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Abstract
Microdata from U.S. decennial censuses and the American Community Survey are 
a key resource for social science and policy analysis, enabling researchers to investi-
gate relationships among all reported characteristics for individual respondents and 
their households. To protect privacy, the Census Bureau restricts the detail of geo-
graphic information in public use microdata, and this complicates how researchers 
can investigate and account for variations across levels of urbanization when analyz-
ing microdata. One option is to focus on metropolitan status, which can be deter-
mined exactly for most microdata records and approximated for others, but a binary 
metro/nonmetro classification is still coarse and limited on its own, emphasizing one 
aspect of rural–urban variation and discounting others. To address these issues, we 
compute two continuous indices for public use microdata—average tract density 
and average metro/micro-area population—using population-weighted geometric 
means. We show how these indices correspond to two key dimensions of urbaniza-
tion—concentration and size—and we demonstrate their utility through an examina-
tion of disparities in poverty throughout the rural–urban universe. Poverty rates vary 
across settlement types in nonlinear ways: rates are lowest in moderately dense parts 
of major metro areas, and rates are higher in both low- and high-density areas, as 
well as in smaller commuting systems. Using the two indices also reveals that cor-
relations between poverty and demographic characteristics vary considerably across 
settlement types. Both indices are now available for recent census microdata via 
IPUMS USA (https ://usa.ipums .org).
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1 Introduction

Public Use Microdata Sample (PUMS) files are one of the U.S. Census Bureau’s 
most valuable data products for social science and policy analysis, providing 
detailed questionnaire responses from the decennial censuses and the Ameri-
can Community Survey (ACS) for a large sample of the U.S. population. Using 
PUMS data, researchers can generate custom cross-tabulations with great flexibil-
ity and investigate relationships among all reported characteristics for individual 
respondents and their households. One limitation of PUMS files is that, in order 
to protect privacy, the Census Bureau restricts the detail of reported geographic 
information. The only sub-state geographic units identified are Public Use Micro-
data Areas (PUMAs), which are custom-designed agglomerations of other stand-
ard units (census tracts, counties, etc.), each required to have at least 100,000 
residents. This restriction makes it impossible to identify smaller communities 
and neighborhoods in PUMS data, and identifying larger regions is also often 
complicated by mismatches between PUMAs and other geographic units.

IPUMS USA (https ://usa.ipums .org), a website that disseminates harmonized 
U.S. census microdata, has developed numerous tools and resources to facilitate 
microdata access and use. To expand on the limited geographic information pro-
vided in PUMS files, IPUMS USA supplies supplemental variables that identify 
several standard geographic units other than PUMAs. IPUMS can identify only 
units that correspond well to a set of PUMAs, but this approach has still enabled 
the identification of hundreds of counties, cities, and metropolitan areas for most 
decennial and ACS microdata samples.

We introduce here two PUMA-based indices that IPUMS USA recently added 
to its collection of supplemental variables in order to facilitate analysis of demo-
graphic variation across different levels of urbanization. The two indices—aver-
age tract population density and average metro/micro-area population—cor-
respond to two distinct dimensions of settlement patterns: “concentration” (the 
local intensity of settlement) and “size” (the total population of the commuting 
system). For analysts seeking to distinguish levels of urbanization in microdata, 
IPUMS USA has also long provided a categorical variable named “METRO,” 
which identifies metropolitan status and central/principal city status based on 
PUMA information. We demonstrate here how the new indices offer valuable 
advantages relative to METRO. Crucially, because they are continuous and repre-
sent two distinct dimensions, the new indices distinguish a much broader range of 
variation across the rural–urban universe of settlement patterns.

In succeeding sections, we first discuss limitations of the standard metropolitan 
and urban classifications, particularly for analyses of microdata, and the potential 
advantages of using two continuous indices. We then provide the exact definitions 
of the new IPUMS USA indices and discuss how they correspond conceptually to 
two important dimensions of settlement patterns. Finally, we demonstrate the util-
ity of the new indices in an examination of poverty across the rural–urban spec-
trum. We find that poverty rates are lowest in moderately dense parts of major 
metro areas, and they are high in both low-density and high-density areas, as well 

https://usa.ipums.org
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as in smaller commuting systems. We also find that correlations between pov-
erty and demographic characteristics vary considerably across settlement types. 
More generally, our findings demonstrate the value of modeling urban/rural status 
as a continuously varying, multi-dimensional phenomenon, an approach that is 
directly facilitated by the new indices from IPUMS USA.

2  Limitations of Standard Classifications

To distinguish rural and urban populations, analysts commonly use one of two 
classification systems defined by federal agencies: the core-based statistical area 
(CBSA) definitions of the Office of Management and Budget (OMB), which deline-
ate metropolitan and micropolitan statistical areas (i.e., metro and micro areas), or 
the official urban/rural classification of the Census Bureau.1 The Bureau’s criteria 
and guidelines for PUMA delineations2 do not require any agreement with CBSAs 
or urban/rural delineations, so PUMAs do not consistently align with either of these 
systems (Fig. 1). To distinguish suburban populations, analysts sometimes also use 
the OMB’s central or principal city definitions,3 treating as “suburban” the popula-
tion living in metro areas but outside of central/principal cities (e.g., Mattingly & 
Bean, 2010), but PUMAs need not align with city boundaries either.

PUMAs do occasionally align with CBSAs but almost never with urban areas 
(Fig. 1). The boundaries of urban areas are complex and idiosyncratic, and urban 
areas can also have relatively small populations (down to 2500), so outside the cores 
of major urban areas, nearly all PUMAs encompass a mix of urban and rural areas. 
CBSA boundaries, on the other hand, always follow county boundaries, which often 
also form PUMA boundaries. Metro areas generally have populations larger than 
100,000, enough for a single metro area to comprise one or more whole PUMAs. 
Likewise, central and principal cities are often large enough to comprise whole 
PUMAs.

