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phosphate. (Paul et al. 2021). These polluting agents tend to 
affect the human nervous system, impacting the mental state 
of a healthy individual (Ventriglio et al. 2021).

Recent civilizations have resulted in producing a major 
polluting agent called dyes, this chemical substance can 
accumulate in humans (Thakur et al. 2024). Certain dyes 
have tendencies to mutate the genes which results in vari-
ous health defects, whereas dyes also affect our systems 
which likely causes endocrine disruption, respiratory prob-
lems, infertility, cancer-causing, preterm birth, Alzheimer’s 
disease, Parkinson’s disease, heart disorders, asthma, renal 
failure, and Skin issues (Bertero et al. 2020; Hassaan and El 
Nemr 2020).

Every country worldwide has faced emerging hazardous 
pollutants called microplastics (MPs) in recent years. The 
accumulations of these microplastics in the soil are majorly 
affecting the soil quality which influences plant growth and 
metabolisms. The distribution of these microplastics in the 
air is also causing severe health defects (Athulya et al. 2024). 
Due to the distribution of these microplastics in the environ-
ment, the accumulation of these pollutants in humans takes 

1 Introduction

Anthropogenic activities, which include industrializa-
tion, metropolitan, and farming, have developed globally 
in recent years due to the wide range of chemicals intro-
duced into our environment. This exposure to chemicals 
has resulted in many types of pollution like air, water, and 
soil pollution, which has numerous effects on the environ-
ment and human health (Akhtar et al. 2021; Kaur et al. 
2019). Many compounds like organic and inorganic can 
cause environmental pollution. Organic compounds include 
polycyclic aromatic hydrocarbons, petroleum hydrocar-
bons, volatile organic compounds (VOCs), polychlorinated 
biphenyls (PCBs), and pesticides. Inorganic compounds 
consist of heavy metals (HMs) as well as salts, nitrate, and 
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techniques, microbial bioremediation has emerged as an appealing method because of its removal efficacy, affordability, 
and environmental friendliness. This review is an overview of the major environmental pollutants such as plastics, heavy 
metals, and dyes with their source and toxicity towards both humans and the environment. The summary of the beneficial 
microbes like bacteria, fungi, and algae that employ remediation techniques like biosorption, bioaccumulation, bioleach-
ing, biodeterioration, bio-fragmentation, and biotransformation to convert the toxic compounds to non-toxic compounds 
has been discussed. During the degradation process factors like temperature, pH, initial concentration, O2 concentration, 
N2 addition, soluble salts, pollutants both chemical and physical structure, and hydrophobic properties play a major role. 
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place through three ways of exposure: ingestion, inhalation, 
and dermal contact, this exposure, leads to inflammation that 
can be linked to cancer, heart disease, inflammatory bowel 
disease, rheumatoid arthritis, etc., genotoxicity, chronic dis-
eases such as atherosclerosis, cancer, diabetes and autoim-
mune disorders (De-la-Torre 2020). In animals, ingestion of 
the MPs results in disturbances to the system like a blockage 
in the digestion system which finally leads to exhaustion of 
energy stores, interference with reproduction, alteration of 
the ratio, loss of weight, alteration in the distribution of cho-
lesterol ratio, growth reduction, and nutritional deficiency 
(Saeedi 2024; Osman et al. 2023).

Eliminating these pollutants using wild strains of micro-
bial colonies is considered one of the agents for bioremedia-
tion. This method is cost-effective, and these microorganisms 
react promptly to fluctuations in the pH, temperature, ter-
restrial inputs, patterns of light, sea level rises, tropical 
storms, etc. in the environment, which makes them suitable 
for possible bioremediation purposes due to these behaviors 
(Kour et al. 2021). Recent research has combined the physi-
ological, biochemical ecological, genetic, and metagenom-
ics bases of microorganisms with various characteristics, 
including photosynthesis, anaerobic methane oxidation, 
and phosphorus Sulphur and nitrogen cycle uptake (Meng 
et al. 2022). Research has shown that using multiple living 
organisms will probably produce better and more effective 
results. Further investigation into the diversity of microbial 
life is also made feasible by this, which will enable biore-
mediation initiatives to produce the best results (Sharma et 
al. 2018).

Bioremediation of the pollutants occurs naturally using 
wild strains of the microbial colonies which are very slow. 
To overcome this disadvantage, researchers genetically 
modified the suitable strains and showed us more successful 
and faster degradation comparatively. The genetic modifica-
tion method consists of hybridization, induced mutation, and 
substitution. Many researchers found that genetically modi-
fied bacteria show highly positive results in the elimination 
of environmental pollutants (Jacob et al. 2018; Ahmad et 
al. 2023). The recent studies, in which there is a beneficial 
relationship between the bioremediation agent’s cell growth 
rate and the rate of pollutant breakdown, retaining a large 
population of bacteria is one of the keys to the process’s 
effectiveness (Narayanan et al. 2023). As a result, bioreme-
diation agents must be immobilized in a matrix to improve 
their capacity to endure in polluted environments. Here the 
microbial colonies are immobilized onto the suitable carrier 
using Vander Waal’s force, cross-linkage, covalent bond, 
and encapsulation (Mehrotra et al. 2021).

