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Abstract Spatial heterogeneity is an important aspect to

be studied in infectious disease models. It takes two forms:

one is local, namely diffusion in space, and other is related

to travel. With the advancement of transportation system, it

is possible for diseases to move from one place to an

entirely separate place very quickly. In a developing

country like India, the mass movement of large numbers of

individuals creates the possibility of spread of common

infectious diseases. This has led to the study of infectious

disease model to describe the infection during transport. An

SIRS-type epidemic model is formulated to illustrate the

dynamics of such infectious disease propagation between

two cities due to population dispersal. The most important

threshold parameter, namely the basic reproduction num-

ber, is derived, and the possibility of existence of backward

bifurcation is examined, as the existence of backward

bifurcation is very unsettling for disease control and it is

vital to know from modeling analysis when it can occur. It

is shown that dispersal of populations would make the

disease control difficult in comparison with nondispersal

case. Optimal vaccination and treatment controls are

determined. Further to find the best cost-effective strategy,

cost-effectiveness analysis is also performed. Though it is

not a case study, simulation work suggests that the pro-

posed model can also be used in studying the SARS epi-

demic in Hong Kong, 2003.

Keywords SIRS epidemic model � Basic reproduction

number � Nonlinear treatment function � Backward
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1 Introduction

Mathematical modeling is considered as one of the most

major and effective tools to predict the transmission

mechanism of various infectious diseases. The use of

mathematical models to describe the dynamics of such

diseases was started a long time ago. Kermack and

McKendrick (1933) were the first to introduce the mathe-

matical model to analyze the characteristics of epidemic

problems. However, this dynamical system approach for

epidemiological problems was not so popular until the

early 1990s. Some major and recent developments can be

found in Diekmann and Heesterbeek (1999), Keeling and

Rohani (2008), Makinde (2007), Smith (2008), Thomasey

and Martcheva (2008), Okosun et al. (2011), Kar and

Mondal (2011), Kar and Jana (2013a, b), Jana et al.

(2016a, b).

In the last couple of decades, there is a rapid advance-

ment of transportation system throughout the globe. People

now move from one place to another very quickly, and this

quick movement of human is an important driver to spread

the emerging and re-emerging infectious diseases. For
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instance, in 2003, SARS epidemic occurred in a wide

region of Asia including China due to population dispersal.

The H1N1 (swine flu) pandemic in 2009 is now considered

to have been the fastest moving pandemic in world history

(Lipsitch et al. 2009). Recently, Ebola virus also threatened

to become epidemic in vast region of Africa mainly due to

the incautious movement of human population. Also, in

recent past time, we have witnessed the severe outbreak of

many emerging infectious diseases including MERS-CoV,

SARS-CoV, Zika, and the very latest addition is novel

coronavirus (COVID-19). For these types of diseases,

human mobility can influence the disease dynamics mainly

in two ways: Movements may cast new pathogens into the

susceptible group, or it may enhance the contact rate

between the susceptible and infected people. The severe

acute respiratory syndrome (SARS) originated in China in

2002 and spread to 29 countries; MERS-CoV originated in

Saudi Arabia in 2012 and later, has been identified in 27

countries; and Ebola virus disease began in Sierra Leone in

2014 and spread to several countries via international tra-

vel. Presently, novel COVID-19 originated in China and

has spread very quickly throughout the globe. Therefore,

spatial heterogeneity related to travel is a very important

aspect to be considered in infectious disease modeling

approach. Some mathematical models on transmission

dynamics of infectious diseases due to population dispersal

are available in Wang and Mulone (2003), Arino and Van

den Driessche (2003), Wang and Zhao (2004), while Wang

and Zhao (2005) proposed an age-structured epidemic

model and established the conditions of uniform persis-

tence and global extinction of the disease. In the context of

developing countries, Cui et al. (2006) proposed a trans-

port-related SIS-type disease model. Later, Wan and Cui

(2007) extended this model as an SEIS-type disease model

to describe the infection during transportation. However,

Meloni et al. (2011) proposed and analyzed a metapopu-

lation model incorporating the mobility of humans. Find-

later and Bogoch (2018) studied the effects of human

movement, specially via air on the spread of infectious

disease. Some other perspective of human movement on

the disease dynamics can be found in Wesolowski et al.