The numerous correspondences between PUMAs and the OMB delineations 
make it possible to identify the exact metro/nonmetro status for most PUMS records 

1 The Census Bureau’s urban/rural classifications have evolved over time (Ratcliffe, 2015), but for the 
2000 and 2010 censuses, the general procedure was to define “urban areas” as groups of relatively dense 
neighboring (or nearby) blocks with combined populations of at least 2,500 each (Ratcliffe et al., 2016). 
The Census then classified all residents of urban areas as “urban” and all other population as “rural.” 
OMB metropolitan area definitions have also evolved, but since 2003, the OMB has delineated “metro-
politan statistical areas” as one of two types of CBSAs along with “micropolitan statistical areas.” Each 
CBSA consists of a set of central counties, where a substantial population resides in the same core urban 
area(s), combined with any outlying counties, where a substantial proportion of workers commute to or 
from the central counties. To qualify as a metropolitan area, a CBSA must contain an urban area with at 
least 50,000 residents, while the largest urban area in a micropolitan area has between 10,000 and 50,000 
residents (https ://www.censu s.gov/progr ams-surve ys/metro -micro /about .html).
2 See https ://www.censu s.gov/progr ams-surve ys/geogr aphy/guida nce/geo-areas /pumas .html.
3 Since 2003, the OMB has designated certain places within each CBSA as “principal cities,” typically 
the largest incorporated place within a CBSA along with other places of similar size. Prior to 2003, the 
OMB instead used the term “central city” to denote a similar concept.

https://www.census.gov/programs-surveys/metro-micro/about.html
https://www.census.gov/programs-surveys/geography/guidance/geo-areas/pumas.html
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and occasionally also the central/principal city status. Nevertheless, identifying a 
status for all PUMS records, as IPUMS USA does through its METRO variable, 
requires special handling for the many PUMAs with populations both within and 
outside of metro areas, or both within and outside of central/principal cities. In such 
cases, IPUMS USA assigns a “mixed” status, resulting in 5 distinct METRO classes, 
including 3 “pure” and 2 “mixed” classes (Fig.  2). The Economic Research Ser-
vice (ERS) of the U.S. Department of Agriculture has produced a similar classifica-
tion that identifies all PUMAs as either metro or nonmetro, allocating each “mixed” 
PUMA to one of these two classes based on where the majority of PUMA resi-
dents live (U.S. Department of Agriculture, 2019b).4 Translating the standard OMB 
classes into microdata, using the approach of either IPUMS USA or the ERS, offers 
the benefits of familiarity and conceptual consistency with many other applications 
that use the OMB definitions. This framework, however, unavoidably yields inexact 
class identifications because of the many discrepancies between PUMAs and OMB 
delineations.

An important related problem is that as both the PUMA and OMB delineations 
change over time, so does the correspondence between them, which can impair 
studies of demographic change by metro status. For example, when the Census 
changed the PUMAs identified in ACS PUMS files from the 2000 to 2010 defini-
tions, IPUMS USA also changed which metropolitan definitions it used as the basis 
of the METRO variable, switching from the 1999 to the 2013 OMB delineations. In 

Fig. 1  2010 PUMAs, 2010 urban areas and 2013 CBSAs (metropolitan and micropolitan areas) in a sec-
tion of south-central Texas

4 IPUMS USA recently added a variable, PCTMETRO, that gives the percentage of each PUMA’s popu-
lation living in metro areas, which analysts can use to produce a binary metro/nonmetro classification 
like that of the ERS.
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effect, the portion of population having a mixed metro/nonmetro status grew from 
7% for the 2011 ACS (using 2000 PUMAs) to 12% for the 2012 ACS (using 2010 
PUMAs), and the portion with a mixed central/principal city status grew from 30 to 
36%. These shifts are much larger than typical annual changes, and they both result 
in larger portions of population in “mixed” PUMAs, indicating that they are mainly 
artifacts of a weakened correspondence between PUMAs and OMB delineations. 
The degree to which any such changes in METRO status are meaningful is difficult 
to determine.

Even if the correspondence between PUMAs and OMB delineations were exact 
and persistent, there remain two important conceptual problems for analyses that 
rely exclusively on the metro/nonmetro classification. First, subdividing the full 
range of U.S. settlement patterns into only a few classes is imprecise, potentially 
masking important variations within each class and separating similar locations into 
distinct classes (Waldorf, 2006). For example, the largest U.S. metro areas have a 
hundred times more residents than the smallest, and socio-economic conditions may 
vary enormously across this spectrum. A single “metro” class nevertheless groups 
all these areas together.

