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Abstract This work provides a Simulation-Based Sensi-

tivity Analysis (SBSA) framework for optimal building

energy planning during the conceptual design phase. The

innovative approach integrates EnergyPlus with local sen-

sitivity analysis (LSA) and global sensitivity analysis

(GSA) algorithms, thereby facilitating direct sensitivity

analysis (SA) capabilities without reliance on external

plugins or third-party tools. The effectiveness of this

approach is exemplified through its application to a resi-

dential building situated in a hot semi-arid climate region

of Iran. The efficacy of the developed approach is

demonstrated by applying it to a residential building

located in a hot semi-arid climate region in Iran. The study

utilizes four primary building performance criteria as out-

put variables: annual heating energy consumption (AHC),

annual cooling energy consumption (ACC), annual lighting

energy consumption (ALC), and the predicted percentage

of dissatisfied (PPD). The study employs one-at-a-time

(OAT) analysis for LSA and Sobol’s analysis for GSA to

investigate the behavior of output variables in response to

changes in building design parameters. In the LSA

approach, a newly developed sensitivity indicator, termed

the Dispersion Index (DI), is introduced to precisely mea-

sure the overall sensitivity of outputs to inputs (ST ). Results

indicate that annual AHC is most sensitive to the heating

setpoint (ST = 80%) and solar absorptance of exterior walls

(ST = 79%), while annual cooling consumption (ACC) is

primarily influenced by the cooling setpoint (ST = 72%)

and solar absorptance of exterior walls (ST = 63%).

Additionally, window-to-wall ratio (WWR), visible trans-

mittance of window glass, and building rotation signifi-

cantly affect annual lighting consumption (ALC) (ST =

33%, 25%, and 21% respectively). Furthermore, cooling

and heating setpoints, solar absorptance of exterior walls,

and WWR play crucial roles in PPD (ST = 81%, 40%, 36%,

and 21% respectively). Notably, ALC shows no depen-

dence on variable air volume (VAV) setpoint temperatures

and thermophysical properties of walls and windows.

Besides, the proposed DI in OAT-based LSA shows strong

alignment with the results achieved by the Sobol-based

GSA. This systematic approach, termed SBSA, empowers

building designers and decision-makers to pinpoint critical

design parameters early in the conceptual phase, ensuring

optimal building performance. The flexibility of the SBSA

framework accommodates diverse building configurations,

facilitating comprehensive SA without constraints.

Keywords Sensitivity analysis � Integration framework �
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ACC Annual cooling energy consumption

AHC Annual heating energy consumption

ALC Annual lighting energy consumption

ATC Annual total energy consumption

BF Building facade

BPA Building performance analysis

BR Building rotation

BTO Building technologies office

CDD Cooling degree-day

CTSP Cooling setpoint temperature

DI Dispersion index
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GSA Global sensitivity analysis

HDD Heating degree-day

HTSP Heating setpoint temperature

HVAC Heating, ventilation, and air conditioning

LSA Local sensitivity analysis

MIP Mixed-integer programming

OAT One-at-a-time

PCM Phase change material

PMV Predicted mean vote

PPD Predicted percentage of dissatisfied

SA Sensitivity analysis

SALib Sensitivity analysis library

DSH Depth of shading device

SI Sensitivity index

SBSA Simulation-based sensitivity analysis

VAV Variable air volume

WWR Window-to-wall ratio

List of symbols

SAEx W Solar absorptance of the exterior wall

SAIN W Solar absorptance of the interior wall

ST Total-order sensitivity index

STwin Solar transmittance of window glass

ThEx W Thickness of wall

Thgas�win Thickness of gas in window

Thwin Thickness of window glass

VTwin Visible transmittance of window glass

1 Introduction

The continuous combustion of fossil fuels releases a mul-

titude of environmental pollutants, severely damaging both

ecosystems and public health, and highlights the urgent

need for renewable energy sources (Ramin et al.

2015; Nasouri and Delgarm 2022a, b). In the meantime,

the building industry accounts for 31% of the world’s total

energy use and 27% of energy-related global emissions

(Zamanipour et al. 2023). In Iran, buildings consume 41%

of the nation’s total energy and contribute 36% of its CO2

emissions (Delgarm et al. 2018), with energy consumption

in this sector being 3 to 5 times the global average and

twice the international rate (Delgarm et al. 2016b; Lot-

fabadi and Hançer 2023). Forecasted population growth

will likely increase energy demand in Iran’s building sec-

tor, further compounded by its substantial dependence on

fossil fuels, thus intensifying the environmental crisis

(Delgarm et al. 2016c). Alongside energy efficiency,

ensuring the comfort of occupants is crucial in building

design (Zheng et al. 2022; Wang et al. 2023). Occupants’

thermal comfort is a state of mind that indicates satisfac-

tion with the thermal conditions of the environment (ANSI/

ASHRAE Standard 55 2010). Among the well-known

thermal comfort models, the predicted mean vote (PMV)

and predicted percentage of dissatisfied (PPD) models are

the most widely used (Charai et al. 2022; Almagro-Lidón

et al. 2024), initially expressed by Fanger (Fanger 1970).

The PMV model estimates the average thermal sensation of

a large group of individuals using a seven-point scale,

ranging from ? 3 (hot) to - 3 (cold) (Salilih et al. 2022).

Adding that, PPD model provides a numerical forecast of

the proportion of people likely to be thermally uncom-

fortable, as inferred from the PMV scores. ANSI/ASHRAE

55 recommends maintaining PPD under 10% and PMV

between - 0.5 and ? 0.5 for general comfort.

Achieving energy efficiency in buildings becomes

viable when it aligns with the thermal comfort require-

ments of occupants. During the early stages of building

design, decision-makers face the challenge of navigating

through complex, multivariate problems inherent in con-

struction projects (Salilih et al. 2022). This process

involves evaluating numerous feasible combinations of

building specifications to determine optimal design choices

(Kayalica et al. 2020). Neglecting design principles during

the early stages may lead to erroneous selection of building

materials and equipment, resulting in poor building per-

formance. Therefore, achieving optimal building perfor-

mance necessitates meticulous consideration and adoption

of the most suitable design parameters.