In bioremediation methods, beneficial microbial com-
munities are essential because the suitable microbes 

may have a variety of metabolic capacities that enable 
them to break down a variety of contaminants. Design-
ing specialized microbial consortia adapted to certain 
contaminants is the current area of research emphasis 
(Maqsood et al. 2023). These consortia can effectively 
digest a variety of contaminants by selecting and inte-
grating microorganisms with compatible metabolic 
pathways. Synthetic biology, metagenomics, Meta 
transcriptomics, bioaugmentation and biofortifica-
tion, nanobiotechnology, phytoremediation-microbial 
interactions, omics technologies, and machine learn-
ing are some breakthroughs in this important sector 
(Saravanan et al. 2023). The goal of the study is to 
enhance the effectiveness, accuracy, and ecological 
viability of pollution removal from the environment 
by the incorporation of these novel technologies into 
bioremediation strategies. These developments have 
a great deal of potential for tackling the problems 
caused by various environmental contaminants and 
promoting long-term ecological sustainability.

2 Environmental pollutants: sources and 
toxicity

Groundwater, surface waters, air, and below-ground soil 
have been impacted by potentially dangerous substances 
that deliberately or unintentionally enter the environment 
during the monitored or unplanned discharge of industrially 
contaminated effluent (Rasheed et al. 2020). Those effluents 
mainly consist of pharmaceutical products, cosmetic prod-
ucts, dyes, Heavy Metals, and Microplastics. Resources 
like air, water, and soil are essential for all living organisms 
in an environment. This pollution is created minimally by 
environmental factors, but it is heavily influenced by human 
activity. The pollutants are majorly depleting the quality 
of these resources, making our environment unsuitable for 
living, while causing damage to humans and other organ-
isms (Roy et al. 2021). Figure 1 shows the sources and toxic 
effects of environmental pollutants, and the illustration was 
referred from Sharma et al. 2023.

When the accumulation of Heavy Metals in a healthy 
human exceeds, they become toxic, leading to damage to 
other important organs like kidneys, brain, lungs, blood, 
and liver. Prolonged exposure can also cause hypertension, 
insomnia, skin rashes, diarrhea, tiredness, and high blood 
pressure. It also imitates the process of neurological dis-
eases like multiple sclerosis, Alzheimer’s, muscle dystro-
phy, and Parkinson’s (Guzzi et al. 2021).
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2.1 Dyes

The textile, cosmetic, plastic, photographic, pharmaceuti-
cal, food, and paper industries use dyes that give different 
colors to the fibers used, these dyes are natural or synthetic 
materials. Usage of these dyes is based on their reliability 
on stability over time, having the ability to dye the fibers 
with the color using reproducible methods while maintain-
ing color intensity, staying inactive to the chemical, physi-
cal, and biological deterioration, and should be at low cost 
(Al-Tohamy et al. 2022). Dyes can be classified based on 
their chromophore structure, Henceforth they are classified 
as Azo dyes (methyl orange, Congo red, orange G), anthra-
quinone (Remazol brilliant blue R, Alizarin Red S, Reactive 
Blue 4, Reactive Bright Blue X-BR, ), triphenylmethane 
(Malachite green, Crystal violet, Light green SF, Crystal 
violet), nitro and nitroso (Naphthol yellow s, disperse yel-
low 26, disperse yellow 14), Indigoid (Ciba blue 2B, indigo 
Carmine), Xanthene (fluorescein, rhodamine 6G, rhoda-
mine 123), Phthalein (o-cresol phthalein, phenolphthalein, 
thymolphthalein, ) and Acridine (basic yellow 9 and acri-
dine orange) (Ardila-Leal et al. 2021).

Dyes, being non-biodegradable, accumulate in soil, 
water, and air from industrial effluent, causing pollution that 
damages plants by reducing protein content, photosynthesis, 
and CO2 absorption. This soil contamination triggers oxida-
tive stress, which inhibits plant growth (Varjani et al. 2020). 

When discussing exposure to dyes in the aquatic environ-
ment, can have a huge impact on the food chain and inhibit 
the aerobic microbes’ biodegrading process (Alonso et al. 
2018). Humans get chronic diseases due to exposure to these 
dyes for a long period, the chemicals present in the dyes can 
cause an impact on all the vital organs which includes the 
brain, renal, liver, and heart. The immune system, reproduc-
tive system, and respiratory systems are being suppressed 
due to this exposure. It is also possible for illness to arise 
either directly by breathing in, such as asthma, nausea, skin, 
eye irritation, and dermatitis, or indirectly through the food 
chain, such as tuberculosis (TB), heart illness, genetic muta-
tion, bleeding episode, and tumor (Islam et al. 2023).