(2016), Sallah et al. (2017), Kraemer et al. (2019) and the

references cited therein. Thus, in recent times, some

advancement has been made in developing models with

global transportation flows. However, still only a few

theoretical and computational approaches have studied the

effect of human mobility in the large-scale spreading of the

epidemics. But the social and spatial widespread of several

infectious diseases demands the re-evaluation and

improvement of mathematical models that we use to

understand the public health problems throughout the

world.

The most important aspect of mathematical epidemiol-

ogy is to find out the best possible way to control such

diseases. From the past epidemic outbreaks for the diseases

including pox, cholera, malaria, etc., it can be observed that

quarantine and isolation of infected individuals is a very

useful control to reduce the level of infection from com-

munity (Kar et al. 2013; Jana et al. 2017). In contemporary

times, media coverage is also identified as an alternate

control measure. People become alert due to media cam-

paign and take necessary precautions to avoid the infec-

tious diseases. The impacts of media on the dynamics of

infectious diseases can be found in Sun et al. (2011), Misra

et al. (2015). Vaccination is considered as the most

important measure in controlling many epidemic diseases

including polio, influenza, etc. The use of vaccination on

the disease prevalence through different types of com-

partmental models can be found in Makinde (2007), Buo-

nomo et al. (2008), Kar and Jana (2013a, b), Zhou et al.

(2014). Recently, Jana et al. (2016b) proposed an epidemic

model of population scattering with vaccination control.

However, for any such diseases, treatment of infected

individuals is the ultimate control measures to reduce the

infection level. Different types of treatment control func-

tion and the impact of treatment on the dynamics of dis-

eases are studied well in Wang (2006), Eckalbar and

Eckalbar (2011), Jana et al. (2016a) and references therein.

But it is observed that the combination of vaccination and

treatment is the most efficient way to control such infec-

tious diseases (Kar and Jana 2013a). However, the com-

bined use of vaccination and treatment control still largely

remains unexplored.

Following the above literature survey and considering

the needs of using mathematical models effectively to

investigate the dynamics of the spread of infectious dis-

eases and its possible control measures, in this work we

develop an epidemic system with the possibility of infec-

tion during transportation and the combined use of treat-

ment and vaccination. We rigorously study the dynamical

behavior of the system and try to find out the best strategy

to control the spread of the disease. The remaining portion

of this article is organized in the following way.

In Sect. 2, the mathematical model is formulated, and in

Sect. 3, its dynamical behavior for different scenarios is

described. In Sect. 4, formulation of optimal control

problem with vaccination and treatment as the control

parameters and its simulation works are presented. Next, in

Sect. 5, the cost-effectiveness investigation is performed to

find out the most beneficial control strategy. At the end, a

brief conclusion of this work is drawn.
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2 Model formulation

In the context of a very large and developing country like

India, with the increase in transportation system among

cities, the mass movement of a large number of people

creates new opportunities for the spread and establishment

of common or novel infectious diseases. Transportation

among cities is found to be one of the main factors which

affect the outbreak of diseases. In India, there has been

accelerated spread of dengue and Chikungunya, both

transmitted by the Aedes mosquito, which are particularly

well adapted to urbanized areas. India is the country in

which the highest prevalence of these two diseases occurs.

A range of factors play a role including human mobility

among the cities using public transport including bus,

trains, air, etc. Thus, the transportation among cities

changes the disease dynamics and it motivates us to con-

struct this mathematical model.