A second limitation of the metro/nonmetro classification—especially when ana-
lysts use it alone to distinguish “urban” and “rural” populations—is that it empha-
sizes only one of the multiple dimensions of urbanization: population size. The 
delineation of metro areas does incorporate other factors; both population density 
and size are used to define the core urban areas of CBSAs, and commuting flows are 
used to determine which counties are associated with which urban cores, but after 
these associations are established, the single basic feature that distinguishes a metro 
county is that it is part of a commuting system where the urban core has a population 
of 50,000 or more. In other regards, a metro county may be very urban or very rural; 
it may have a high or low population density, and it may be at either the core or the 

Fig. 2  IPUMS-USA METRO classes for 2010 PUMAs in a section of south-central Texas
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distant periphery of a commuting system. The metro/nonmetro classification alone 
tells us little about these other important dimensions of settlement patterns, which 
are correlated with but distinct from population size (Coombes & Raybould, 2001; 
Isserman, 2005; Wang et al., 2012). A phenomenon of interest could be associated 
with each of these dimensions in different ways, but that is impossible to determine 
using only the metro/nonmetro classes.5

Similarly, the Census Bureau’s urban/rural classification also incorporates multi-
ple aspects of settlement patterns while emphasizing a single dimension of urbaniza-
tion—in this case, concentration. Unlike CBSAs, urban areas are designed to cor-
respond closely to the extents of urbanized land use (Ratcliffe, 2015; Ratcliffe et al., 
2016), and the Bureau is able to achieve this goal with a high degree of precision 
by building up from individual census blocks, units much smaller than the coun-
ties that form CBSAs. According to the 2000 and 2010 standards, the main criteria 
for a group of blocks to be identified as an urban area is that they surpass a den-
sity threshold (1000 persons per square mile at the core and 500 persons per square 
mile in neighboring areas, with other rules used to add some types of low-density 
blocks), and their combined population is at least 2500. The classification is there-
fore associated with both population size and density, but in combination, the two 
criteria serve as a singular indicator of concentration at a certain resolution. For 
example, if a few neighboring blocks in an isolated community have high densities, 
but their combined population is below 2500, then for a somewhat larger area, e.g., a 
space of 5 square miles, the density would be less than 500 persons per square mile, 
effectively a “rural” level of concentration at that resolution. From this perspective, 
each urban area represents a substantial region of concentrated settlement, and rural 
areas may contain some groups of dense blocks but never in a “large concentration.” 
Meanwhile, this distinction alone tells us little about other dimensions of urban/rural 
variation, such as the size of the commuting system or accessibility to a major city 
center.

The coarseness of the standard binary classifications and their distinct empha-
ses are useful and appropriate in many contexts. Many regional disparities have 
a basic metro/nonmetro or urban/rural divide, and the standards used to delineate 
these classes have evolved through decades of refinement to correspond well with 
important, observable distinctions in settlement and commuting patterns. Problems 
can arise, however, when analysts draw general conclusions about urban/rural dif-
ferences using only one of these classifications. For example, using the binary OMB 
classes, nonmetro areas had higher poverty rates than metro areas in 2017, but using 
the official urban/rural classification, the relationship is reversed; the rural areas had 
the lowest poverty rates overall (Fig. 3). In other words, poverty is higher outside of 
large commuting systems but also lower outside of concentrated settlements. How 

5 The complete CBSA specifications include additional information distinguishing central and outlying 
counties as well as central/principal cities, but neither the IPUMS METRO variable nor the ERS metro/
nonmetro classifications convey all this information, nor could they with great precision at the PUMA 
level. This additional CBSA information also pertains mainly to a second dimension of urbanization, 
accessibility/remoteness, and still reveals little about another key dimension, concentration.
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could this be? Poverty may be especially high in concentrated settlements outside 
of large commuting systems (urban nonmetro population) or especially low in the 
exurbs of large commuting systems (rural metro population). Investigating such pos-
sibilities and accurately characterizing them requires a more robust analytical frame-
work than is supported by either of these standard classifications alone.

Toward this end, the ERS has produced several alternative classifications (U.S. 
Department of Agriculture, 2019b), including the rural–urban continuum codes 
(distinguishing 9 classes of counties), urban-influence codes (12 classes of coun-
ties), rural–urban continuum areas (10 primary and 21 secondary classes of census 
tracts), and frontier and remote area codes (4 levels of remoteness among ZIP Code 
areas). These schemes offer more granularity than the standard OMB and Census 
classifications, and they distinguish more than one dimension of variation. However, 
in accord with ERS’s focus on agricultural economics, their classifications mainly 
differentiate types of rural areas and only minimally distinguish higher levels of 
urbanization. Also, aside from ERS’s metro/nonmetro classification of PUMAs, 
none of their classifications are PUMA-based, so they are not directly applicable for 
public-use microdata.

3  Two PUMA‑Level Indices

When developing new rural–urban indices for IPUMS USA, we have sought out 
options that not only could be computed at the PUMA level consistently across time 
but that also varied continuously across a full spectrum of rural and urban settlement 
types. A secondary consideration was to select measures that are relatively easy to 
compute and to extend forward when integrating new PUMS files into IPUMS USA. 
The two newly added indices satisfy these aims.

3.1  Two‑Dimensional Conceptual Framework

Conceptually, the two new indices correspond to two basic dimensions of settlement 
patterns: concentration, ranging from sparse to dense, and size, ranging from small 

Fig. 3  Poverty rates using 
standard metropolitan/non-
metropolitan and urban/rural 
classifications. 2017 American 
Community Survey 1-Year 
Summary File, retrieved from 
IPUMS NHGIS (Manson et al. 
2018)
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to large (Fig. 4). In common usage, the terms “rural” and “urban” indicate variation 
in both dimensions: rural places are more sparsely settled and have smaller popu-
lations (bottom-left quadrant in Fig. 4); urban places are more densely settled and 
have larger populations (upper-right quadrant). But places may be distinctly “rural” 
or “urban” along one dimension and not the other. An isolated town center (left-
hand side) may be somewhat urban in its concentration level but decidedly rural in 
population size. Conversely, exurban large-lot developments (lower-right quadrant) 
may have rural levels of concentration but urban levels of access to amenities and 
services due to the large population of a nearby city. We expect the upper-left corner 
to be empty because the highest levels of concentration can occur only where there 
are ample populations (depending on the exact spatial resolution at which densities 
are measured).