Building designers employ various building simulation

tools, including EnergyPlus, TRACE, Carrier HAP,

DesignBuilder, eQUEST, and TRNSYS, to evaluate and

forecast building performance (Delgarm et al. 2016c;

Hollberg et al. 2017; Essa 2021; Arfi et al. 2023). These

tools typically execute building models on a scenario-by-

scenario basis, a process known for its significant time

consumption and impracticality in assessing all potential

cases comprehensively. Often, this approach yields unrea-

sonable and imprecise results due to the limited number of

scenarios evaluated relative to the full range of possible

scenarios (Shin and Haberl 2022; Nasouri and Delgarm

2023). Therefore, to address this challenge, integrating

building simulation software with sensitivity analysis (SA)

algorithms allows for investigating the attribution of output

uncertainties to various inputs, identifying technical sim-

ulation errors, pinpointing sensitive and critical parameters,

prioritizing areas for improvement, simplifying models,

detecting analysis inaccuracies, and offering valuable

insights for optimization purposes (Dara and Hachem-

Vermette 2019; Carpino et al. 2022). There are numerous

methods available for conducting sensitivity analysis (SA)

on systems, typically categorized into two main types:

local sensitivity analysis (LSA) and global sensitivity

analysis (GSA) (Mendes et al. 2022; Li et al. 2023). LSA

focuses on assessing the local impact of input variations on
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the system’s response (Rentzeperis and Wallace 2022; Hai

et al. 2022). The one-at-a-time (OAT) is a well-established

technique in LSA (Nasouri et al. 2021, 2022a, b). It

involves assessing the impact of individual parameters on

the outputs while maintaining all other system parameters

at their nominal (baseline) values. This method systemat-

ically evaluates each parameter sequentially, repeating the

process for each parameter in a similar manner (Falk et al.

2021; Saha et al. 2023). In this context, the SA quantifies

the impact of individual parameter variations within their

specified ranges on output variables. While the OAT is

straightforward to apply and efficient in terms of compu-

tational time, it overlooks the combined effects and inter-

actions among inputs on outputs. Consequently, it may

yield misleading results regarding the prioritization of

design parameters based on their influence on the system,

particularly in nonlinear and complex models like building

systems. In contrast, GSA involves simultaneously varying

all input parameters within their respective ranges to

evaluate system sensitivity (Xu et al. 2023). This approach

considers the interactions and mutual influences among

inputs, providing a more accurate assessment of how each

input affects the system compared to LSA (Vuillod et al.

2023). Nevertheless, GSA methods generally require sig-

nificantly more computation time compared to LSA

methods, especially when dealing with complex models

that involve a large number of input parameters (Liu et al.

(2023). Various techniques have been proposed for con-

ducting GSA in the context of buildings, encompassing

regression-based, Morris method, variance-based, and

metamodeling-based approaches (Zhang et al. 2020).

Among these, variance-based methods have garnered sig-

nificant attention and adoption (Pianosi and Wagener 2015;

Kala 2021; Belyamin et al. 2021). Sobol’s method (Saltelli

et al. 2007) is renowned as a prominent variance-based

GSA approach widely utilized for complex non-linear

models (Lo Piano et al. 2021). This method adeptly cap-

tures intricate interactions among inputs through advanced

sampling methodologies to accurately assess sensitivity

indicators (Zhang et al. 2015).

Over the past decade, the focus of numerous researchers

and decision-makers has shifted towards SA of building

performance, owing to its provision of valuable insights

during the initial stages of building design. Pang et al.

(2020) conducted a review on the application of SA in

BPA, summarizing key insights into its implementation in

this field. Shen and Yarnold (2021) conducted a scaled

Morris-based SA to evaluate the energy-structural perfor-

mance of buildings, integrating Python with EnergyPlus

and Abaqus. In a similar study, Maučec et al. (2021) uti-

lized Morris-based SA to assess the performance of a

prefabricated timber building, employing SimLab and

jEPlus. Additionally, Yang et al. (2021) utilized TRNSYS

for LSA, examining the connection between building

energy use and thermal comfort. Similarly, Huo et al.

(2021) conducted regression-based SA to assess cooling

demand and shading performance in nearly zero-energy

buildings in China using SimLab. Additionally, Goffart and

Woloszyn (2021) compared Random Balance Design

Fourier Amplitude Sensitivity Test (RBD-FAST) with

Morris screening using the Python Sensitivity Analysis

Library (SALib) for building performance simulations.

Their study found that EASI RBD-FAST offers greater

effectiveness and ease of implementation compared to

Morris screening. Furthermore, Chambers et al. (2021)

conducted Saltelli sampling and Sobol SA using SALib for

a geospatial model of cost-optimal heat electrification in

buildings in Switzerland.

Yip et al. (2021) investigated the impact of courtyards,

passive and active design strategies, and building-inte-

grated photovoltaic and thermal (BIPV/T) systems on total

building energy consumption in net zero energy buildings

using TRNSYS, Python, and the modeFRONTIER multi-

disciplinary design optimization platform. In another study,

Zeferina et al. (2021) applied Morris and Sobol index

techniques to conduct SA on the cooling requirements of

an office building using jEplus. Similarly, Delgarm et al.

(2018) conducted variance-based GSA on the energy per-

formance of a building utilizing EnergyPlus, jEPlus, and

MatLab. Baghoolizadeh et al. (2023a, b) employed jEPlus

for SA and jEPlus ? EA for multi-objective optimization

of architectural specifications and control parameters for a

smart shadow curtain. In another study, they utilized

EnergyPlus to conduct SA and optimization of a building’s

total heating and cooling loads and associated costs across

different climatic conditions using response surface

methodology Baghoolizadeh et al. (2021). Additionally,

Baghoolizadeh et al. (2022) conducted multi-objective

optimization to decrease annual electricity consumption

and increase electricity production using photovoltaic

shadings on building windows with EnergyPlus. They

employed Morris sensitivity analysis (MSA) to assess the

impact of design variables on objective functions and

established relationships using regression modeling with

GMDH type-ANN. In recent research, Baghoolizadeh et al.

(2023a, b) utilized jEPlus for SA using the Morris method

and jEPlus ? EA for multi-objective optimization via

NSGA-II. Their aim was to lower both CO2 concentration

and CO2 pollutant levels while improving thermal comfort

for building occupants. In another study, they employed the

Grasshopper to model, analyze, and optimize daylight

illuminance and energy usage intensity in Tehran office

spaces (Hakimazari et al. 2024).
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2 Objectives

The background highlights that while many studies have

examined SA in building performance, most emphasize

LSA for its simplicity and efficiency. Building designers

often use established SA software such as jEPlus, SimLab,

SALib, modeFRONTIER, or manually iterate through

building simulation software to assess outputs, despite their

limitations. The limitations of current SA software

encompass various factors, including the selection and

quantity of inputs for tackling mixed-integer programming

(MIP) problems simultaneously. Additionally, constraints

such as the type and quantity of outputs, the choice of SA

method based on input–output characteristics, boundary

conditions, and constraints are critical shortcomings.

Moreover, SA software developed across various pro-

gramming languages necessitates integration with simula-

tion engines, resulting in prolonged computation times.