2.2 Microplastic

Plastic particles that are less than size 5 mm are considered 
Microplastics (MPs), these plastics have been available in 
the environment for the past 100 years due to the consis-
tent nature of their chemical property. MPs are of different 
types like Low-Density Polyethylene (LDPE), High-Den-
sity Polyethylene (HDPE), polypropylene (PP), polysty-
rene (PS), Polyethylene terephthalate (PET), and polyvinyl 
chloride (PVC) (Frias and Nash 2019). These MPs enter our 
environment from the two major sources that are classified 
into primary and secondary. Primary pollutants originate 
from plastics in cosmetics and personal care products, while 

Fig. 1 Sources and toxic effects of environmental pollutants
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bioremediation method employs microbial species from 
bacterial, fungal, yeast, and algal ecosystems, these organ-
isms employ enzymes or additional metabolic procedures 
dependent on the microbe’s development and metabo-
lism which breaks the contaminant’s organic components 
(Pushkar et al. 2021). Certain Microbes possess enzymes 
that have the ability capable of breaking down a large num-
ber of toxic contaminants in the environment such as lac-
cases, hydrolases, oxidoreductases, oxygenases, and lipases 
(Narayanan et al. 2023). These enzymatic remediation pro-
cesses also have constraints i.e. only selective organisms 
possess the nature of degrading the contaminants and con-
sume more time (Saravanan et al. 2022). Due to this limita-
tion, scientists have modified the gene of the microorganism 
under a controlled environment. The microbes play a role 
in the bioremediation treatment due to their broad spectrum 
of enzymes, ability to alter DNA, and unique metabolism 
(Rathore et al. 2022). By undergoing reactions as part of 
their processes of metabolism, living things change pollut-
ants. Numerous methods can be used to apply the principles 
of bioremediation, including land farming, biostimulation, 
bioaugmentation, composting, biofiltration, bioventing, and 
bioreactors (Patel et al. 2022). Table 1 shows the data con-
taining bacterial, fungal, and algal communities with biore-
mediation potential.

Some enzymes are responsible for the bioremediation 
process which includes cytochrome P450 (employs the 
reduction or oxidation of heme iron to carry out catalysis 

secondary MP sources include degraded plastic particles 
from wastewater treatment plants and household/industrial 
discharge (Kurniawan et al. 2021).

In the aquatic environment, exposure to chemicals from 
the MPs affects the food web by stopping the photosynthesis 
process of algae. Thereby, an increase in Reactive Oxygen 
Species (ROS) occurs due to the oxidative stress caused by 
the accumulation of the MPs in the algae (Huang et al. 2022; 
Ugya 2021). Through biological absorption, MPs can pass 
through zooplankton and onto larger animals at the top of 
the food chain. Accumulation of these microplastics leads to 
severe damage to the human body, Neurological damage is 
caused due to the blocking of neurotransmitter signals, and 
endocrine disturbance which affects the reproductive sys-
tem, and digestive system, some of the dye’s chemicals that 
have an allergic nature and also can mutate the gene (De-
la-Torre 2020; Ma et al. 2020). Figure 2 depicts the vari-
ous toxic impacts of environmental pollutants in agriculture 
referred from the source (Ahammed and Li 2022).

3 Microbial bioremediation

Restoration of the recalcined biosphere and the control of 
pollutants via detox and mineralization has been the goal 
of the technological advances process referred to as bio-
remediation. Microbes are very eco-friendly, economical, 
innovative, and optimistic (Haripriyan et al. 2022). The 

Fig. 2 Toxic impacts of pollutants on agriculture/horticulture
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bioremediation for Heavy metals contamination involves 
processes like biosorption, in this process, the outer cell 
shield gives the microbes their sorption features. Functional 
groups of compounds are discovered on the outermost lay-
ers of microbes that connect metals (Fathollahi et al. 2020). 
Metal cations react with active groups on cell structures of 
diverse microorganisms, facilitating ion transfer, despite 
variations in their chemical compositions (Aryal 2021). This 
mechanism has been implemented which includes sewage 
treatment procedures and the pharmaceutical sectors both 
use microbe biomass as a subsequent product, the ability of 
microorganisms to efficiently utilize metal is demonstrated 
by their ability to be cultivated and multiply on a particular 
basis, resorbent with a vegetable or animal origin (nutshells, 
sea plants, humus, moss peat, etc.) (Medfu Tarekegn et al. 
2020).