Our choices for which two dimensions to emphasize and how to measure them are 
inspired by the two standard federal classification systems. As discussed in Sect. 2, 
the Census Bureau’s urban/rural classification emphasizes the concentration dimen-
sion, corresponding roughly to the horizontal dividing line in Fig. 4. The OMB’s 
metro/nonmetro classification in turn emphasizes the size dimension (specifically, 
the size of the urban core of a commuting system), corresponding roughly to the 
vertical dividing line in Fig. 4.

The model also accords with other previously developed frameworks. Isserman 
(2005) and Wang et  al. (2012) both argue—and demonstrate through case stud-
ies—that the two standard classifications can and should be treated as distinct, com-
plementary indicators of urbanicity and rurality, though neither of these research 
efforts developed continuous indices. They instead use county-based classifications, 
translating the Census Bureau’s urban/rural classes to a county basis through a new 
system of “Rural Urban Density Codes,” which classify counties into four groups 
based on population density and the amount of urban population in each county. 
Coombes and Raybould (2001) suggest continuous measures for three dimensions 

Fig. 4  Conceptual model of two continuous dimensions of settlement patterns
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of settlement patterns: settlement size (from hamlet to metropolitan), concentration 
(from sparse to dense), and accessibility (from remote to central). Our model re-uses 
their concentration dimension directly, and our second dimension corresponds with 
the settlement size dimension and, to a lesser extent, the accessibility dimension.6

3.2  Index of Concentration

The name of the new IPUMS USA variable that indexes concentration is DENSITY, 
and the specific measure it reports is the population-weighted geometric mean of 
census tract population densities in each PUMA. In the initial release, DENSITY is 
available for 2000 census samples (using 2000 tract densities) and for the 2010 cen-
sus and ACS samples (using 2010 tract densities).

We choose to use a population-weighted average density rather than the density 
of the whole PUMA because the latter (the PUMA’s population divided by its area) 
is often a weak indicator of the local densities where PUMA residents live. Many 
PUMAs span across both densely and sparsely settled areas, as demonstrated by 
the varying densities of tracts within PUMAs (Fig. 5a). The density of each whole 
PUMA (Fig. 5b) is effectively an “area-weighted average” of these varying densities 
(Craig, 1984), representing the typical density across all subdivisions of the PUMA 
rather than among the residents of the PUMA. Because PUMA residents are (by def-
inition) more concentrated in the denser parts of a PUMA, the average of their local 
densities is generally higher (and cannot be lower) than the entire PUMA’s density.

To summarize local concentrations throughout a large area, a better strategy is to 
compute densities in smaller “local” units, such as census tracts, and then compute 
the average of these densities, weighted by the local units’ populations, so each resi-
dent’s local density is given equal weight. The right-hand panels of Fig. 5 illustrate 
the outcomes of measuring the population-weighted average of tract densities using 
the arithmetic mean (c) and the geometric mean (d). Following the notation of Craig 
(1984), the population-weighted arithmetic mean density is computed as:

where Pi and di are the population and density of subdivision i (in our case, a tract). 
The population-weighted geometric mean is computed as:

where �i is the proportion of the containing unit’s (the PUMA’s) population living in 
subdivision i . It can be helpful to think of the geometric mean density as measuring 
the average density on a logarithmic scale, which recasts Eq. (2) into this form:

(1)dAM =

∑

Pidi
∑

Pi

(2)dGM =

∏

d
�i

i

6 In Coombes and Raybould’s model, settlement size is associated with the size of an urban area (a con-
centrated settlement) and accessibility is associated with proximity to large settlements. In our model, 
“size” is associated with the size of an entire commuting system, encompassing both urban areas and 
lower-density areas that are “accessible” to the urban core as determined by commuting flows.
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In practice, our computations deviate somewhat from these equations where a 
PUMA boundary subdivides a tract.7 In such cases, we use the whole tract’s density, 
but we limit the population weight to the portion that also resides in the PUMA 
(determining this portion by summing the populations of the census blocks with 
centroids in each PUMA).

Some prior applications of population-weighted average tract densities have used 
arithmetic means (e.g., Wilson et  al., 2012; Kolko, 2016), but we agree with oth-
ers (Craig, 1984; Dorling & Atkins, 1995) that a geometric mean is more suitable. 
Densities generally have a log-normal distribution, heavily concentrated at the lower 
end of the distribution with a long positive tail. For such distributions, the geometric 
mean is appropriately less sensitive to large outliers, more sensitive to variations 
among small values, and typically closer to the median than is the arithmetic mean. 
In practical terms, a logarithmic scaling makes sense because a difference between 
densities of 10 and 100 is about as significant for the character of a place as any 
other factor-of-10 difference (e.g., 1,000 and 10,000), and it is clearly more sig-
nificant than an equal absolute difference of 90 at high densities (e.g., 10,010 and 
10,100).

(3)dGM = exp

�∑

Pi log di
∑

Pi

�

Fig. 6  Distributions of 2010 census tract population densities in four Texas PUMAs, plotted on a linear 
scale and logarithmic scale, along with four PUMA-level density measures

7 Although 2010 census tracts nest exactly within 2010 PUMAs, not all 2000 census tracts nest within 
2000 PUMAs. Also, the 2005–2011 ACS PUMS files use 2000 PUMA definitions, but DENSITY sum-
marizes 2010 tract densities for those samples, so it is necessary to associate 2010 tracts with the 2000 
PUMAs for those samples.
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Figure 6 illustrates how four PUMA-level density measures relate to the distribu-
tion of tract densities in the PUMAs labeled on Fig. 5. The first PUMA, 04503, is 
roughly coincident with The Woodlands, a suburb of Houston. In this case, there 
is relatively little variation in densities among the tracts in the PUMA, so all four 
measures (the PUMA density, the population-weighted arithmetic mean, the popu-
lation-weighted geometric mean, and the population-weighted median) are close to 
each other on both a linear and log scale, ranging only from 2061 to 2290 persons 
per square mile.