Consequently, researchers have faced considerable delays

in completing SA studies due to these extended processing

durations. Furthermore, owing to the complexities and

challenges associated with programming, only a small

number of studies have focused on the numerical

enhancement of SBSA for building systems. The current

research introduces an innovative and efficient approach

for conducting SBSA on building systems. This method not

only enables building engineers to predict and analyze how

building performance varies with changes in design

parameters but also enhances building productivity by

facilitating accurate decision-making during the conceptual

design phase. To achieve this goal, a novel approach

integrates EnergyPlus directly with LSA and GSA algo-

rithms using the C?? programming language. A residen-

tial building in Bushehr, Iran, situated in a hot semi-arid

climate, serves as a case study to evaluate the effectiveness

of this integrated approach. In the OAT, a novel sensitivity

analysis index is introduced to assess the impact of inputs

on outputs. The main objectives and contributions of this

research are outlined below:

• Development of a novel command-line interface using

the C?? programming language to directly integrate

with EnergyPlus. This advancement enables precise

control and significantly enhances computational speed

for conducting parametric analysis, sensitivity analysis,

multi-objective optimization, uncertainty analysis, and

related tasks.

• Addressing limitations inherent in existing interface

software, such as popular tools like jEPlus, by offering

greater flexibility in selecting building outputs, input

parameters, algorithms, and variables.

• Simultaneous implementation of both LSA and GSA

methods.

• Introduction of a novel sensitivity analysis index,

enhancing analytical capabilities and providing deeper

insights into parameter impacts.

• Method implementation designed to be adaptable across

diverse building types and configurations, demonstrating its

universal applicability in building performance analysis.

To the authors’ knowledge, no similar research has been

found that presents a practical method for SBSA by inte-

grating a high-level object-oriented programming language

directly with EnergyPlus. This approach enhances Ener-

gyPlus capabilities to conduct SA without requiring addi-

tional plugins or third-party tools. Given the pivotal role of

SBSA in evaluating efficiency and comfort criteria in

buildings, existing literature in this domain appears insuf-

ficient and necessitates further exploration.

3 Methodology

3.1 LSA method

Basing on the OAT method, each input parameter is sys-

tematically varied across its entire allowable range while

holding other inputs constant at their nominal values. This

approach entails measuring the corresponding outputs for

each variation, thereby generating an output versus input

change graph. To quantify the sensitivity of outputs to

individual inputs, the authors proposed the Dispersion

Index (DI). DIi is defined as the ratio of the standard

deviation of outputs (r) to the average of outputs (Y),

expressed mathematically as:

DIi ¼
r

Y
� 100 ð1Þ

A higher DI signifies greater variability in the output,

indicating a stronger impact of the input on the output’s

sensitivity. In simpler terms, it shows that changes in the

input parameter have a more significant effect on the output.

3.2 GSA method

Rather than analyzing how individual inputs affect system

behavior one at a time, GSA simultaneously assesses the

impact of changing all inputs together, taking into account

their interactions, and quantifying their respective contri-

butions to the variability observed in the system’s output.

In this study, Sobol’s analysis is utilized to categorize the

inputs based on their significance and impact on the out-

puts. Consider a function Y ¼ f Xð Þ that defines the sys-

tem’s behavior based on inputs (X ¼ ½x1; x2; . . .; xm�Þ:
Sobol’s analysis algorithm proceeds in three main steps as

follows (Saltelli et al. 2007):
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Step 1

Decompose the total variance of the function Y ¼ f Xð Þ,
which involves m inputs, into conditional variances.

V Yð Þ ¼
Xm

i

Di þ
Xm

i

Xm

j[ i

Dij þ . . .þ D1;2;3;...;m ð2Þ

The equation presented above describes V(Y) as the

total variance of the function Y. Here, Di represents the

first-order impact of each xi, while Dij to D1;2;3;...;m indicate

the effects of input interactions, computed as follows:

Di ¼ V EX�i
YjXið Þ½ � ð3Þ

Dij ¼ V EX�i
Y jXi;Xj

� �� �
� Vi � Vj ð4Þ

Dijk ¼ V EX�i
YjXi;Xj;Xk

� �� �
� Vi � Vj � Vk ð5Þ

and so on. Additionally, E and V denote the expected

value and variance, respectively. E Y jXið Þ represents the

conditional expectation, with V E YjXið Þ½ � termed as the

primary impact of Xi on Y . E V Y X�ijð Þ½ � denotes the

residual, where X�i refers to all inputs except Xi. Further-

more, V EX�i
Y Xijð Þ½ � signifies the anticipated reduction in

output variance, while EX�i
V Y X�ijð Þ½ � represents the

residual output variance expected when Xi is fixed at its

nominal value.

Step 2

To compute ðYÞ, V EX�i
Y Xijð Þ½ � and EX�i

V Y jX�ið Þ½ �
using quasi-Monte Carlo estimators, two independent

matrices A and B are generated using Sobol quasi-random

sequences. Each matrix has M rows and m columns, where

M represents the sample size of the sequences, and m

denotes the number of input variables. Matrix Ci is created

by integrating matrices A and B in a way that retains all

columns from A, while replacing the ith column of A with

the ith column of B. Consequently, the system produces

outputs YA
mð Þ, YB

mð Þ; and YC
mð Þ based on the inputs derived

from matrices A, B, and C. This process facilitates the

determination of VðYÞ, V EX�i
Y Xijð Þ½ �, and EX�i

V Y jX�ið Þ½ �
as outlined (Saltelli et al. 2010):

V Yð Þ ¼ 1

M

XM

j¼1

Y
mð Þ

A

h i2
� 1

M

XN

j¼1

Y
mð Þ

A

" #2

ð6Þ

V EX�i
Y jXið Þ½ � ¼ V Yð Þ � 1

2M

XM

j¼1

Y
mð Þ

B � Y
mð Þ

Ci

h i2
ð7Þ

EX�i
V Y jX�ið Þ½ � ¼ 1

2M

XM

m¼1

Y
mð Þ

A � Y
mð Þ

Ci

h i2
ð8Þ

In this work, M of 2000 and m of 12 columns are used to

evaluate aforementioned relations.

Step 3

Compute the total-order SI ðSTiÞ:

STi ¼
EX�i

V Y jX�ið Þ½ �
V Yð Þ ð9Þ

The greater the STi, the more influential the input is on

the system output. The STi quantifies the cumulative effect

of an input on the system outputs, accounting for all

interactions with other inputs, and reveals the proportion of

variance that would persist if uncertainty in all inputs

except Xi were eliminated.

3.3 Integrating workflow

Figure 1 indicates the integrating workflow for SBSA of

building efficiency, integrating LSA and GSA with Ener-

gyPlus, released by the U.S. Department of Energy’s

(DOE) Building Technologies Office (BTO) (EnergyPlus

2024), for iterative simulations. As indicated in Fig. 1, the

inputs for the proposed model consist of weather data,

building design parameters, output variables, input vari-

ables whose influences on the output variables are to be

studied, and the range of input variables (constraints).