A mathematical model should be a true balance between

complexities in the assumptions and simplicity within the

formulation. Therefore, to propose and formulate an SIRS-

type epidemic model for transmission of a communicable

disease with movement of populations, it is assumed that

the two cities are similar in terms of population density,

economic condition, medical facilities, living environment

and disease transmission probability, i.e., the demographic

parameters are the same for both the cities. The total

population of each city Niði ¼ 1; 2Þ is divided into three

compartments: susceptible (Si), infected (Ii) and recovered

(Ri). Therefore, total population of each city will be Ni ¼
Si þ Ii þ Ri: Some more assumptions are as follows:

1. At any time t, the recruitment rate of both the cities is

A and its u1ð0� u1 � 1Þ portion is vaccinated.

2. The disease transmission rate from the susceptible

class to infected class is b, and populations of city

i leave city j at a rate a.
3. Disease transmission rate is denoted by ca, as the

populations of the city i travel to the city j.

4. Natural and disease-induced mortality rate for the

cities and for each class is adopted as d and d,
respectively.

5. Natural recovery rate is m for both the cities.

Following Zhang and Liu (2008), Jana et al. (2016a),

the recoveries due to treatment control u2ð0� u2 � 1Þ
for City 1 and City 2 are taken as ru2I1=ð1þ bu2I1Þ
and ru2I2=ð1þ bu2I2Þ, respectively, where r is the

effectiveness of the treatment control and b is the

saturation factor. This type of treatment function is

used to demonstrate the limited resources.

6. The recovery from the disease is not permanent, and

the parameter p stands for the rate by which recovered

population again moves to susceptible class.

7. There is no birth and death during the travels of

individuals.

Based on the assumptions made and according to the

schematic diagram (Fig. 1), the SIR-type disease model

with population dispersal takes the following form:

dS1
dt

¼Að1�u1Þ�bS1I1�dS1þpR1�aS1þaS2�caS2I2

dI1
dt

¼bS1I1�ðdþdÞI1�aI1þaI2�mI1

� ru2I1
1þbu2I1

þcaS2I2

dR1

dt
¼Au1þmI1þ

ru2I1
1þbu2I1

�pR1�dR1�aR1þaR2

dS2
dt

¼Að1�u1Þ�bS2I2�dS2þpR2�aS2þaS1�caS1I1

dI2
dt

¼bS2I2�ðdþdÞI2�aI2þaI1�mI2

� ru2I2
1þbu2I2

þcaS1I1

dR2

dt
¼Au1þmI2þ

ru2I2
1þbu2I2

�pR2�dR2�aR2þaR1

ð1Þ

and the initial conditions are Sið0Þ� 0, Iið0Þ� 0, Rið0Þ� 0,

i ¼ 1; 2:

3 Model analysis

Here, we discuss the dynamics of the formulated epidemic

system. Uniform boundedness, existence of different

equilibria and their stability criteria are discussed. Three

distinct cases such as (1) no population dispersal occurs,

(2) only susceptible population dispersal occurs and (3) all

the classes of population dispersal occur are considered.

3.1 Uniform boundedness of the system

Here, the uniform boundedness nature of the total popu-

lation is examined.

Theorem 1 All the state variables of the model system (1)

are uniformly bounded.

Proof Assume X ¼ S1 þ I1 þ R1 þ S2 þ I2 þ R2. Then, it

follows from (1)

dX

dt
¼ 2A� dðI1 þ I2Þ � dX;

i:e:;
dX

dt
þ dX� 2A:

Now on integration and applying the inequality from

Birkhoff and Rota (1982), we have
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0\XðS1; I1;R1; S2; I2;R2Þ�
2A

d
ð1� e�dtÞ

þ XðS1ð0Þ; I1ð0Þ;R1ð0Þ; S2ð0Þ; I2ð0Þ;R2ð0ÞÞe�dt:

Therefore, as t ! 1, we get 0\X� 2A
d :