Another remediation mechanism, Where the susceptibil-
ity of living things to toxins that are impacted by the toxico-
kinetic process, this process is known as bioaccumulation. 
The accepting capacity of bioaccumulation candidate micro-
organisms ought to improve from one or more pollutants to 
higher concentration levels (Tan et al. 2019). Furthermore, 
these may have strong bio transformational competencies, 
converting the dangerous material into a harmless form that 
allows the organism to reduce the damaging effects of the 
pollutants while keeping them isolated. This technique has 
been compared with biosorption which is distinct from it in 
that the expulsion of metals from cells and its subsequent 

and the transfer of electrons) (Guengerich 2018). Enzymes 
like Laccase catalyze the breakdown of aromatic com-
pounds and dehalogenase facilitates the removal of halogen 
atoms, both contributing to the bioremediation process by 
degrading pollutants into less harmful forms. Dehydroge-
nase and hydrolase are the enzymes that produce energy 
by oxidizing organic compounds and breakdown of both 
lipids and proteins (Kumari and Das 2023). Microbes that 
produce Protease, activate the disruption of peptide linkage 
of proteins. Whereas, lipase activates the disintegration of 
all mono-, di-, and triglycerides to glycerol and fatty acid, 
and is also used as an activator for the transesterification 
and esterification domino effect) (Bhandari et al. 2021). Fig-
ure 3 elucidates the remediation mechanism of pollutants by 
microorganisms.

3.1 Remediation mechanism

3.1.1 Heavy metals

The dangerous toxins in the environment can be broken 
down using organisms such as microbes and plants in an 
approach called bioremediation. The toxic organic or inor-
ganic contaminants are biotically degraded during this 
process into harmless substances (Okoye et al. 2022). 
The procedure could succeed spontaneously or improve 
by inserting an acceptor of electrons, nourishment, or any 
additional components (Tan et al. 2022). Environmental 

Fig. 3 Remediation mechanism of pollutants by microorganisms
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reactive, basic, oxidation, mordant, developed, vat, pig-
ment, and solvent dyes are some examples of dyes (Bharathi 
et al. 2022). Due to their multifaceted chemical constitu-
tion of coloring agents, dyes can endure adverse conditions 
and continue to be “pinned” to the materials to which have 
been applied (Dahiya and Nigam 2020). The process of 
decomposition of these organic dyes can be carried out by 
microbes either under aerobic conditions or anaerobically. 
The adsorption of the dye molecules onto microbial biomass 
or dye breakdown by bacteria are two ways that microbes 
can lead a dye to become discolored (Bharathi et al. 2018).

In wastewater remediation, mixed microbial cultures or 
pure cultures are employed. Due to the result of a synergis-
tic metabolic effect, mixed microbial culture demonstrated 
excellent dye degradation. Comparatively, there is more 
biodegradation and mineralization as a result of microbial 
co-metabolic activities (Rane and Joshi 2021). The con-
sortium of microorganisms has been proven to success-
fully biodegrade refractory substrates when compared to 
individual pure strains. A Pseudomonas mendocina MCM 
B-402 strain’s aerobic degradation of the triphenylmethane 
color methyl violet. Methyl violet, which is used as a bacte-
rial culture and histopathological color, served as the iso-
late’s main source of carbon and energy. Through a series of 
unidentified metabolites, Pseudomonas mendocina converts 
the dye to phenol, which subsequently enters the β- ketoa-
dipic acid pathway (Varjani et al. 2020). The bacteria’s cell 
wall is essential to the biosorption process, bacterial cell 
surfaces that are negatively charged exhibit strong electro-
static attraction to the positively charged dyes.

Gram-positive bacteria are better at attracting color pig-
ments than Gram-negative bacteria. The thickened cell wall 
of Gram-positive bacteria is composed of peptidoglycan, 
teichoic, and teichuronic acids. In Gram-negative bacteria, 
only the peptidoglycan layer is present as a thin layer (Lellis 
et al. 2019). When employing azo dyes as their only provider 
of carbon for cell development, certain bacteria were able to 
break azo (-N = N-) bonds (Ardila-Leal et al. 2021). Fungal 
species have also demonstrated the ability to degrade dyes; 
using these fungi in the restoration process can be both eco-
nomically advantageous and a successful replacement for 
dye degradation. Methods like biosorption, biodegrada-
tion, and bioaccumulation are also conducted as essential 
processes. When dyes are exposed to fungal enzymes, it 
degrades into a variety of metabolites. As their primary 
means of discoloring textile colors, fungi rely on biodeg-
radation. Laccases, peroxidase, Mn peroxidase, lignin, and 
azo-reductase are some of the enzymes involved (Lellis et 
al. 2019). The cell wall’s negative charges stem from car-
boxyl groups and phosphate (from glucuronic acid), while 
positive charges originate from amino groups (from chito-
san) (Bharathi et al. 2022). Hence these functional group 

recovery depends on cell structure modification (Yaashikaa 
et al. 2024). As a result, there aren’t many cycles where 
biomass applications are possible. The capability to store 
significant quantities of Heavy metals in cells, the cell walls 
themselves, or regions restricted by the cytoplasm is a dis-
tinctive trait of numerous environmental species of bacteria 
(Medfu Tarekegn et al. 2020). Table 2 shows the potential of 
microorganisms for the removal of HMs.