EnergyPlus relies solely on input/output data. Accordingly,

to address the SBSA challenge, a novel approach was

introduced: command-line functions were developed using

the C?? programming language. These functions are

designed to initiate EnergyPlus and execute simulations

based on randomly generated inputs [(Xi)] derived from

Sobol quasi-random sequences, alongside weather data and

a building model. Subsequently, the simulation outputs

([FðXiÞ]) from EnergyPlus are gathered for further post-

processing. The OAT and Sobol’s analyses algorithms

have been implemented using the C?? programming

language to assess the achieved [FðXiÞ]. The OAT analysis

provides insights into the output trends in response to

changes in individual inputs and calculates the DI for each

output with respect to each input, without considering

interactions with other inputs. On the other hand, Sobol’s

analysis calculates the total-order SI ðSTiÞ for each output

with respect to each input, taking into account the inter-

actions of input changes simultaneously. Therefore, this

paper introduces an innovative approach where SA is

integrated directly into EnergyPlus, eliminating the need

for external plugins or third-party tools. This integration

significantly enhances computational speed and efficiency.

It is worth noting that in Fig. 1, the red arrow is used for

the optimization process (and not for the implementation of

the sensitivity analysis process), which will be the focus of

authors’ future research. While extensive research has

delved into the SA of building performance, there remains
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a conspicuous lack of studies that outline a practical and

structured approach for SBSA through direct coupling of a

high-level programming language with building simulation

software.

In this context, a novel initiative integrates LSA and

GSA directly with EnergyPlus using C?? , a powerful

object-oriented programming language. This integration

enhances EnergyPlus with the capabilities of C?? ,

enabling the application of various SA algorithms, flexible

inputs and outputs, and diverse constraints within the

framework.

4 Case study

4.1 Building characteristics

The newly devised SBSA methodology is applied to a

residential dwelling situated in Iran’s hot semi-arid climate

to explore its capabilities and potential. Figure 2 illustrates

the schematic representation of the building model, which

was designed using SketchUp 3D design software

(SketchUp 2024). This dwelling accommodates five occu-

pants and measures 3 m in height, with dimensions of 10 m

in both length and width. The building’s primary facade

(BF) faces northward, and it rotates counterclockwise in

orientation. The northern, eastern, western, and roof facets

of the building are exposed to direct sunlight (SunExposed

and WindExposed), while the floor and southern facet are

assumed to be adiabatic. No shading elements are present

affecting the building. The building includes an east-facing

fixed double-glazed window, measuring 1.5 m wide and 4

m long (with a WWR of 20%). The window features 3 mm

clear glazing and an argon 6 mm gas gap. Additionally,

there is a wooden door on the eastern side, measuring 1.5 m

tall and 2 m wide. A flat shading device, 4 m long and 1 m

deep, is positioned above the window without any curtains.

The shading surface extends directly above the window

with no height, left, or right extensions, and is tilted at 90�
from the window plane. Table 1 details the material

Fig. 1 Integrating workflow

Fig. 2 Schematic representation of the building model
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specifications utilized in constructing the investigated

building. Additionally, a Variable Air Volume (VAV)

system predefined in the EnergyPlus has been integrated

into the building, designed to deliver an outdoor airflow

rate of 9.5 l/s per person. This system dynamically adjusts

its capacity in response to the varying climatic conditions

experienced throughout the year. In accordance with

guidelines from the United States Environmental Protec-

tion Agency (EPA 2009), the optimal cooling and heating

setpoint temperatures have been determined to achieve a

balance between energy conservation and occupant com-

fort. Specifically, the recommended setpoints are

approximately 24.5 �C for cooling and 21 �C for heating,

ensuring thermal comfort for a significant majority of

building occupants.

To regulate indoor lighting conditions, an illuminance

threshold of 500 lx has been set, adhering to the EN

12464-1 standard for office environments (European

Committee for Standardization 2011). Moreover, various

operational schedules such as clothing, lighting usage,

occupancy patterns, air velocity, and infiltration rates have

been meticulously defined based on the specifications

provided by the EnergyPlus dataset (EnergyPlus 2024).

These parameters are crucial for accurately simulating and

Table 1 Characteristics of the

investigated building envelope
Envelope Specification Value

Wall Exterior layer (brick) Conductivity (W/mK) 0.89

Thickness (m) 0.1016

Specific heat (J/kgK) 790

Density (kg/m3) 1920

Interior layer (Wood shingles) Conductivity (W/mK) 0.04

Thickness (m) 0.0064

Specific heat (J/kgK) 1300

Density (kg/m3) 592

Floor Exterior layer (heavyweight concrete) Conductivity (W/mK) 1.95

Thickness (m) 0.3048

Specific heat (J/kgK) 900

Density (kg/m3) 2240

Interior layer (Terrazzo) Conductivity (W/mK) 1.8

Thickness (m) 0.0254

Specific heat (J/kgK) 790

Density (kg/m3) 2560

Roof Exterior layer (lightweight concrete block) Conductivity (W/mK) 0.49

Thickness (m) 0.1524

Specific heat (J/kgK) 800

Density (kg/m3) 512

Middle layer (gypsum) Conductivity (W/mK) 0.16

Thickness (m) 0.0159

Specific heat (J/kgK) 1090

Density (kg/m3) 800

Interior layer (Wood shingles) Conductivity (W/mK) 0.04

Thickness (m) 0.0064

Specific heat (J/kgK) 1300

Density (kg/m3) 592

Door Exterior layer (Wood) Conductivity (W/mK) 0.15

Thickness (m) 0.0127

Specific heat (J/kgK) 1630

Density (kg/m3) 608

Window Double 2.5 mm clear glazing Solar transmittance 0.85

Visible transmittance 0.901

Conductivity (W/mK) 0.9

Thickness (m) 0.0025
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evaluating the building’s energy performance and indoor

environmental quality under different scenarios and

conditions.

4.2 Weather condition

Iran is located in Western Asia, covering approximately

1.65 million km2 along the coastlines of the Sea of Oman

and the Persian Gulf to the south. Iran experiences a hot-

dry climate characterized by extended hot and dry summers

and brief cool winters. Bushehr, a port city on the southern

coast of Iran along the Persian Gulf, has a hot semi-arid

climate. Temperatures in Bushehr range from 12 �C to

37 �C annually, with rare occurrences falling below 9 �C
or exceeding 40 �C (Iran Meteorological Administration

2019–2023). The city is positioned at a latitude of

28.9036N and a longitude of 50.8208E. Bushehr experi-

ences 217 annual heating degree-days (HDDs) and 2847

annual cooling degree-days (CDDs) based on an 18.3�C
threshold (ASHRAE 2009/2013/2017/2021). For this

study, Bushehr serves as the representative city for the

selected climate region, and weather data in EPW format

provided by DOE BTO is utilized for EnergyPlus

simulations.

