €
Ly, a2 | X ~ £} on which I'; acts. By [2, Section 4, (4.7)], we have

2k8[ ith,_Nkz,g 7& @;

Vg (h, —Nkz) = #FZ\Lh,—Nkz,K = { 0 otherwise,
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A weakly holomorphic modular function f on I" has a Fourier expansion at the cusp € of
the form

flom) =Y anq" (3.1)

1
neﬂZ

By [2, Proposition 4.7], we can define the modular trace function for negative index by

e —NK>) == > v —NK>) Y ain)e”™™
£eT\Iso(V) ne 7o
(4
— Y W h-NA) Y adme i,
£el\Iso(V) ne%zd)

where r = Re(c(X)) for any X € Lj, 2, and 7’ = Re(c(X)) forany X € L_; 2. If
m € Qg is not of the form m = —Nk? with k € Q-, we put tr (1, m) = 0. In particular,
tr(h,m) =0 for m < 0.
Finally, the modular trace function for zero index is defined by
8 dx
t/(,0) = ho/ f() y(T—x-i-Ly)
where §j, o is the Kronecker delta. By [2, Remark 4.9], we have

(0 =480 Y ar Y al—moi(n). (32)

el \Iso(V) nelxo

3.2 Modularity of the modular trace function

Theorem 3.1 [2, Theorem 4.5] Let f be a weakly holomorphic modular function on T’
with Fourier expansion as in (3.1), and assume that the constant coefficients of f at all
cusps of M vanish. Then the generating function

Iz, f) = Z te(h, mq™ + Z t(h — NKk2)g N
m>0 k>0

satisfies the following transformation laws,
(k)
It + Lf) = '35 Iy(t,f),

1 3 «/_ _
Ii(—=.f) =7 2ihI) g (2, £).
Bk e

We consider some special cases. Let p be a prime number, and put

=)

with g(X) = p - det(X). Then the action of the congruence subgroup I'o(p) preserves this

a,b,ceZ}

lattice L. Kim [9] applied Theorems 2.1 and 3.1 to this case, and obtained the following
theorem.

Theorem 3.2 [9, Theorem 1.1] Let f(z) = ), a(n)q" be a weakly holomorphic modular
Sunction on T'§(p) with a(0) = 0. We put

t7(0) =2 a(—n)(o1(n) + po1(n/p)),

n=1

and for negative d,
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£(d) = — 21 ) Zk‘m a(—m) ifd = —«? for some positive integer ,
FE= 0 otherwise,
where (L, (n) is the number of prime factors of gcd(m, n). If ged(m, n) = 1, we put p,,(n) :==

0. Then

> t(4pn —1r))q"c"
n>0
rez

is a weak Jacobi form of weight 2 and index p.

In the same way, we consider the case of the level p1p>, where p; and p are distinct
prime numbers. We put

I— {X: [b C/P1P2:|
a —b

with g(X) = pip2 - det(X). The congruence subgroup I'g(p1p2) preserves L, and acts

a,b,ceZ}

trivially on the discriminant group L* /L, which is expressed as

L= | W22 0
0 —h/2pipa |

There are four I'g(p1p2)-inequivalent cusps 00, 0, 1/p1, and 1/p2. They correspond to

01 (00 —p 1
loo := , Lo = , £ = ,
N Spanqoo]) ’ Span( —IOD o Span([—lﬂ?ﬁl})
and
—p2 1
£1/p, = span
” ([—Pim})

via the bijective map . For these isotropic lines, we can compute the quantities ay, B¢,

h=012...,2p1p2 — 1} = Z/2p1p2 7.

and ¢ as follows.
1
Qpy, = 1, ,BZOO = — &ty = P1P2
pip2
ag =p1v2 By =1L &4 = p1p2

1
Aoy, =P By = o Sm TP

1
A1y =P1 Bryyy, = p_z’ Elypy, = P1P2- (3.3)

A weakly holomorphic modular function f(z) = ), a(n)g” on I'j(p1p2) has a Fourier
expansion of the form (3.1) at each cusp £. By direct calculation, we have

a,, (n) = a(n),
agy(n/p1p2) = a(n),
onink
ap,,, (n/p2) = e My a(n), bpy=—1 (mod py),
oint
oy, (n/p1) = e 2min a(n), b/pz =—1 (mod py). (3.4)