Biotransformation is also another process, where the 
Heavy metals undergo oxidation, reduction, methylation, 
and demethylation reactions by microbes, it involves the 
enzymatic system of microorganisms (Mohsin et al. 2021). 
Practically beneficial reactions of extensively hazardous or 
highly valuable metal reduction include bacteria isolated 
from tanning plant sewers that reduced extremely hazardous 
chromium (VI) to less chromium (III), which may then be 
removed from the environment (Kholisa et al. 2021). Any 
type of bacteria or fungi that are microscopic can convert 
valuable metal ions such as gold or silver into metallic form. 
This process is capable of taking place in vacuoles, along 
the cell exterior, and in the environment outside of the cell, 
which is significant for the recovery of this metal (Nivetha 
et al. 2022).

Utilizing microorganism activity, bioprecipitation and 
biocrystallization are bioremediation methods that can pre-
cipitate or crystallize combinations of Heavy Metals, reduc-
ing their toxic effects while transforming the metal into a 
form that is rarely used. Some precipitation and biocrys-
tallization procedures such as forming microfossils, min-
eralizing silver and manganese, and depositing iron and 
manganese involve themselves in biogeochemical patterns. 
Furthermore, due to the direct action of enzymes, second-
ary metabolites produced by galactosis can also result in the 
precipitation of metals on the surface or interior of the cell 
(Hussain and Mutag 2021).

Bioleaching in this bioremediation process where bio-
hydrometallurgy is the principal application of biological 
processes of leaching. Metals leaching from sulfide and 
oxide minerals can be accomplished through microbial 
approaches. This method’s foundation is built on convert-
ing environmental metal compounds between slightly sol-
uble forms into easily soluble types, making Heavy Metal 
removal simple. Metals like Arsenic, antimony, bismuth, 
zinc, cobalt, gold, lead, copper, molybdenum, nickel, vana-
dium, and other metals are recoverable (Saldaña et al. 2023).

3.1.2 Dyes

Industries like cloth, leather, or wood use long-lasting color-
ing agents called dyes, these dyes are either natural or man-
made. There are different types of dyes classified according 
to their structure (Acid, direct, azo, dispersion, sulfur, fiber 
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gets attached or absorbed to the surface of these cell walls 
for example Aspergillus flavus and Aspergillus fumigatus 
use biosorption techniques for pollutants like methylene 
blue and methyl orange (Varjani et al. 2020).

3.1.3 Microplastics

The two types of plastics that exist are thermoplastic and 
thermosetting plastics. Thermoplastic materials need heat 
to become pliable and to retain their shape after cooling. 
Such materials don’t significantly alter in characteris-
tics even after being heated and reshaped multiple times. 
Meanwhile, thermosetting plastics go through chemical 
reactions to generate a permanent shape that cannot be 
remelted or reformed; rather, these compounds break down 
or deteriorate when heated to high temperatures. Plastics 
that are thermosets cannot be reprocessed. In the process 
of biodegradation, the microbial colonies tend to change 
neither their chemical nor physical properties (Elahi et al. 
2021). Microbes like actinomycetes, bacteria, and fungi can 
degrade plastics. Most often in the process of biodegrada-
tion, the microbes get attached to the out layer of the poly-
mer, where these microbes use them as a carbon source by 
secreting enzymes that degrade the plastics and use them for 
their survival (Alshehrei 2017). The degradation of micro-
plastics by the microbial strains and its analysis methods is 
tabulated in Table 3.

The bioremediation of MPs also takes place in different 
mechanisms and one of the mechanisms is the biodeteriora-
tion mechanism, in this remediation process the microbes 
alter the polymer’s chemical, physical, and functional prop-
erties. The microorganism impacts the outer surface of the 
MPs due to the alteration of these properties (Vivi et al. 
2019). Bio-fragmentation, which involves after biodeterio-
ration, where the enzymes of the bacteria act on the polymer 
that cleaves the oxygen molecule and are attached to the 
carbon chains which results in the production of low-toxic 
products like peroxyl and alcohol (Zhang et al. 2022).

Beyond these mechanisms, another approach for MPs 
biodegradation is mineralization in which the fragmented 
polymers get inside the microbes via the cell membrane, 
where the monomer of smaller size enters the microbes, 
is later oxidized, and helps in producing energy that is 
employed in biogas or biofuel production (Jaiswal et al. 
2020). Assimilation involves transporting secondary metab-
olites to other microbes for degradation, yielding CO2, N2, 
and H2O as byproducts (Elahi et al. 2021).

3.2 Factors influencing bioremediation

The architecture of the microbial cell wall, the chemical 
compounds on the cell wall, and the sorption sites all affect 
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identified by their chemical and physical properties. The 
factors that affect the microbes in the degradation of plas-
tics are (i) the availability of functional groups increases 
hydrophobic properties. (ii) Compared to hard polymers, 
mild toughness polymers deteriorate more quickly. (iii) 
The structure’s complication (iv) Molecular basis-based 
arrangement (v) Bond types, such as amide bonds and ester 
bonds, are easily breakable. Establishing a network of link-
ages. (vi) The weight of a molecule and polymer concentra-
tion. (vii) Morphological features: area size regions that are 
crystalline and amorphous (Wang et al. 2021b; Shams et al. 
2020).