4.3 Inputs, outputs, and constraints

This study incorporates four output variables: AHC, ACC,

ALC, and PPD, which assesses occupant thermal comfort

levels. Additionally, the following inputs are considered:

building rotation from the north axis (BR), window-to-wall

ratio (WWR), depth of shading device (DSH), cooling and

heating setpoints (CSPT and HSPT), solar absorptance of

interior walls (SAIN W) and exterior walls (SAEx W),

thickness of exterior walls (ThEx W), solar transmittance of

window glass (STwin), visible transmittance of window

glass (VTwin), thickness of window glass (STwin), and

thickness of gas in the window (Thgas�win). The selected

parameters cover a broad spectrum that directly impacts

key aspects of building performance, including AHC,

ACC, ALC, and PPD. Factors such as building orientation,

window-to-wall ratio, shading depth, and cooling/heating

setpoints exert significant influence on building energy

demand, affecting heating and cooling loads, and conse-

quently influencing overall energy consumption and oper-

ational costs. Window properties, such as solar absorption

of building walls (internal and external), solar transmit-

tance coefficient of window glass, and visible transmittance

of window glass, impact daylight penetration and artificial

lighting requirements. Optimization of these parameters

enhances lighting efficiency, thereby reducing energy use

for illumination. Moreover, building wall thickness,

coefficient of thermal resistance of window glass, and the

thickness of gas layers in windows are crucial for main-

taining thermal comfort, affecting indoor temperature

fluctuations, HVAC operation requirements, and occupant

comfort and productivity. Our methodology ensures sys-

tematic variation of these parameters within defined ranges

to comprehensively assess their individual and collective

effects on building performance, thereby enhancing the

robustness and reliability of our developed method and

sensitivity analysis findings. Therefore, these parameters

were selected to evaluate their influence on the functional

behavior of the building through the proposed method. The

specifications of the inputs are given in Table 2.

5 Verification

To validate the developed method, a widely used software

among researchers was selected. jEPlus, provided by Dr.

Yi Zhang (jEPlus 2024), is a parametric study tool for

buildings that runs both EnergyPlus and TRNSYS soft-

ware. By discretely running EnergyPlus, jEPlus allows for

the examination of the building model under various

desired design parameters. The inputs for jEPlus consist of

the building model simulated in EnergyPlus (.idf format), a

Bushehr city weather file (.epw format), discretely defined

input variables (.csv format), and output variables (.txt

format). The outputs generated by jEPlus are stored in an

Excel file format. For this study, the inputs included the

building rotation as an input with 16 discrete values and the

AHC as the output variable. These inputs and outputs were

prepared were prepared and fed into jEPlus. Figure 3

illustrates a comparative analysis between the outcomes

generated by the proposed method and those produced by

jEPlus. As demonstrated, the values obtained from jEPlus

Table 2 Characteristics of the inputs

Input Unit Initial value Range

B R � 0 [0,360)

WWR – 0.2 (0,1)

DSH m 1 (0,1.5]

CSPT �C 24.5 (22,33]

HSPT �C 21 [13,22]

SAIN W – 0.505 [0,1]

SAEx W – 0.311 [0,1]

ThEx W m 0.1 [0.1,0.4]

STwin – 0.837 [0,1]

VTwin – 0.898 [0,1]

Thwin mm 3 [1,16]

Thgas�win mm 6 [1,14]

123

M. Nasouri, N. Delgarm



align precisely with the results from the proposed method,

indicating no discrepancies. This consistency arises

because both the developed method and jEPlus leverage

the EnergyPlus engine, thereby producing identical out-

comes. Nevertheless, the primary distinction lies in the fact

that the developed programming methods enable

researchers to conduct a diverse array of analyses on the

building model. In contrast, existing commercial software

imposes substantial limitations on the scope of analyses

that can be performed. This flexibility is particularly

advantageous in large-scale optimization projects or sce-

narios requiring extensive iterative simulations to explore

various design alternatives.

Additionally, the comparative analysis highlighted a

significant reduction in computational time when employ-

ing the developed method as compared to jEPlus. The

proposed method calculated the AHC for 500 different

building rotation angles, ranging from 0 to 360 degrees, in

just 36 s and automatically generated the corresponding

plot. In contrast, jEPlus, excluding the time required for

setup and the post-processing of outputs in Excel for

plotting, took approximately 104 s to compute the AHC for

the same 500 rotation angles and 11 s only for 16 building

rotation angles. This reduction in computational time not
Fig. 3 Comparative analysis between the developed method and

jEPlus

Fig. 4 Impact of BR on the AHC, ACC, ALC, and PPD
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only enhances the feasibility of the developed method for

practical applications but also underscores its potential in

facilitating more efficient building simulations. This is

particularly advantageous in large-scale optimization pro-

jects or in scenarios that demand extensive iterative sim-

ulations to explore various design alternatives. Overall, the

proposed method not only aligns well with established

simulation tools in terms of accuracy but also excels in

computational efficiency, offering substantial benefits for

researchers and practitioners engaged in complex building

performance sensitivity analysis and optimization tasks.

6 Results and discussion

In this section, the outcomes of applying the developed

method are presented. Initially, OAT analysis, serving as

LSA, explores how outputs respond to input variations,

along with evaluating the sensitivity of each output to

individual inputs, irrespective of other input interactions.

Subsequently, Sobol’s analysis, as GSA, is conducted to

quantify and prioritize the overall sensitivity of outputs to

inputs.

6.1 Results of OAT analysis

This phase of the study investigates how BR, WWR, DSH,

CSPT, HSPT, SAIN W, SAEx W, ThEx W, STwin, VTwin,

Thwin, Thgas�win on the AHC, ACC, ALC, and PPD influ-

ence AHC, ACC, ALC, and PPD using the OAT method.

Each input variable is individually varied across its entire

range while keeping other inputs fixed at their nominal

values (as specified in Table 1 and 2), and the corre-

sponding outputs are observed.

6.1.1 Impact of BR

Figure 4 illustrates the impact of BR on the AHC, ACC,

ALC, and PPD. The results showed that the lowest values

of AHC, ACC, ALC, and PPD were achieved at BR angles

of 90� (east-facing), 272� (west-facing), 128� (southwest-

facing), and 298� (northeast-facing), respectively. This

Fig. 5 Impact of WWR on the AHC, ACC, ALC, and PPD
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indicates a complex and nonlinear relationship between BR

and building performance metrics. Optimal BR values need

to be identified through Pareto optimization to simultane-

ously optimize annual total energy consumption (ATC) and

PPD criteria. The sensitivity analysis revealed DI values of

12% for AHC, 3% for ACC, 8% for ALC, and 1% for PPD,

highlighting that BR has the greatest influence on AHC and

the least influence on PPD, independent of other inputs.