We assume the constant term a(0) = 0, then we have the constant terms at all cusps
vanish by (3.4). Applying Theorem 3.1 to the above case, the function Ij(z, f) satisfies

—ZﬂiL
Lt +1Lf)=e " 2 ly(t,f)
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2p1p2—1
‘E2 IAV%

V2p1pat/i hZ:;)

By Theorem 2.1, we can obtain a weak Jacobi form of weight 2 and index p1 p». For further

1 ;b
h(=2.f) = e Iy (¢, f).

details, we compute the modular trace functions.

Lemma 3.3 For a positive integer d, we have
ty(h d/4p1p2) = 2t;(d).

Proof For each vector

b+ h/2
x| bt c/pipa }GLHI

—a —b —h/2p1p2

with positive norm d/4p1ps, we put

apipr  bpipsr + h/Z] — o [0 _1:|X

= o+ b2 c 10

Then we can see that the discriminant of the corresponding binary quadratic form is
—d = (2bp1ps + h)* — dacp1py = —4p1p2q(X). Note that if a is positive (resp. negative),
Q is positive (resp. negative) definite. Thus we have

1
tr(h d/4pi1p2) = > Wf@x)
XeTo(p1P2)\Ld/ap; py 0\P1P2)x
1
=2 > ———f(aq) = 2t;(d).

QEQ4p; pyi/Tolp1p2) |F0(p1p2)Q|

O

Next we compute the modular trace functions for zero or negative index. By (3.2), (3.3),
and (3.4), we have

ty(h,0) = 48,0 Y_ a(—n) [01 (1) + p1p201(n/p1p2) + p101(n/p1) + p201(n/p2) }

n=0
Thus we define
t(0) =2 a(-n) {01(1’1) + pip201(n/pip2) + pro1(n/p1) +p201(1’1/192)}~
n=0

For a negative integer d, we define

—2Hp1p () ¢ Y wima(—m) ifd = —«? for some positive integer «,

tr(d) = {0

in the same way of Lemma 3.3 and Lemma 3.4 in [9]. Therefore, by Theorem 2.1 and 3.1,

otherwise,

we obtain the following theorem.

Theorem 3.4 Let f(v) = ) ,a(n)q" be a weakly holomorphic modular function on
T (p1p2) with a(0) = 0. We put

t0)=2) ﬂ(—"){Ul(ﬂ) + p1p201(n/p1p2) + pro1(n/p1) +P201(ﬂ/l92)}»
n=1

and for negative d

Page 10 of 16
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t(d) —2Hp1m ) > ima(—m) if d = —«? for some positive integer K,
f =

0 otherwise,

where (L, (n) is the number of prime factors of gcd(m, n). If ged(m, n) = 1, we put p,,(n) :=
0. Then

> tr(pipon — r7)q"
n>0
rez

is a weak Jacobi form of weight 2 and index p1pa.

4 Proof of Theorem 1.1
Throughout this section we assume N = 2, 3, 5, 6, 7, 10, or 13. We apply Theorems 3.2
and 3.4 to the special modular function f = ¢»(j};). Then we obtain

Corollary 4.1 The generating function

N N
gé )(t,z) = E t(2 )(4Nn—r2)q”§’
n>0
reZ

is a weak Jacobi form of weight 2 and index N, where

6 (N2 =1,
t(zN)(O) _ (N, 2)
10 (N, 2) =2,
£5(-1) = -1,
2 4 (N,2) =2,

and t(zN) (d) = 0 for other negative d.

Note that we can obtain recursion formulas for the modular traces by applying Choi
and Kim’s method [3] to this corollary.

Lemma 4.2 [8] For a positive integer d, we have
£ (d) = 27 DN (),

where un(d) is the number of prime factors of gcd(N, d).