3.3 Engineered microbes/enzymes for 
bioremediation

The implication of microbial degradation and elimination 
of these contaminants include not only their genetic ability 
to degrade the pollutants but also the environmental factors 
involving temperature, pH level, nitrogen, and phosphorus 
availability (Pant et al. 2021). Metabolic engineering can 
address limitations in microbial bioremediation, including 
slow degradation, narrow substrate range, low efficiency, 
high cost, time consumption, and toxicity (Behera et al. 
2019). Many pollutants are too large for natural metabolic 
pathways in microbes to break down. To generate desired 
compounds or enzymes involved in bioremediation, it is 
imperative to either establish novel pathways or restore 
pre-existing metabolic networks (Li et al. 2021). Figure 4 
shows the genetically modified microbes for bioremedia-
tion, which was referred from Janssen and Stucki 2020.

Biodegradation uses two types of engineered microorgan-
isms one is metabolic engineering; this method is employed 
to direct the metabolic pathways to enhance the synthesis 
of a certain metabolite utilizing a genetic engineering strat-
egy by modifying the genetic system and its regulatory sys-
tems within a living cell (Behera et al. 2019). Biosynthetic 
pathways have been rebuilt via the metabolic engineering 
of microbes in recent days. For example, the Pseudomonas 
putida strain KT2440 for the aerobic breakdown of trichloro 
propane (TCP) was created through the application of meta-
bolic engineering. By inserting three enzymes—epoxide 
hydrolase, haloalcohol dehalogenase, and haloalkane deha-
logenase—from a different source, a synthetic pathway was 
rebuilt in Pseudomonas putida KT2440. These enzymes 
were necessary for the transformation of TCP into glycerol. 
As a result, the resulting strain could utilize TCP as the only 
source of carbon for growth (Gong et al. 2017). Further-
more, it is possible that the microorganisms employed in 
bioremediation were subjected to a particular kind of envi-
ronmental stress, such as exposure to extremes in pH, tem-
perature, ionic strength, solvent concentrations, or other 

how stable the microbes-metal combination is. Degradation 
processes have different outcomes depending on the sub-
strate and a variety of circumstances in the environment 
(Choudhury and Chatterjee 2022). Environmental factors 
such as temperature, pH, humic acids, and organic acids 
affect the transport, transformation, and bioavailability of 
HMs in bioremediation processes (Zhang et al. 2020b).

For environmental factors like pH, the adsorbent sur-
face is more positively charged at higher hydrogen ion 
concentrations, which reduces the connection between 
the adsorbent and metal cation and raises the toxic effect 
of the substance (Soliman & Moustafa 2020). Factors like 
temperature, the adsorption of Heavy metals is greatly 
influenced by temperature. The rate of adsorbate diffusion 
across the exterior boundary layer increases as temperature 
rises. The increasing temperature makes the Heavy metals 
more soluble and increases their bioavailability (Priya et 
al. 2022). The initial concentration of the ion is one of the 
most important factors that also influence the bioremedia-
tion mechanism of microbes, as the initial concentration of 
metal ions increases. Biosorption subsequently increases, as 
the concentration of metal in the solution goes up, metal 
sorption primarily increases before becoming saturated after 
a specific concentration of metal (Sibi 2019).

The dye’s biodegradation mechanism is influenced by 
two factors that impact the deterioration of dyes. Environ-
mental factors including pH, oxygen, agitation, and tem-
perature, as well as nutritional factors like soluble salts, 
dye concentration, dye structure, carbon, and nitrogen addi-
tions, can all have an impact on bioremediation (Srivastava 
et al. 2022). The dye degradation is influenced by factors 
like (i) pH choosing a microbial species that can thrive at 
the wastewater pH or adjusting the waste pH to encourage 
dye-degrading bacteria to proliferate (Reyes et al. 2021). (ii) 
Oxygen and agitation are other influencing factors, where 
aerobic, anaerobic, and semi-anaerobic conditions are only 
a few of the parameters that diverse bacteria prefer. With 
oxygenation, that shaking appears to be beneficial. The 
activity of reducing enzymes may be increased in anaero-
bic environments. On the other hand, aerobic dye decom-
position demands oxidative enzymes, which require oxygen 
(Pham et al. 2023). (iii) Extreme temperatures can kill or 
halt the growth of microbes. For a large variety of bacteria, 
it is widely acknowledged that the ideal temperature range 
for bacterial culture is between 30 and 40 °C. By doing this, 
color fading is accelerated. As the temperature rises, the 
degree of decolorization begins to slow down (Ikram et al. 
2022).