6.1.2 Impact of WWR

Figure 5 indicates the impact of WWR on the AHC, ACC,

ALC, and PPD. Increasing WWR results in decreased AHC

and ALC, while ACC and PPD increase due to enhanced

intake of lighting and heating energy from the external

environment into the building. Optimizing WWR requires

Pareto analysis to achieve optimal values for both ATC and

PPD criteria. The changes in AHC and ACC exhibit a

linear relationship with increasing WWR, whereas PPD

and ALC changes demonstrate an exponential response to

WWR variations. The sensitivity analysis reveals DI values

of 27% for AHC, 18% for ACC, 28% for ALC, and 7% for

PPD, highlighting that WWR significantly influences AHC

and ALC, while its impact on PPD is comparatively minor.

6.1.3 Impact of DSH

Figure 6 indicates the impact of DSH on the AHC, ACC,

ALC, and PPD. Increasing DSH leads to higher AHC and

ALC, while PPD and ACC decrease due to reduced intake

of lighting and heating energy from the external environ-

ment into the building. Optimizing DSH requires Pareto

optimization to achieve optimal values for both ATC and

PPD criteria. Changes in AHC, ACC, ALC, and PPD show

an exponential response to variations in DSH. The sensi-

tivity analysis reveals DI values of 2% for AHC, 2% for

ACC, 2% for ALC, and 1% for PPD, indicating that DSH

has a minimal influence on these variables.

6.1.4 Impact of CSPT

Figure 7 indicates the impact of CSPT on the AHC, ACC,

ALC, and PPD. Increasing CSPT results in decreased AHC

and ACC, while ALC remains unaffected, indicating its

independence from CSPT. Notably, PPD initially decreases

Fig. 6 Impact of DSH on the AHC, ACC, ALC, and PPD
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with increasing CSPT but sharply increases above 24 �C.
This trend aligns with the Fanger model (Fanger 1970),

where higher CSPT values initially improve thermal

comfort conditions, but excessive temperatures above

24 �C delay the VAV system’s operation, leading to dis-

comfort among occupants. Despite the reduction in ATC

due to delayed VAV system activation at higher CSPT,

thermal comfort conditions deteriorate, causing PPD to

deviate from optimal levels. The observed trend of PPD

versus CSPT also aligns with the recommendations by the

(EPA 2009) for optimal thermal comfort. Pareto opti-

mization is essential to identify the optimal CSPT that

balances both ATC and PPD criteria effectively. Changes

in ACC show a nearly linear response to CSPT variations,

while AHC and PPD exhibit exponential and parabolic

relationships with CSPT changes, respectively. The sensi-

tivity analysis reveals DI values of 1% for AHC, 54% for

ACC, 0% for ALC, and 64% for PPD, highlighting CSPT’s

significant influence on PPD and ACC, with minimal

impact on AHC and ALC.

6.1.5 Impact of HSPT

Figure 8 indicates the impact of HSPT on the AHC, ACC,

ALC, and PPD. Increasing HSPT results in increased AHC

and ACC, contrasting with the impact of CSPT on these

variables. Similar to CSPT, HSPT does not affect ALC,

indicating its independence from heating setpoint changes.

Furthermore, as HSPT transitions from very cold to mod-

erate temperatures, PPD decreases due to improved thermal

comfort conditions based on the Fanger model, approach-

ing optimal levels. The trend of PPD versus HSPT aligns

with recommendations by the (EPA 2009) for achieving

ideal thermal comfort conditions. AHC and ACC exhibit

exponential changes with HSPT variations, whereas PPD

changes follow a parabolic pattern.

Pareto optimization is crucial to determine the optimal

HSPT that balances both ATC and PPD criteria effectively.

The sensitivity analysis reveals DI values of 92% for AHC,

1% for ACC, 0% for ALC, and 22% for PPD, highlighting

Fig. 7 Impact of CSPT on the AHC, ACC, ALC, and PPD
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HSPT’s significant influence on AHC and minimal impact

on ACC and ALC.

6.1.6 Impact of SAin w

Figure 9 indicates the impact of SAin w on the AHC, ACC,

ALC, and PPD. Increasing SAin w leads to decreased ACC

and PPD, while AHC increases. However, SAin w has no

effect on ALC, indicating its independence from changes in

interior wall solar absorptance. Essentially, darker interior

wall colors result in reduced ACC and PPD and increased

AHC. Pareto optimization is essential to identify the opti-

mal SAin w that achieves optimal values for both ATC and

PPD criteria. Changes in AHC, ACC, and PPD exhibit

exponential trends relative to variations in SAin w. Overall,

SA reveals DI values of 1% for AHC, 1% for ACC, 0% for

ALC, and 1% for PPD, indicating that SAin w has minimal

influence on these variables.

6.1.7 Impact of SAex W

Figure 10 indicates the impact of SAex w on the AHC,

ACC, ALC, and PPD. Increasing SAex w results in

decreased AHC while ACC and PPD increase. However,

SAex w shows no effect on ALC, indicating its indepen-

dence from changes in exterior wall solar absorptance. In

essence, darker exterior wall colors lead to lower AHC and

higher ACC and PPD. Therefore, a Pareto optimization is

necessary to determine the optimal SAex w that achieves

optimal values for both ATC and PPD criteria. AHC and

PPD changes exhibit exponential and parabolic trends,

respectively, while ACC changes linearly relative to vari-

ations in SAex w. Overall, sensitivity analysis reveals DI

values of 63% for AHC, 44% for ACC, 0% for ALC, and

20% for PPD, highlighting that SAex w primarily influ-

ences AHC and has minimal impact on ALC.

Fig. 8 Impact of HSPT on the AHC, ACC, ALC, and PPD
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6.1.8 Impact of Thex W

Figure 11 indicates the impact of Thex w on the AHC,

ACC, ALC, and PPD. Increasing Thex w results in a nearly

parabolic decrease in AHC, ACC, and PPD. However,

Thex w shows no effect on ALC, indicating its indepen-

dence from changes in wall thickness. Thicker walls pro-

vide enhanced insulation, improving energy efficiency,

thermal comfort, and soundproofing, which aligns with

findings from (Yu et al. 2022). Nevertheless, thicker walls

incur additional material costs and weight. Therefore, a

comprehensive cost–benefit analysis is essential for deter-

mining the optimal Thex w. Overall, sensitivity analysis

reveals DI values of 10% for AHC, 6% for ACC, 0% for

ALC, and 2% for PPD, indicating that Thex w primarily

influences AHC and has minimal impact on ALC.

6.1.9 Impact of STwin

Figure 12 indicates the impact of STwin on the AHC, ACC,

ALC, and PPD. Increasing STwin results in a decrease in

AHC, accompanied by an increase in ACC and PPD due to

higher solar heat penetration through the window glass.

Notably, ALC remains unaffected by changes in STwin.