Remark This lemma works for a general weakly holomorphic modular function f on
Cg(N).
0

Proof We consider only the case of prime level N = p. We put the Atkin-Lehner invo-
lution W), = \/LE [2 _01], and let d be a positive integer. We take /2 (mod 2p) such
that 42 = —d (mod 4p), then 4 is divisible by p if and only if p divides d. For each
Q = [abc] € Qupn the quadratic form Q o Wy, = [cp, —b,a/p] is also in Qg if
and only if p divides 4, that is, p divides d. If d is not divisible by p, then the map
Qapn/Tolp) 3 [a, b, c] = [a b c] € Qu,/T(p) is bijective, thus we have t;(d) = t;(d) for
amodular function f on I'§(p). If p|d and [a, b, c] # [cp, —b, a/p] in Qg 1/To(p), then the
map Qg ,,1/To) 3 [a b, cl, [cp, —b, a/p] — [a, b, c] € Qg ,/T';(p) is 2-1 correspondence.
Ifpldand Q = [a, b, c] = [cp, —b, a/p]in Qg1 /To(p), thenit holds |F8‘(p)Q| =2|To(p)gl-
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Therefore in both cases, we have t;(d) = 2t (d). In the same way, we can show the case
of level N = p1ps. O

We define the modular trace function t(N*)( d) for non-positive index d satisfying the
relation in Lemma 4.2. By Corollary 4.1 and Lemma 2.2, we obtain a weakly holomorphic
modular form of weight 2 on (N).

Proposition 4.3 The generating function

GéN*) Z (Ztl\[*) )qn

n=—1\reZ

is a weakly holomorphic modular form of weight 2 on I'o(N).

Proof Applying Lemma 2.2 to the generating function géN) (7, z), we obtain a weakly holo-
morphic modular form of weight 2 on I'g(N)

M) = (N)(_L £)
2 Z Nt N/

Since the weak Jacobi form géN)(r, z) has a theta decomposition (2.1)

2N—-1
&)=Y hu(@)9nu(n2),
n=0

where /1, (7) is a partial generating function

= > g,
d=—p? (mod 4N)

the function géN)(r) can be expressed as follows,
12N-1
~(N) 1 1 ¢
——zZ > (=) )

=0 pu=0

Note that we can easily see that

1 ¢ 3 1
(g ) =5 o 0)

By the modularity (2.2) of the functions /() and ¥, (7, z), we have directly

2N1N1 2N -1 2N -1

~(N) (1) = Z 2627”1\’” Z 327”21\1]/1 (Nt) Z e 27”21\719]\] (Nz,0).

u=0 £=0
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. — L. .
Since the sum 2121201 >N is equal to N or 0 according as N| i, we have

2N—-1 2N—1
' = :N > h(NT) Y Onu(NT,0)
n=0
2N—-1 2N—-1
+N Y ey (NT) Y e TN, (NT, 0)>
v=0 n=0
2 2N—12N-1 2N—12N-1
- {Z > INTONA(NT, 00+ > Y (1) Nr)z?Nn(Nr,O)}
v=0 #n=0 v=0 n=0

N2{ > (Nt Y OnaNT,0)+ Y y(NT) - Y Ona(NT, 0)}

v:even n:even v:odd n:odd

= N g™ 06 (2) + g™ ()6 (1))

By Lemma 4.2, we have

&) = 3 h(No)y =290 ST N @),
vieven d=0 (mod 4)
N, N
g0 = Y bWy =200 3 (N g)gdit,
v:odd d=3 (mod 4)
00 (0) = Y InalNT,0) = Y g1,
n:even r.even
2
00(0) ==Y OnalNT,0)= Y g7/
n:odd r:odd

Then we see that

& 00e () + gV ()6 (v) = 2 N) Z <ZtN*)(4n ))q”, (4.1)

n=—1 \reZ
Thus we conclude that
G (1) = N2 WgN) )
is a weakly holomorphic modular form of weight 2 on I'g(XN). O
Proposition 4.4 The function GgN*)(t) has a pole only at the cusp t = ioco.