Hence, the entire solutions of model system (1) which

initiate in R6
þ are confined to the region

R ¼ ðS1; I1;R1; S2; I2;R2Þ 2 R6
þ:X ¼ 2A

d
þ �

� �
ð2Þ

for any �[ 0 and t ! 1. Hence, it is proved. h

3.2 No population dispersal occurs

If there is no occurrence of population dispersal between

the cities, then system (1) reduces to a single-city model

with three compartments S, I and R as follows:

dS

dt
¼ Að1� u1Þ � bSI � dSþ pR

dI

dt
¼ bSI � ðd þ dÞI � mI � ru2I

1þ bu2I
dR

dt
¼ Au1 þ mI þ ru2I

1þ bu2I
� pR� dR

ð3Þ

with Sð0Þ� 0; Ið0Þ� 0;Rð0Þ� 0. The positive invariant

region for the system is defined as D ¼ fðS; I;RÞ 2
R3
þ; S� 0; I� 0;R� 0g. The system has a infection-free

equilibrium E0
0ðS0; 0;R0Þ, where S0 ¼ A dð1�u1Þþp

dðdþpÞ , R0 ¼ Au1
pþd.

Further, the system has two possible endemic

equilibria, E0
1ðS1; I1;R1Þ and E0

2ðS2; I2;R2Þ where S1;2 ¼
ðdþdþmþru2Þþbu2I

1;2ðdþdþmÞ
bð1þbu2I1;2Þ , R1;2 ¼ ðAu1þmI1;2Þð1þbu2I

1;2Þþru2I
1;2

ðpþdÞð1þbu2I1;2Þ
and I1, I2 (assuming I1 � I2) are the roots of the quadratic

equation

c1I
2 þ c2I þ c3 ¼ 0: ð4Þ

Here, c1 ¼ bbu2fpðdþ dÞ þ ðd þ dþ mÞdg, c2 ¼ ðpþ
dÞ fbðd þ d þ mþ ru2Þ þ dðd þ dþ mÞbu2g þ Abbu1u2d
�bfAbu2ðpþ dÞ þ pðmþ ru2Þg, c3 ¼ dðpþ dÞðd þ dþ m

þru2Þ � Abðpþ dð1� u1ÞÞ.

3.2.1 Reproduction number

The infection-free steady state always remains feasible but

the existence and feasibility criteria of the above two

endemic equilibria are different in different conditions.

Before this discussion, we find the explicit form of the

basic reproduction number, which is a very important

parameter related to the characterization of the different

steady states. The next-generation matrix method is applied

in order to obtain the basic reproductive ratio (Van den

Driessche and Watmough 2002).

Let us write system 3 as follows

dx

dt
¼ UðxÞ �WðxÞ;

where x ¼ ðI;R; SÞt and UðxÞ ¼
bSI
0

0

0
@

1
A, WðxÞ ¼

d þ dþ mð ÞI þ ru2I

1þ bu2I

ðpþ dÞR� Au1 � mI � ru2I

1þ bu2I
bSI þ dS� pR� Að1� u1Þ

0
BBB@

1
CCCA:

Now the Jacobian matrices of U and W at the disease-free

equilibrium are calculated as

JðU;E0Þ ¼ F ¼

Abfdð1� u1Þ þ pg
dðd þ pÞ 0 0

0 0 0

0 0 0

0
BBB@

1
CCCA

and
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Fig. 1 Model diagram of the

disease transmission
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JðW;E0Þ ¼ V ¼

ru2 þ d þ dþ m 0 0

�ðmþ ru2Þ pþ d 0

bAfdð1� u1Þ þ pg
dðd þ pÞ � p d

0
BBB@

1
CCCA:

Hence, the basic reproduction number which is calcu-

lated by the spectral radius of the matrix ðFV�1Þ is given
by

R0
0 ¼

Abfdð1� u1Þ þ pg
dðd þ pÞðd þ dþ mþ ru2Þ

:

3.2.2 Existence and stability criteria of equilibrium points

From the quadratic equation (4), it is evident that c3\0 or

[ 0 according to R0
0 [ 1 or \1. So we may come to the

following conclusions:

1. If c1 is zero, then Eq. (4) gives a unique value of I and

the corresponding equilibrium is feasible if and only if

R0
0 [ 1:

2. If c1 6¼ 0, then if

(a) c2\0 and R0
0\1, the quadratic equation (4) may

have two positive roots for I and in this situation

the system has two positive endemic equilibria

E0
1ðS1; I1;R1Þ and E0

2ðS2; I2;R2Þ:
(b) R0

0 [ 1, then there is exactly one change of sign

of Eq. (4) and from Descartes’ rule of sign the

system has only one unique feasible equilibrium

E0
2ðS2; I2;R2Þ.