In PUMA 06100, which encompasses lower-density exurbs, small cities, and 
rangeland southwest of San Antonio, the tract densities vary less than PUMA 
04503’s on a linear scale but more than 04503’s on a log scale. PUMA 06100’s four 
density measures therefore bunch closely together on a linear scale but differ sub-
stantially on a log scale. As expected for a log-normal distribution, the median (51) 
and the geometric mean (48) are similar on either scale, but the arithmetic mean 
(84) is 65% greater than the median, and all three population-weighted densities are 
well above the whole PUMA’s density (29).

In PUMA 06200, the tract densities have a relatively wide distribution on either 
scale, and on the log scale, the distribution is clearly bimodal, split between a set of 
large, sparse tracts and a set of small, dense tracts. The whole PUMA’s density (12) 
lies within the lower cluster of tract densities, which is a good indication of the large 
expanses of sparsely populated rangeland in the PUMA, but it poorly represents the 
much higher local densities of most PUMA residents. The arithmetic mean (1436) 
and median (953) are both much higher, lying in the upper cluster of tract densities, 
but this in turn poorly represents the sparse local densities of many PUMA resi-
dents. The geometric mean (194) is located between the two modes, suitably split-
ting the difference. (Of course, no single statistic can represent well the “typical” 
value of a bimodal distribution, but if a single statistic must be selected, something 
that lies between the two modal clusters seems most appropriate.)

The last of the four example PUMAs, 06302, has the widest distribution of tract 
densities. While the PUMA’s population is concentrated in dense tracts around 
Laredo, most of the PUMA’s area lies in three very sparse outlying tracts. This 
results in a PUMA density (35) that is much lower than the median (1285) and geo-
metric mean (1245). At the other end, a few tract densities that are exceptionally 
high on a linear scale (but not on a log scale) result in an arithmetic mean (2945) 
that is more than double the median and geometric mean.

These four example PUMAs indicate well the variety of density distributions 
across all PUMAs, and in each example, we find the population-weighted geometric 
mean of tract densities to be as good as or better than the other density measures as 
a general index of concentration. There are still more measures that could be consid-
ered, and there is one issue in particular that is of concern: a census tract is only one 
arbitrary approximation of a person’s local context (Fowler et al., 2019), and aver-
ages of tract densities are subject to the Modifiable Area Unit Problem, or MAUP 
(Openshaw & Taylor, 1981). For example, two PUMAs with identical population 
distributions could have very different mean tract densities depending on how the 
tract boundaries are drawn. One measure that would be less sensitive to the MAUP 
would be an inverse-distance-weighted average of block-level densities in a moving 
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window around each census block. This is similar to the approach that Coombes 
and Raybould (2001) propose for an index of concentration. We have opted to rely 
on tract densities (for now) because it simplifies the computation and description 
of the index, because measures of population-weighted density are often based on 
tracts, and because we suspect its liabilities relative to a more robust measure are not 
important for most applications.

3.3  Index of Size

For an index of size, we use the population-weighted geometric mean of the popu-
lations of CBSAs (metro and micro areas) in each PUMA. The general aim is to 
summarize the typical population size of the commuting systems where PUMA resi-
dents live. Where a PUMA lies entirely within a single metro area, as is the case for 
78% of 2010 PUMAs, this measure simply equates to the metro area’s population. 
Elsewhere, the measure summarizes the sizes of all CBSAs where PUMA residents 
live. For the “noncore” counties located outside of any CBSA, we use the county’s 
population as an approximation of the commuting system size.8

We refer to this index as METPOP, and currently, IPUMS USA provides two ver-
sions of the index through two variables: METPOP10 summarizes the 2010 popula-
tions of 2013 CBSAs and noncore counties, and METPOP00 summarizes the 2000 
populations of 2003 CBSAs and noncore counties. Figure  7 illustrates how 2010 

Fig. 7  2010 PUMAs and the 2010 populations of 2013 CBSAs and noncore counties, which form the 
basis for the METPOP10 variable, in a section of south-central Texas

8 For Virginia “independent cities” that lie outside of CBSAs, we combine the populations of the inde-
pendent cities with the populations of their neighboring counties.
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PUMAs correspond to the CBSA and county populations that METPOP10 summa-
rizes, and Fig. 8 illustrates METPOP10 values.

The formula we use to compute the METPOP index mirrors the DENSITY for-
mula [Eq. (3)]:

where PGMj is the population-weighted geometric mean of the populations of CBSAs 
and noncore counties in PUMA j , Pi is the population of CBSA or noncore county 
i , and Pij is the population in the area of intersection between i and j . We again 
use a geometric mean because commuting system populations, like tract densities, 
have a roughly log-normal distribution, and relative differences in populations are 
more important than absolute differences. For example, a difference between popu-
lations of 100,000 and 200,000 is about as significant for the character of a commut-
ing system as any other factor-of-2 difference (e.g., 1 million and 2 million), and it is 
clearly more significant than an equal absolute difference of 100,000 in large com-
muting systems (e.g., 10.1 million and 10.2 million).