Microplastics, all polymers that are used in plastic pro-
duction do not dissolve in water, the one that tends to dis-
solve is transformed into acids, alcohol, and ketones (Bule 
Možar et al. 2023). The biodegradations of the plastics are 
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strategy because of its several advantages (Mehrotra et al. 
2021). Immobilization procedures are divided into physical 
and chemical methods, several methods can be implemented 
to immobilize microorganisms on the carrier, the microbial 
cells are attached to the surface of the carriers by adsorption, 
trapping, covalent bond, and cross-linking of microbial cells 
(Woo et al. 2022; Rodrigues et al. 2019). Inorganic, natural 
organic, and composite carriers are the three distinct types 
to which the carrier materials for immobilizing various 
types of cells occur. Organic and inorganic carriers are eco-
friendly, have minimum toxicity to the microbial colonies, 
have higher immobilizing density, and are easily modified 
according to their application (Gong et al. 2018; Thanga-
raj and Solomon 2019). Synthetic or composite carriers are 
made of both organic and inorganic carrier particles which 
are water-soluble and have a high number of pores. To 
achieve the intended bioremediation, the support matrix’s 
material must have adequate support and mass transfer 
characteristics (Jiang et al. 2022). Biosorption, biodegrada-
tion, and assimilation are the process that takes place in the 
elimination of pollutants by the microbes simultaneously. 
Where, in the process of assimilation the microbes take up 
non-usable nutrients like nitrogen, phosphorous, and carbon 
from the polluted environment and convert them as a source 
for their growth (Negi and Das 2023). Figure 5 elucidates 

environmental variables. The utilization of genetically 
modified microbes for the bioremediation of pollutants is 
shown in Table 4.

Another Metabolic engineering using recombinant DNA 
technology, which is the most often used method for cre-
ating a single bacterial stain with a combination of mul-
tiple breakdown pathways from other sources metabolic 
engineering using rDNA technology (Fasim et al. 2021). It 
offers specific benefits for successful in situ bioremediation 
to degrade the various pollutants at the target sites. Recom-
binant DNA (rDNA) technology alters the genetic structure 
of microorganisms to create strains that are resilient to the 
harmful effects of contaminants (Sharma et al. 2021). For 
instance, the Hg (II) resistance gene (merA) was transferred 
to the E. coli strain BL 308 from the naturally radiation-
resistant bacterium Deinococcus radiodurans. The devel-
oped strains effectively converted radioactive mercury into 
its less hazardous equivalents and showed notable resis-
tance. It is noted that several recombinant microbes have 
also been created using rDNA technology to effectively 
degrade contaminants (Sharma & Shukla 2022).

3.4 Immobilized microbes for bioremediation

Traditional methods of bioremediation use “free” bacterial 
cells; subsequently, in recent years, emphasis has shifted 
to the use of “immobilized” bacterial cells as a potential 

Fig. 4 Genetically modified microbes for bioremediation
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4 Recent developments – microbial 
bioremediation approaches

Finding new enzymes and subtypes with certain physico-
chemical properties would be an appealing approach to 
developing more successful and inexpensive tools for the 
elimination of polluting substances because the most crucial 
role is performed by enzymes in bioremediation processes 
(Chia et al. 2024). Numerous organic and inorganic pollut-
ants, including Polycyclic Aromatic Hydrocarbons (PAHs), 
azo dyes, polymers, organocyanides, lead, chromium, and 
mercury, can be eliminated by enzymes. The bioremedia-
tion of contaminants has made use of numerous enzymes 
that have been extracted from various species (Ostovan et 
al. 2022). An entire cell, such as a bacterium, fungus, or 
algae, can be utilized in bioremediation instead of an iso-
lated enzyme that is put into the contaminated region. 
Aeration, immunization, and nutrition must be provided 
continuously in a second manner. In addition, environmen-
tal circumstances should be favorable for microbes to exist, 
even though there may still be hazardous substances in the 
environment that inhibit microbial activity (Norzooi and 
Jarboe 2023). Using individual enzymes offers advantages 
over whole microbial cells, such as enhanced specificity, 
easier handling and storage, standardized activity, greater 
mobility, activity in high concentrations of hazardous sub-
stances, and biodegradability, reducing persistence and 
recalcitrance (Mousavi et al. 2021). A viable approach to 

the mechanism of immobilized microbes for the remedia-
tion of pollutants., which was referred from García et al., 
2018.

In a pollutant-eliminating process called biosorption, the 
pollutants get attached to the surface of the carrier due to the 
complex structure and functional group of the carriers. This 
helps the microbes combine with the pollutants on the sur-
face (Giese et al. 2020). Finally, the designated pollutants 
are degraded aerobically or anaerobically by the microbes 
through some biochemical reactions where the pollutants are 
converted into non-toxic components which is referred to as 
biodegradation (Folino et al. 2020). For example, a study 
where bacteria like Bacillus drentensis MG 21831T were 
immobilized on the outer surface of polysulfone, showed 
that pollutants like Pb (II) and Cu (II) were adsorbed to the 
surface and inner surface of the pore walls as plaque-type 
solid crystal form (Velkova et al. 2018). Fungal organism 
like Trichoderma harzianium was immobilized on calcium 
alginate-removed uranium (Kolhe et al. 2020).