In the next two theorems, we state the nature of the

infection-free and infected equilibria for system (3).

Theorem 2 The infection-free steady state E0
0 of the

model system (3) is locally asymptotically stable if R0
0\1

and unstable if R0
0 [ 1:

Proof The characteristic equation of the model system (3)

around the infection-free steady state is obtained as

ðkþ dÞðkþ pþ dÞ k� ðbS0 � ðd þ dþ mþ ru2ÞÞ
� �

¼ 0:

Clearly, the above equation has all negative roots if

bS0 � ðd þ dþ mþ ru2Þ� 0, i.e., if R0
0\1. Hence, the

system is asymptotically stable if R0
0\1 and unstable if

R0
0 [ 1: h

Theorem 3 The endemic equilibrium point E0
2 is locally

asymptotically stable if R0
0 [ 1 and ru2

ð1þbu2I2Þ2
[ bS2.

Proof See ‘‘Appendix 1.’’ h

Note Here, the infection-free steady state moves from

stable state to unstable state as R0
0 crosses to 1. Hence, it is

concluded that the system passes through a bifurcation at

R0
0 ¼ 1 around the disease-free equilibrium, known as

backward bifurcation (detailed calculation is given in Sect.

3.6).

In Fig. 2, we present the phenomenon that system (3) is

asymptotically stable at both infection-free and endemic

steady states for different parametric conditions.
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Fig. 2 Solution curves at both infection-free and infected steady states. Parameter set is A ¼ 0:5; u1 ¼ 0:6; r ¼ 0:2; u2 ¼ 0:5;m ¼ 0:03; d ¼
0:01; d ¼ 0:0014; p ¼ 0:78; b ¼ 0:005: When b ¼ 0:001, R0

0\1 and when b ¼ 0:005, R0
0 [ 1
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3.3 When only susceptible individuals dispersal

occurs

In this situation, the model system (1) becomes

dS1
dt

¼ Að1� u1Þ � bS1I1 � dS1 þ pR1 � aS1 þ aS2;

dI1
dt

¼ bS1I1 � ðd þ dÞI1 � mI1 �
ru2I1

1þ bu2I1
;

dR1

dt
¼ Au1 þ mI1 þ

ru2I1
1þ bu2I1

� pR1 � dR1;

dS2
dt

¼ Að1� u1Þ � bS2I2 � dS2 þ pR2 � aS2 þ aS1;

dI2
dt

¼ bS2I2 � ðd þ dÞI2 � mI2 �
ru2I2

1þ bu2I2
;

dR2

dt
¼ Au1 þ mI2 þ

ru2I2
1þ bu2I2

� pR2 � dR2:

ð5Þ

After analyzing the above system, it can be concluded that

the coordinates of disease-free equilibrium are E1
0ðS11; 0;

R1
1; S

1
2; 0;R

1
2Þ and two endemic equilibrium points are E1

1

ðS�11 ; I�11 ;R�1
1 ; S�12 ; I�12 ;R�1

2 Þ and E1
2ðS1�1 ; I1�1 ;R1�

1 ; S�12 ; I�2 ;R
�1
2 Þ

where S11 ¼ S22 ¼ S0, R1
1 ¼ R2

1 ¼ R0, S1�;�11 ¼ S1�;�12 ¼ S1;2,

I1�;�11 ¼ I1�;�12 ¼ I1;2, R1�;�1
1 ¼ R1�;�1

2 ¼ R1;2. Again apply-

ing the next-generation matrix method as earlier, basic

reproduction number R1
0 is evaluated as

R1
0 ¼ qðFV�1Þ ¼ Abfdð1� u1Þ þ pg

dðd þ pÞðd þ dþ mþ ru2Þ
:

Next, we investigate the stability of all the feasible

equilibria.