Like the DENSITY index, METPOP may also be impaired by an inexact spa-
tial basis. The extents of “true” commuting systems need not correspond well with 
counties, and this is a limitation not only where METPOP is based on noncore coun-
ties but even where it is based on CBSAs. For example, because of the great extents 
of its component counties, the Riverside–San Bernardino–Ontario CBSA in Cali-
fornia includes the small city of Needles, a 220-mile drive from the CBSA’s largest 
city, Riverside. The PUMA that contains Needles is comprised mainly of desert, and 
the fraction of its residents who commute to the CBSA’s urban core is likely small, 
but the PUMA nevertheless has a high METPOP value. A more effective index of 

(4)PGMj = exp

�
∑

Pij logPi
∑

Pij

�

Fig. 8  METPOP10 values in a section of south-central Texas
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size might delineate commuting systems based on tracts rather than counties, or 
it might use ERS commuting zones (Fowler & Jensen, 2020; U.S. Department of 
Agriculture, 2019a), a system which allocates every county to a zone, eliminating 
the problem of “noncore” counties. Alternatively, as with the index of concentration, 
the most effective approach may be to use a moving window, but instead of using a 
“local” moving-window average of densities, the index of size would use a larger 
“regional” moving-window summing populations within a typical commuting dis-
tance. We leave these possibilities for future research.

3.4  Pairing the Indices

Figure  9 illustrates the two-dimensional spread of average tract densities (DEN-
SITY) and average CBSA populations (METPOP10) for all 2010 PUMAs. The 
point colors indicate the METRO class of each PUMA. The overall distribution mir-
rors closely the conceptual model in Fig. 4: the upper right contains PUMAs with 
high densities in large metro areas; the lower right contains PUMAs with low den-
sities in large metro areas; the lower left contains PUMAs with low densities and 
outside (or mostly outside) of any CBSA; and as expected, the upper left is empty, 
indicating that PUMAs with high average densities occur only in or around medium-
to-large CBSAs.

The colors in Fig. 9 indicate that most PUMAs that lie entirely within metro areas 
have relatively high average densities, but some have low average densities. Such 
low-density metro PUMAs may or may not fit our expectations for “rural” areas. 

Fig. 9  Relationships among three urbanization indices for 2010 PUMAs. Labels identify the four Texas 
example PUMAs. (Color figure online)
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They may or may not share characteristics with other low-density PUMAs. Sim-
ilarly, the nonmetro and mixed PUMAs with moderately high densities may have 
more in common with metro PUMAs at similar densities than with nonmetro and 
mixed PUMAs at lower densities. We believe that this two-dimensional framework 
offers great potential as a means to investigate such possibilities and to determine 
whether “concentration” or “size” are important factors, separately or together, in 
any study of urban–rural discrepancies. Because the indices are continuous meas-
ures, the framework also makes it possible to distinguish fine gradations of variation 
and to identify inflection points across all densities or across all levels of the urban 
hierarchy.

4  Illustrative Results

To demonstrate the utility of the two indices, we analyze how poverty rates vary 
across settlement types in the U.S. Past analyses of “rural” poverty have often used 
the “metro/nonmetro” classification alone to distinguish urban and rural populations 
(e.g., Cromartie, 2017; Ziliak, 2018). This practice is problematic. As Fig. 3 shows, 
the basic question of whether rural or urban areas have higher poverty rates has 
distinctly different answers depending on how “rural” and “urban” areas are distin-
guished. The availability of two continuous measures, indexing two dimensions of 
urbanization, allows researchers to complete a more thorough and nuanced analysis 
of variations across geographic regions.

In this section, using the new indices with 2012–2017 ACS microdata from 
IPUMS USA (Ruggles et al., 2019), pooling six 1-year samples, we illustrate how 
both poverty rates and individuals’ likelihood of being in poverty vary across levels 
of urbanization as distinguished by both concentration (DENSITY) and population 
size (METPOP10). Using microdata with the new indices enables us to fit regres-
sion models predicting poverty while controlling for other demographic factors. The 
use of our continuous measures shows that the correlations between poverty, rural-
ity, and other demographic characteristics vary in ways that cannot be captured by a 
simple metro/nonmetro distinction.

We begin our analysis with the basic METRO classification that had previously 
been (and still is) available in IPUMS USA. PUMAs classified as wholly nonmetro 
(neither metro nor mixed) have a higher poverty rate than other PUMAs, and the 
“mixed” PUMAs, those that straddle metro and nonmetro areas, have a poverty rate 
between nonmetro and metro PUMAs’ (Table 1).

Examining how poverty rates vary with the two new indices uncovers a more 
nuanced geographic pattern. Each point in Fig. 10 represents a PUMA while the 

Table 1  Poverty rates by 
METRO category, 2012–2017

N = 18,120,063

Nonmetro Mixed Metro

Percent in poverty 17.6 16.5 14.4



147

1 3

Across the Rural–Urban Universe: Two Continuous Indices of…

color represents levels of poverty: blue represents lower poverty rates and red rep-
resents higher rates. As in Table 1, we see again that metro areas have generally 
lower rates of poverty than nonmetro areas, but by using two continuous indices, 
we can see how the metro/nonmetro dichotomy masks significant differences in 
poverty rates within metro areas. The high-density PUMAs in large metro areas 
generally have high poverty rates—similar to or even higher than the rates in the 
PUMAs of small commuting systems—while the lower-density PUMAs in large 
metro areas, encompassing mostly suburban and exurban communities, appear to 
have the lowest poverty rates overall.