Optimizing STwin to achieve optimal values for both annual

total energy consumption (ATC) and PPD requires a Pareto

optimization approach. The relationship between STwin and

AHC, ACC, and PPD changes is complex, showing a near-

parabolic trend. Sensitivity analysis indicates that STwin

influences AHC and ACC the most, with DI values of 5%

and 4%, respectively. In contrast, its impact on ALC and

PPD is minimal, with DI values of 0% and 1%. Despite its

relatively modest overall effect, fine-tuning STwin is critical

for enhancing building energy efficiency and ensuring

occupant comfort.

6.1.10 Impact of VTwin

Figure 13 indicates the impact of VTwin on the AHC, ACC,

ALC, and PPD. Increasing VTwin results in a slight increase

in AHC, while ACC, ALC, and PPD decrease almost

parabolically due to increased lighting energy entering the

Fig. 9 Impact of SAin w on the AHC, ACC, ALC, and PPD
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building through the window glass. Optimizing VTwin to

achieve optimal values for both ATC and PPD necessitates

a Pareto optimization approach. The relationship between

VTwin and AHC, ACC, ALC, and PPD changes is

notable for its complex nature, showing a parabolic trend.

Sensitivity analysis reveals that VTwin has the most influ-

ence on ALC, with a DI value of 11%, while its impact on

AHC, ACC, and PPD is minimal, with DI values of 1%

each.

6.1.11 Impact of Thwin

Figure 14 indicates the impact of Thwin on the AHC, ACC,

ALC, and PPD. The analysis showed that as Thwin
increases, there is a consistent, albeit slight, linear decrease

observed in AHC, ACC, and PPD. This trend suggests that

thicker window glass provides enhanced thermal insula-

tion, thereby reducing both heating and cooling energy

demands, as well as improving occupant thermal comfort.

Interestingly, the study found that Thwin does not signifi-

cantly affect ALC. This implies that the thickness of

window glass primarily affects the building’s thermal

performance rather than its lighting requirements. The

observed changes underscore the importance of optimizing

Thwin to achieve a balance between energy efficiency and

indoor environmental quality. The sensitivity analysis

conducted through DI values reveals that Thwin exerts a

relatively small influence on AHC, ACC, ALC, and PPD,

with DI values of 1%, 1%, 0%, and 1%, respectively.

Despite its modest direct impact, understanding how Thwin
interacts with other building parameters is crucial for

comprehensive building design and energy management

strategies. This insight aids in making informed decisions

that enhance building performance across various climatic

conditions.

6.1.12 Impact of Thgas win

Figure 15 indicates the impact of Thgas�win on the AHC,

ACC, ALC, and PPD. The analysis showed that as

Thgas�win increases, there is an exponential decrease

observed in annual AHC, ACC, and PPD. This trend

Fig. 10 Impact of SAex_w on the AHC, ACC, ALC, and PPD
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suggests that a thicker gas layer enhances the insulating

properties of the window, thereby reducing both heating

and cooling energy demands and improving occupant

comfort. Interestingly, the study found that Thgas�win does

not affect ALC, indicating that changes in the gas layer

thickness primarily impact thermal performance rather than

lighting requirements. This underscores the importance of

optimizing Thgas�win to achieve optimal energy efficiency

and indoor environmental quality. The sensitivity analysis

conducted through DI values reveals that Thgas�win has a

relatively small influence on AHC, ACC, ALC, and PPD,

with DI values of 1%, 1%, 0%, and 1%, respectively.

6.2 Results of Sobol’s analysis

Table 3 presents ST basing on Sobol’s analysis and DI

basing on OAT analysis. It was evident that HSPT,

SAEx W, and WWR exhibited the highest ST values, con-

tributing 80%, 79%, and 35% respectively to the variability

in AHC. Conversely, DSH, CSPT, SAIN W, STwin, VTwin,

Thwin, and Thgas�win demonstrated lower influence on

AHC. Moreover, B R and ThEx W showed moderate

influence with ST values of 16% and 13% respectively on

AHC. Additionally, CSPT, SAEx W, and WWR showed

significant influence on ACC with total-order sensitivity

indices ST of 72%, 63%, and 24% respectively. Con-

versely, Thgas�win,SAIN W,Thwin, and VTwin demonstrated

minimal impact on ACC. Furthermore, WWR, VTwin, and

B R were identified as the most influential inputs affecting

ALC with ST values of 33%, 25%, and 21% respectively.

On the other hand, CSPT, HSPT, SAIN W, SAEx W,

ThEx W, STwin, Thwin, and Thgas�win exhibited no effect on

ALC due to the independence of lighting energy use from

HVAC system specifications and the thermo-physical

properties of walls and window glass. Furthermore, CSPT;

HSPT, SAEx W, and WWR exhibited significant influence

on the PPD, with the ST of 81%, 40%, 36%, and 28%

respectively. Conversely, other parameters considered in

the analysis show minimal impact on PPD. Based on the

Fig. 11 Impact of Thex w on the AHC, ACC, ALC, and PPD
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outcomes derived from Sobol’s analysis, several findings

were established for the building under investigation:

• Building rotation exerted the greatest influence on ALC

and the least influence on PPD.

• Window-to-wall ratio had the highest impact on AHC

and ALC, while it had the least impact on ACC.

• Depth of shading device had the highest influence on

ALC and the least influence on PPD.

• Cooling setpoint temperature had the strongest impact

on ACC and PPD, and the weakest impact on ALC and

AHC.

• Heating setpoint temperature had the strongest influ-

ence on AHC and PPD, and the weakest influence on

ALC and ACC.

• Solar absorptance of exterior walls had the greatest

impact on AHC and the least impact on ALC.

• Thickness of exterior walls had the highest influence on

AHC and the least influence on ALC.

• Solar transmittance of window glass, solar absorptance

of interior walls, thickness of window glass, and

thickness of gas in window did not affect ALC and

had minimal influence on AHC, ACC, and PPD.

• Visible transmittance of window glass had the strongest

impact on ALC and minimal impact on AHC, ACC,

and PPD.

• AHC showed significant dependency on heating set-

point temperature and solar absorptance of exterior

walls.

• ACC exhibited strong dependency on cooling setpoint

temperature and solar absorptance of exterior walls

• ALC had substantial reliance on window-to-wall ratio

and visible transmittance of window

• PPD displayed considerable dependency on heating and

cooling setpoint temperatures

Additionally, upon comparing the findings from both the

OAT and Sobol’s analyses, it can be inferred that the

sensitivity outcomes achieved through the introduced DI in

OAT align closely with those of Sobol’s. This correspon-

dence arises because the DI was primarily conceived based

on assessing how variations in inputs affect output vari-

ance. Without an index in OAT analysis, discerning the

Fig. 12 Impact of STwin on the AHC, ACC, ALC, and PPD
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sensitivity of outputs to inputs solely through OAT graphs

was impractical, primarily due to the building system’s

non-linear characteristics. Thus, the DI can be applied to

OAT analyses of various systems to ensure robust and

dependable results.