Proof By Proposition 4.3, it is sufficient to show that G N*)( ) does not have any pole at all
cusps except for ico. We can show this by using (4.1) and modularity (2.2). For example,
we consider the case of any N and the cusp 7 = 0. By the definition of g(NO)(T) and (2.2),

we have
’ 1 2/N2 wor
géNO)(_?> = Zh (“) Z Vi 27”2““(%)

3/2 2N—-1N-1

EREE ey - S5 (G = ()

n=0 n=0

Page 13 of 16
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In a similar way, we obtain

N9 (_%) - %% (hO(%> - hN(%))
() = 5 () o)
oot i)

Therefore we have

(= () )

1 T T T T
el (— 9 (—, 0) I (—)9 (—, 0) ).
N ON)N’ON +NN N,NN>
Note that the value of the modular trace function t(ZN)(d ) for negative index is zero except
for d = —1, —4, and the partial generating functions /(7 /N) and sy (7 /N) are given as
T 2
w(g)= X 6@
d=0 (mod 4N)

I\ (N) [ ,d/aN?
w(g)= X 8@
d=—N? (mod 4N)

Thus if N # 2, these functions have no pole at ¢ = 0, that is, GgN*)(r) has no pole at
7 = 0. If N = 2, the pole of /(7 /2) at ¢ = 0 is canceled out by the zero of ¥9(7/2, 0).
In the cases of N = 6,10 the cusp T = 1/p with p|N can be checked similarly by direct

calculation of (pt + 1)_2G§N*)(p;+1 )- .

For our N, the hauptmodul jn (7) on I'g(N) also has a pole only at the cusp t = ico. The

differential operator (27i)~* % sends a weakly holomorphic modular function to a weakly

holomorphic modular form of weight 2 on the same group, then j} () := (mi)~t %jN(‘L’)
is a weakly holomorphic modular form of weight 2 on I'g(N). Canceling the pole, we

obtain a holomorphic modular form
2 (1) = G (x) € Ma(To(N)),

where M (I") is the space of holomorphic modular forms of weight 2 on T'. It is known
that

My(Top) = (B (e (p=23,57,13),
My(To(p1p2)) = (Eéplm)(f)» Eém)(mf), Eépl)(l)zf))c (p1p2 = 6,10),

where

ESV(r) = NEy(NT) — Ex(t) = N = 1) +24 Y oV (m)q",

n=1
O’l(N)(}’l) = Z d.
d\n
d#0(N)

For each level N, we have

oo
2jy(T) — GéN*)(T) =— Zt(ZN*)(—rZ) + Z 2nc™N) — Zt(ZN*)(ZLn —r)tq"

reZ n=1 reZ
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By Corollary 4.1 and Lemma 4.2, the constant term is given by

1 N=2
S () = -0 - 20 (-1) - 28— = {3 N=35713
rez 7/2 N = 6, 10.

Therefore if N = p, we obtain that

(3 —po1(2/p))
-1

In the cases of N = 6,10, we need more terms. The first few values of modular trace

2j,(v) — G¥7(v) = EY(x).

functions are given by

(6%) 1 , 2+4/-2
ty (8) = ————02(is(5-a1)) = (16 — 158
|F3(6)[6,_4,1] | 2 ( 6 )
1
= —((-10)*> — 158) = —
2
(1094 — 1 o R PO e
= ——2(io(en0,-611) = = | /o 44
|F6ﬁ(10)[10,76,1]| 4 ( 10 )
1
= —((—4)* —44) = -7,
G
and except for the above values t(N )(d) =0forl <d < 8 (when N = 6,10). Then we

GEN*)

can compute the first few coefficients of 2j,(t) — (1), we have

7
2j4(z) — G(r) = 5 +7q + 47 + O(g®)

13
- LEO@) +
24 12

7
2i0(x) — GV (1) = 5T+ 244% + 0(g®)

1
Er ) — EG0),

1 1
— g1551‘”(1) + ng)(zz).

Therefore we obtain the first part of Theorem 1.1. By using the following relations
Jp =Jp —PiplUp p=235713
];1172 = jpip2 = PUpip2Upy — P2fpipa |Upy + P1P2jp1ps |Upipy - P1P2 = 6,10,

we obtain the second part of Theorem 1.1. This concludes the proof of Theorem 1.1.
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