To quantify how rates vary across this two-dimensional space, we first classify 
PUMAs along both dimensions with four levels of METPOP10 values (breaks 
at 50,000, 400,000, and 3.2 million) and five levels of DENSITY values (breaks 
at 80, 400, 2000, and 10,000 persons per square mile). To avoid having a class 
represented by only one PUMA, we drop the lowest DENSITY break (at 80) for 
PUMAs in large commuting systems (above 400,000). This produces 14 classes 
of PUMAs, each with unique ranges of METPOP10 and DENSITY values. 
Table 2 shows how poverty rates vary among these classes, with the highest rate 
of poverty (22.8%) found in the densest PUMAs with moderately large CBSA 
populations (between 400,000 and 3.2 million residents). The lowest poverty 
rates are found in areas with medium density in the largest CBSAs (over 3.2 mil-
lion residents). Table 3 shows how the poverty rate for each class differs from the 
rate for the lowest-poverty class, which we use later as a benchmark for analyzing 
poverty rates in a multiple regression framework. Both tables show that, within 
each of the four size classes, the highest poverty rates occur in the highest-density 

Fig. 10  Relationship between poverty and two urbanization indices of urbanization for 2010 PUMAs. 
IPUMS USA 2012–2017 ACS samples. (Color figure online)
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classes. The PUMAs in small commuting systems also have relatively high rates, 
but not as high as in the high-density PUMA classes.

Of course, classifying populations according to PUMA-level averages, as in 
Tables 2 and 3, may obscure variations that are apparent only within PUMAs. Per-
haps the highest rates of poverty actually occur within the lowest-density census 
tracts, but if all the PUMAs that contain these tracts also include a mix of higher-
density tracts, then the distinct characteristics of the lowest-density tracts would be 
“averaged out.” Why then use PUMA-level indices? We reiterate that a key motiva-
tion is to enable microdata-based analyses that are impossible using existing census 
summary data. For example, the main reason for the higher poverty rates in high-
density areas could be that those areas have disproportionately high concentrations 
of higher-poverty demographic groups, such as younger and/or minority popu-
lations, in which case the relationship between density and poverty rate might be 
insignificant after controlling for individuals’ demographic characteristics. Directly 
controlling for individuals’ characteristics is not possible with census tract summary 
data, but it is possible using microdata and PUMA-level indices.

Table 2  Poverty rates (%) by DENSITY and METPOP10, 2012–2017. (Color figure online)

N = 18,120,063

DENSITY 
(per sq mi) 

METPOP10 
0-50k 50k-400k 400k-3.2m 3.2m+ 

10,000+   22.8 20.5 
2,000-10,000  20.7 16.6 12.6 

400-2,000  15.6 11.6 9.2 
80-400 17.7 16.8 13.6 12.5 

0-80 17.5 18.3 

Table 3  Difference in poverty rate (%) by DENSITY and METPOP10 from lowest-poverty class (MET-
POP10 of 3.2 m+, DENSITY of 400–2000), 2012–2017. (Color figure online)

N = 18,120,063

DENSITY 
(per sq mi) 

METPOP10 
0-50k 50k-400k 400k-3.2m 3.2m+ 

10,000+   13.6 11.3 
2,000-10,000  11.5 7.4 3.4 

400-2,000  6.4 2.4 0.0 
80-400 8.5 7.6 4.3 3.3 

0-80 8.2 9.1 
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To demonstrate the value of the indices with an analysis that requires microdata, 
we begin with two models that associate poverty with metropolitan status. The first 
model predicts poverty status based only on the METRO status of a person’s PUMA:

where � is a vector of coefficients for each METRO class (mixed and metro, with 
nonmetro omitted). The second model expands on the first by controlling for a large 
range of demographic characteristics:

where D is a vector of individual-level demographic controls, available only through 
microdata. Specifically, D includes age, sex, race, ethnicity (Hispanic/Latino), nativ-
ity, citizenship, marital status, health insurance coverage, educational attainment, 
employment status & sector, year, and geographic subregion (census division). 
Table 4 gives the metro and mixed coefficients after fitting these two models through 
linear regression on 2012–2017 ACS microdata.

Based only on metropolitan status, people residing in wholly metro PUMAs are 
about 3.2 percentage points less likely to be in poverty than those living in nonmetro 
PUMAs. (This is consistent with Table 1, which shows the difference between pov-
erty rates in nonmetro and metro PUMAs to be 17.6 − 14.4 = 3.2). However, when 
we include a battery of demographic controls, the metro coefficient decreases from 
-3.2 to -4.0, meaning that for individuals with the same demographic characteris-
tics, those living in metro PUMAs are about 4 percentage points less likely to be in 
poverty than those in nonmetro PUMAs. This indicates that the demographics that 
predominate in nonmetro PUMAs would generally yield lower poverty rates than 
the demographics in metro PUMAs, but living in nonmetro PUMAs increases the 
likelihood of poverty enough to produce a higher poverty rate in those areas despite 
their demographics. Clearly, using microdata to control for demographic character-
istics can help to reveal key dynamics in rural–urban poverty discrepancies.

Incorporating the two continuous urbanization indices into the analysis yields 
yet again more value. To demonstrate, we estimate the following linear probability 
model:

(5)poverty = � + �METRO.

(6)poverty = � + �METRO + �D

(7)poverty = � + �DENSITYxMETPOP10 + �D

Table 4  Coefficients for percent 
likelihood of poverty by 
METRO class, with and without 
controls, 2012–2017

Omitted class is nonmetro. N = 18,120,063. All coefficients signifi-
cant at p < 0.01

METRO class No controls With 
demographic 
controls

Metro − 3.17 − 4.01
Mixed − 1.14 − 1.01
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where D is the same vector of controls as in Eq. (6) and � represents coefficients for 
each DENSITY-by-METPOP10 class. Table 5 provides the results in a format that 
can be directly compared with the uncontrolled rate differences in Table 3, with both 
tables color-coded on the same scale. This comparison shows that the differences 
in the likelihood of poverty, relative to the lowest-poverty reference class, are con-
sistently smaller after controlling for demographics. Without controls, the highest 
poverty rate among the classes is 13.6 percentage points above the lowest rate. After 
controlling for demographics, the same two classes differ by only 8.3 points. This 
indicates that 61% (8.3/13.6) of the difference between these classes is explained by 
the difference in densities and population sizes, and the remaining 39% is attribut-
able to demographic differences between the populations in these areas. 