From the findings, it is evident that both OAT and

Sobol’s methodologies contribute distinct perspectives to

SA, each characterized by unique approaches and levels of

detail. The OAT approach involves systematically varying

one input parameter while holding others constant, pro-

viding a straightforward means to discern the influence of

individual factors on the output. This method is widely

favored for its simplicity and practicality, making it suit-

able for initial sensitivity assessments. However, its pri-

mary drawback lies in its inability to account for

interactions among variables, potentially limiting a com-

prehensive grasp of the system under study. Conversely,

Sobol’s methodology employs a more advanced approach

centered on variance decomposition to assess the contri-

bution of each input parameter to the variance of the out-

put, encompassing both main effects and all potential

interactions among variables. This approach provides a

comprehensive overview of sensitivity by allowing

researchers to discern not only the primary influential

factors but also how these factors interact to influence the

output of the system. Rooted in the mathematical frame-

work of variance-based sensitivity analysis, Sobol’s

method offers a precise and detailed depiction of system

behavior. However, its application demands considerably

greater computational resources compared to the OAT

method. Therefore, the selection between OAT and Sobol’s

methods should hinge upon the specific demands of the

study, including the model’s complexity, the number of

input variables, the necessity to understand interaction

effects, and the availability of computational capabilities.

Fig. 13 Impact of VTwin on the AHC, ACC, ALC, and PPD
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7 Conclusions

The inherent complexity of building systems underscores

the importance of employing robust sensitivity analysis

strategies. This study presented an innovative approach for

SBSA of building performance by integrating EnergyPlus

with LSA and GSA algorithms using the C?? program-

ming language. This integration involved incorporating the

capabilities and functionalities of C?? directly into

EnergyPlus, enabling the direct execution of SBSA for

building performance without relying on external plugins

or third-party tools. To analyze the potential of the pro-

posed method, a number of design parameters were con-

sidered as input variables. In the same respect, the SBSA

process focused on building performance criteria (AHC,

ACC, ALC, and PPD). The OAT analysis, employed as

LSA, and Sobol’s analysis, utilized as GSA, were con-

ducted to examine how outputs respond to changes in

inputs and to quantify the sensitivity of outputs to inputs.

Within the LSA framework, a novel sensitivity index was

proposed to precisely determine the influence of inputs on

outputs. The results for the typical building under study

revealed that AHC was most sensitive to the heating set-

point and the solar absorptance of exterior walls. ACC was

similarly most sensitive to the cooling setpoint and solar

absorptance of exterior walls. For ALC, the most influen-

tial inputs were WWR, the visible transmittance of window

glass, and building orientation. In terms of PPD, cooling

and heating setpoints, solar absorptance of exterior walls,

and WWR were the most significant factors. Parameters

such as CSPT, HSPT,SAIN W, SAEx W, ThEx W,STwin,

Thwin, and Thgas�win were found to have no significant

effect on ALC. Additionally, the proposed DI showed

strong agreement with the ST .

Moreover, the findings demonstrated that OAT offers a

rapid and uncomplicated method to identify significant

factors. It necessitates fewer model iterations, making it

advantageous for computationally intensive models, and is

effective in pinpointing the direct influence of each input

variable on the output. Nevertheless, OAT does not con-

sider interactions between variables. In complex systems

with numerous input variables, such as building

Fig. 14 Impact of Thwin on the AHC, ACC, ALC, and PPD
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Fig. 15 Impact of Thgas�win on the AHC, ACC, ALC, and PPD

Table 3 Total-order SI (ST ) as
per Sobol’s analysis and DI as

per OAT analysis

Input AHC ACC ALC PPD

ST ð%Þ DIð%Þ ST ð%Þ DIð%Þ ST ð%Þ DIð%Þ ST ð%Þ DIð%Þ

B R 16 12 6 3 21 8 2 1

WWR 35 27 24 18 33 28 28 7

DSH 3 2 4 2 6 2 2 1

CSPT 2 1 72 54 0 0 81 64

HSPT 80 92 2 1 0 0 40 22

SAIN_W 4 1 3 1 0 0 2 1

SAEX_W 79 63 63 44 0 0 36 20

ThEx_w 13 10 8 6 0 0 4 2

STwin 7 5 6 4 0 0 2 1

VTwin 2 1 2 1 25 11 3 1

Thwin 3 1 2 1 0 0 2 1

Thgas–win 2 2 2 1 0 0 3 1

123

M. Nasouri, N. Delgarm



performance analysis, outputs often depend on interactions

among multiple inputs, a factor that OAT overlooks. This

limitation means that OAT may provide incomplete

insights into the importance of variables or their actual

impact on the system, potentially leading to misleading

conclusions. In contrast, Sobol’s analysis offered a detailed

and intricate analysis of the sensitivity dynamics within the

system, proving particularly valuable for complex models

where interactions among variables heavily influence the

output. However, Sobol’s method entails a substantial

number of model iterations, rendering it computationally

demanding and resource-intensive.

These findings indicate that design specifications sig-

nificantly influence building efficiency. By carefully

selecting and optimizing these parameters, it is possible to

achieve a building with minimal energy loss and maximal

thermal comfort for residents. The introduced SBSA

approach offered an effective strategy for identifying most

efficient alternatives in the building design stage through

the integration of advanced SA algorithms with Energy-

Plus, thereby enhancing the decision-making process for

building engineers by providing a broader understanding of

available alternatives. Looking forward, the relevance of

this research extends to building engineers and architects

seeking to integrate sophisticated optimization algorithms

into building design and evaluation processes. The devel-

oped framework enhances decision-making capabilities by

providing a clearer overview of potential outcomes based

on different design choices. This approach will ultimately

facilitate a more holistic understanding of building per-

formance, steering the future of sustainable architectural

practices toward higher efficacy and precision in building

design and optimization.

8 Limitations and future works

Coupling C?? with the EnergyPlus offers significant

advantages in terms of flexibility and power. Our method

overcomes the limitations of existing ready-made software

by providing enhanced control over the selection of out-

puts, input parameters, algorithms, and input variables.

However, this integrated approach also presents several

limitations such as complexity in implementation and

limited flexibility in EnergyPlus customization, which need

careful consideration.

Future developments will focus on conducting multi-

objective optimization to explore how different optimiza-

tion variables influence specific objectives, allowing for

more predictable outcomes. The method will also be

applied to various building configurations across different

climatic zones in Iran to assess the impact of environmental

factors on building efficiency. Furthermore, expanding the

scope to include other building types, such as net-zero

energy buildings, and incorporating additional comfort

parameters like acoustic and respiratory comfort, as well as

environmental and economic impacts through life cycle

assessments, will enhance the robustness of the design

outputs.
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