Theorem 4 The infection-free steady state E1
0 is locally

asymptotically stable (unstable) if R1
0\1ð[ 1Þ.

Proof The Jacobian matrix of the model system (5) at E1
0

is calculated as

JðE1
0Þ ¼

A3 B

B A3

� �
ð6Þ

where

A3 ¼
�ðdþaÞ �bS0 p

0 bS0�ðdþdþmþ ru2Þ 0

0 mþ ru2 �ðdþpÞ

0
B@

1
CA

and

B ¼
a 0 0

0 0 0

0 0 0

0
B@

1
CA:

Following Cui et al. (2006), we may state that the eigen-

values of system (5) are the same as those of the matrices

A3 þ B and A3 � B where

A3þB¼
�d �bS0 p

0 bS0�ðdþdþmþ ru2Þ 0

0 mþ ru2 �ðdþpÞ

0
B@

1
CA

and

A3�B¼
�ðdþ2aÞ �bS0 p

0 bS0�ðdþdþmþru2Þ 0

0 mþru2 �ðdþpÞ

0
B@

1
CA:

The characteristic polynomial of the matrix A3 þ B is

obtained as ðkþ d þ pÞðkþ d þ dþ mþ ru2 � bS0Þðkþ
dÞ ¼ 0, and that of the matrix A3 � B is ðkþ d þ 2aÞðkþ
pþ dÞðkþ dþ d þ mþ ru2 � bS0Þ ¼ 0, and all the roots

of both the matrices are negative if R1
0\1.

Therefore, all the eigenvalues of system 5 are negative

around the disease-free equilibrium. Hence the theorem is

proved. h

The stability analysis of the endemic state of system (5)

will be investigated in the following theorem.

Theorem 5 The endemic steady state E1
2 is locally

asymptotically stable if R1
0 [ 1 and ru2

ð1þbu2I1�1 Þ2 [ bS1�1 .

Proof See ‘‘Appendix 2.’’ h

Note System (5) also passes through a backward bifur-

cation around its infection-free state E1
0: Details regarding

the backward bifurcation phenomenon are presented in

Sect. 3.6.

In Fig. 3, we represent the stability criteria of both the

feasible equilibria of system (5).

3.4 When population dispersal occurs for all classes

Now we discuss the original model (1) to study the trans-

port-related infection when the populations travel among

the cities.

3.4.1 Steady states and their stability analysis

The system possesses a disease-free steady state E2
0ðS21;

0;R2
1; S

2
2; 0;R

2
2Þ, where S21 ¼ S22 ¼ S0, and R2

1 ¼ R2
2 ¼ R0

and two endemic equilibria, namely E2
1ðS�21 ; I�21 ;R�2

1 ;

S�22 ; I�22 ;R�2
2 Þ and E2

2ðS2�1 ; I2�1 ;R2�
1 ; S2�2 ; I2�2 ;R2�

2 Þ, where
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S�2;2�1 ¼S�2;2�2 ¼ru2þdþdþmþbu2I
�2;2�
1 ðdþdþmÞ

ð1þbu2I
�2;2�
1 ÞðbþcaÞ

;

R�2;2�
1 ¼R�2;2�

2 ¼Au1þI�2;2�1 ðAbu1u2þmþru2þmbu2I
�2;2�
1 Þ

ðdþpÞð1þbu2I
�2;2�
1 Þ

;

I�2;2�1 ¼ I�2;2�2 :