A final angle we take is to examine how associations between poverty and specific 
demographic characteristics vary across settlement types. We run this model

(8)poverty = � + �D,

Table 5  Coefficients for percent likelihood of poverty by DENSITY and METPOP10, with controls, 
2012–2017. (Color figure online)

Omitted class is METPOP10 of 3.2 m + and DENSITY of 400–2000. N = 18,120,063. All coefficients 
significant at p < 0.01

 

 DENSITY 
(per sq mi) 

METPOP10 
0-50k 50k-400k 400k-3.2m 3.2m+ 

10,000+   8.3 5.8 
2,000-10,000  8.9 4.6 1.1 

400-2,000  5.5 2.2 n/a 
80-400 7.2 6.5 3.8 2.3 

0-80 7.1 6.9  

Table 6  Coefficient for Hispanic/Latino likelihood of poverty by DENSITY and METPOP10, with con-
trols, 2012–2017. (Color figure online)

N = 18,120,063. All coefficients significant at p < 0.01

 DENSITY 
(per sq mi) 

METPOP10 
0-50k 50k-400k 400k-3.2m 3.2m+ 

10,000+   2.1 5.7 
2,000-10,000  8.1 7.3 5.7 

400-2,000  6.7 8.4 7.0 
80-400 6.2 7.7 9.2 7.0 

0-80 5.9 5.4 
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separately for each of the fourteen DENSITY-by-METPOP10 classes, where D is 
again the same vector of controls as in Eqs. (6) and (7). Table 6 reports the resulting 
Hispanic/Latino coefficient for each class. The pattern is altogether different from 
the pattern in previous tables. In the class with the highest overall poverty rate (22.8 
in Table 3), the difference in poverty between Hispanic/Latino populations and other 
groups is at its smallest (2.1 in Table 6). The increase for Hispanic/Latino popula-
tion is greatest (at + 9.2) in the least dense PUMAs in mid-size metro areas. Table 7 
similarly shows how coefficients for noncitizens vary among the classes. In this 
case, the likelihood that a noncitizen is in poverty differs most from citizens’ likeli-
hood (+ 6.6) in medium-density PUMAs in moderately small commuting systems, 
and it is generally smallest in both the upper right (denser PUMAs in large metro 
areas) and lower left (low-density PUMAs in small commuting systems).

In all, these results demonstrate the utility and flexibility offered by continuous 
PUMA-level indices of urbanization, enabling researchers to distinguish a diverse 
range of settlement types and to quantify associations with robust demographic 
controls.

5  Conclusion

The limited precision of the geographic information in public use microdata from 
the U.S. Census and ACS makes it impossible to identify all urban areas and com-
muting systems exactly as they are defined by federal standards, but the spatial units 
that are identified in these microdata—PUMAs—are still small enough and diverse 
enough to enable analysts to investigate and account for demographic variations 
across multiple dimensions of urbanization. This ability, combined with the unique 
flexibility microdata offer for developing robust models of demographic relation-
ships, make these data a potentially critical source for understanding and responding 
to the evolving differences among rural, suburban, and urban populations.

To support the effective analysis of multiple dimensions of urbanization using 
public use microdata, we have introduced two PUMA-based indices—average tract 

Table 7  Coefficient for noncitizen likelihood of poverty by DENSITY and METPOP10, with controls, 
2012–2017. (Color figure online)

N = 18,120,063. All coefficients significant at p < 0.01

 DENSITY 
(per sq mi) 

METPOP10 
0-50k 50k-400k 400k-3.2m 3.2m+ 

10,000+   2.5 3.6 
2,000-10,000  6.5 3.8 3.9 

400-2,000  6.6 4.7 2.9 
80-400 5.6 4.7 5.9 6.1 

0-80 2.6 3.7 
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population density (IPUMS variable: DENSITY) and average metro/micro-area 
population (IPUMS variables: METPOP00 and METPOP10)—which correspond 
to two distinct dimensions of settlement patterns: “concentration” (the local inten-
sity of settlement) and “size” (the total population of the commuting system). We 
have specified how the indices are computed, explained how to interpret them, and 
demonstrated their value by using them to distinguish a broad range of nonlinear 
variations in poverty rates and in demographic covariates of poverty across the 
rural–urban universe of settlement patterns.

We expect that these indices should be similarly useful for many other research 
applications on a range of subjects at least as wide as the subject coverage in ACS 
microdata, including migration, commuting, racial disparities, regional econom-
ics, housing markets, socio-economic sorting, etc. We would also emphasize that 
the analytical framework we use in our case study of poverty is only one of many 
approaches supported by the indices. For example, rather than classifying PUMAs 
into discrete groups, as we have, analysts could directly include the continuous 
measures in models, making it possible to quantify and plot formulaic relation-
ships between population density, commuting-system size, and demographic vari-
ables, potentially identifying interactions or specific inflection points. We hope our 
framework will also serve as a basis for further innovation in indices of settlement 
patterns, including some exploration into the alternatives we proposed here such as 
a block-based (rather than tract-based) local density measure or a regional moving-
window population total (rather than an average of CBSA populations).
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