Factors affecting bioremediation with immobilized 
microbial cells include mass transfer limitations, where 
protective encapsulation in hydrogel enhances tolerance to 
pollutants but slows the transfer of growth-promoting com-
ponents like oxygen and nutrients. Another factor is the tox-
icity of pollutants, higher concentrations of toxic pollutants 
have an impact on both adsorption and the degradation of 
the pollutants (Mehrotra et al. 2021).

Fig. 5 Mechanism of immobilized microbes for the remediation of pollutants
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6 Future scope and perspectives

Future studies on immobilization should continue investigat-
ing the development of appropriate substrates with low cost, 
stable physical and chemical characteristics, high porosity 
and surface area, and non-toxic properties for immobilizing 
bacteria. To avoid cell population density, which leads to 
excess biofilm formation and pore-clogging, future investi-
gations might look into the proper ratios of microbial bio-
mass and immobilizing substrate dosage (Li et al. 2022). 
To remove the overgrown and fully developed biofilms and 
prevent pore blockage, the flow rate through the bioreac-
tor may need to be optimized. The immobilized cell-based 
treatment method might be more sustainable if value-added 
products are recovered concurrently with bioremediation 
procedures, such as recovering the metals during the bio-
logical treatment of wastewater that is metal-rich (Hegab et 
al. 2020). Where genetically engineered microbes currently, 
require effort to get through the drawbacks of these tech-
nologies, such as off-target effects, unexpected host genome 
changes, poor selection methods, etc. (Chu and Agapito 
2022). Additionally, the combination of these cutting-edge 
methods may assist in the development of synthetic recom-
binant microbial communities that are more robust and have 
a multiplied biodegradation ability (Fernández et al. 2019), 
further research into these methods can be done to increase 
bioremediation’s process effectiveness. At this point, it is 
critical to comprehend the approaches as a whole and their 
potential applications in a growing bioremediation strategy. 
This is important since it helps to develop strategies for 
effective bioremediation (Chu and Agapito 2022). However, 
these characteristics necessitate additional work on creating 
knowledge-based technologies and ensuring that research-
ers use them to their fullest potential.

7 Conclusion

Utilizing the ability of naturally existing microorganisms to 
break down, change, or immobilize pollutants, bioremedia-
tion attempts to mitigate their adverse environmental con-
sequences. Bioremediation provides a flexible and effective 
approach to addressing pollution across varied ecosystems 
by utilizing the diverse metabolic capacities of these micro-
bial populations. It has been demonstrated that beneficial 
microbial communities possess remarkable endurance 
and adaptability, enabling them to flourish in a variety of 
environmental conditions and efficiently break down or 
detoxify contaminants. This versatility, together with devel-
opments in genomics and molecular methods, makes it pos-
sible to choose and improve microbial consortia that are 
adapted to particular pollutants and habitats. Additionally, 

discovering less costly and more efficient instruments for 
the remediation of contaminants would involve trying to 
identify novel enzymes and new subtypes with specified 
physicochemical properties.

Clustered Regularly Interspaced Palindromic Repeats 
(CRISPR)-Cas systems, TALEN, ZEN, nanotechnology, 
Field scale applications, Metagenomics, and metatranscrip-
tomics are some recent developments in the field of micro-
bial bioremediation. The CRISPR-Cas, TALEN, and ZEN 
systems help in editing the gene to improve the pollutant 
removal capacity by making them survive in extreme envi-
ronments, whereas without culturing, microbial populations 
in the contaminated sites are studied through techniques 
called metagenomics and transcriptomics. This technique 
helps in assisting the identification of microbes and their 
bioremediation pathways. Identification of Novel nanopar-
ticles is another removal technique. A study done by Zakaria 
et al. 2024 shows the growth of Flavobacterium (Bacteroid-
ota), Pseudomonas C (Proteobacteria), and Proteiniclasti-
cum (Firmicutes), through the metagenomic sequencing of 
the 16 s rRNA gene.

5 Challenges, and disadvantages of 
microbial bioremediation

In the Engineered microbes, there are several challenges 
even though this method has demonstrated remarkable 
potential in bioremediation. (Saini et al. 2020). Further-
more, genetically engineered synthetic microbial consor-
tiums can occasionally encounter difficulties, especially 
when environmental conditions make it impossible for 
microorganisms to exist, ultimately leading to their mor-
tality (Pant et al. 2021). The use of various computational 
tools and algorithms that help in logical direction and aid 
in understanding the potential behaviors and interactions of 
microbes in simulated situations in comparison to real cir-
cumstances is one way to address these issues. Some newer 
techniques, such as the immobilization of the selective 
consortia community utilizing micro-bead encapsulation, 
are carbon-metabolic (Antar et al. 2021). Complex opera-
tions, matrix stability, characteristics of polluted resources, 
presence of multiple contaminants, industrial-scale process 
design, substrate transfer constraints, accumulation of toxic 
products inhibiting microbial growth, and biofilm develop-
ment pose challenges in this context (Sun et al. 2020; Ma et 
al. 2021). Despite these challenges, work is still being done 
in this area to clarify and develop these processes (Teng et 
al. 2020; Cheng et al. 2021).
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