Here, I�21 and I2�1 I�21 �I2�1
� �

are the roots of the quadratic

equation

a1I
2 þ a2I þ a3 ¼ 0; ð7Þ

where a1 ¼ bu2ðbþ caÞfdðd þ dþ mÞ þ ðd þ dÞpg, a2 ¼
fðbþ caÞðd þ dþ mþ ru2Þ þ dðd þ dþ mÞbu2gðd þ pÞþ
ðbþ caÞAbu1u2d � ðbþ caÞfAbu2ðpþ dÞ þ pðmþ ru2Þg,
a3 ¼ dðdþpÞðdþdþmþ ru2Þ�Aðbþ caÞfdð1�u1Þþpg:

The threshold quantity R2
0 of the model system (1) is

obtained as R2
0 ¼ qðFV�1Þ ¼ ðbþcaÞS0

ðdþdþmþru2Þ ; where S0 ¼
A dð1�u1Þþp

dðdþpÞ . Here, the existence criteria of the endemic

equilibrium are the same as for system (5).

Next, we discuss the stability of different equilibria of 1.

Theorem 6 The disease-free steady state E2
0 is locally

asymptotically stable if R2
0\1:

Proof The Jacobian matrix of the model system (1)

around the infection-free state E2
0 is obtained as JðE2

0Þ ¼

P Q
Q P

� �
where

P¼
�ðdþaÞ �ðbS0Þ p

0 bS0�ðdþdþmþaþru2Þ 0

0 mþru2 �ðpþdþaÞ

0
B@

1
CA

and

Q ¼
a � caS0 0

0 aþ caS0 0

0 0 a

0
B@

1
CA:

Now

PþQ¼
�d �ðbþcaÞS0 p

0 ðbþcaÞS0�ðdþdþmþru2Þ 0

0 mþru2 �ðpþdÞ

0
B@

1
CA

and

P�Q¼
�ðdþ2aÞ �ðb�caÞS0 p

0 ðb�caÞS0�ðdþdþmþru2þ2aÞ 0

0 mþru2 �ðpþdþ2aÞ

0
B@

1
CA:

The characteristic equations of the matrices PþQ and P�
Q are given in the following:

ðkþ dÞðkþ pþ dÞ
k� ðbþ caÞS0 þ ðd þ dþ mþ ru2Þ
� �

¼ 0;
ð8Þ

ðkþ d þ 2aÞðkþ pþ d þ 2aÞ k� ðb� caÞS0
�

þðd þ dþ mþ ru2 þ 2aÞÞ ¼ 0:
ð9Þ

The roots of Eq. (8) are negative if ðd þ dþ mþ
ru2Þ � ðbþ caÞS0 [ 0, i.e., if R2

0\1. Again all the roots

of (9) are negative if ðb� caÞS0 � ðd þ dþ mþ ru2þ
2aÞ\0, i.e., if

ðb�caÞS0
dþdþmþru2þ2a\R2

0\1: Therefore, all the

eigenvalues of JðE2
0Þ are negative for R2

0\1. Hence, the

theorem is proved. h

Next, we state the stability conditions of the endemic

steady state in the next theorem.
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Fig. 3 Solution curves of system (5) at both the infection-free and infected steady states. The parameters are A ¼ 0:5; r ¼ 0:2; u1 ¼ 0:6;m ¼
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Theorem 7 The endemic steady state E2
2 is locally

asymptotically stable if R2
0 [ 1, b[ ca and ru2

ð1þbu2I
2�
1
Þ2 [

ðbþ caÞS2�1
Proof See ‘‘Appendix 3.’’ h

Note In the above three cases, we see that there are one

disease-free steady state and two endemic states. Disease-

free steady state (E2
0) is stable(unstable) if the reproduction

number is less than (greater than) unity but out of two

endemic equilibria, one which is smaller in magnitude(I�21 )

is always unstable and another(I2�1 ) is stable under some

parametric conditions.

In Fig. 4, we represent the solution curves of system 1.

3.5 Relationship among different reproduction

numbers

As our intention is to study the impact of human mobility

on the transmission dynamics of infectious diseases, here

we compare the basic reproduction number R2
0 due to

populations dispersal of all classes of population with R0
0

when no population dispersal occurs. It has been already

observed that the basic reproduction numbers are equal in

the case of only when susceptible population dispersal

occurs and when no population dispersal occurs. Further,

from the expressions of R2
0 and R0

0;, it is found that R2
0 [R0

0

for c[ 0 and R2
0 ¼ R0

0 for c ¼ 0. Further, as
oR2

0

oc ¼
aS2

1

dþdþmþru2
[ 0, so R2

0 increases as c increases. As for the

higher values of basic reproductive ratio, it is hard to

control the disease. Thus, we may conclude that dispersal

of populations would make hard to control the disease

compare to nondispersal case.

3.6 Backward bifurcation

Here, we discuss the details of backward bifurcation of the

model system (1). It has been already noticed that for

R2
0\1, system (1) gives two feasible steady states. Next,

we state the occurrence of backward bifurcation depending

upon some parametric conditions.

Theorem 8 System (1) undergoes a backward bifurcation

at R2
0 ¼ 1 if and only if a2\0 [Eq. (7)].

Proof For sufficiency, let y ¼ f ðxÞ ¼ a1x
2 þ a2xþ a3.

Now at R2
0 ¼ 1, a3 ¼ 0, and the function f(x) passes

through the origin. For a2\0, the function f ðxÞ ¼ 0 has a

positive root. If we increase the value of a3 from 0 to 0þ,
the function f ðxÞ ¼ 0 has two positive roots in some open

interval of a3. Therefore, it can be proved that there exist

two endemic equilibria when R2
0\1 (for further details, see

Jana et al. 2016a).

On the other hand, if a2 � 0 and R2
0\1, the system has

no positive real roots. This completes the proof. h

In Fig. 5, we present the backward bifurcation scenario.

4 Optimal control problem

It follows from the form of basic reproductive ratio that to

control the disease, it is necessary to increase the treatment

as well as the vaccination among the individuals. But the

best strategy must be the one where infected individuals are

to be reduced with minimum cost. In this regard, optimal

control theory is an impressive and powerful tool in finding

the best strategy. Here, our objective is to minimize the

total infected population of two cities while keeping
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Fig. 4 Solution curves of (1) at both infection-free and infected states. The parameters are A ¼ 0:5; r ¼ 0:2; u1 ¼ 0:6; d ¼ 0:0014; u2 ¼ 0:5;m ¼
0:03; d ¼ 0:01; p ¼ 0:78; b ¼ 0:005; a ¼ 0:3 (when b ¼ 0:001, R2

0\1 and when b ¼ 0:005; R2
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minimum cost associated with the effective vaccination

and suitable treatment. Here, the costs include medicine

and drugs, hiring of medical specialist, etc. Therefore, the

optimal control theory can be applied to obtain a favorable

treatment and vaccination strategy to provide the best

protection with moderate cost (Collins and Govinder

2016). In this regard, the objective functional is given as:

JðS1; I1;R1; S2; I2;R2; u1; u2Þ

¼ min
u1;u2

Z T

0

ðA1I1 þ A2I2 þ A3u
2
1 þ A4u

2
2Þ

ð10Þ

subject to system (1).

Here, Ai; i ¼ 1; 2; 3; 4 are the balancing coefficients in

the objective functional. The first two terms represent the

cost connected with the infected individuals of first and

second cities, respectively, and the last two terms represent

the cost associated with vaccination and treatment,

respectively. We consider the controls u1 and u2 in quad-

ratic forms. This particular form is considered to measure

the acuteness of the side effects of the treatment and (see

Joshi 2002; Bartl et al. 2010; Tchuenche et al. 2011; Kar

and Jana 2013a, b; Laarabi et al. 2015; Collins and

Govinder 2016).

Our main aim is to find the pair of optimal controls

ðu�1; u�2Þ such that

Jðu�1; u�2Þ ¼ min
u1;u22H

Jðu1; u2Þ ð11Þ

where H ¼ fðu1; u2Þ: ðu1; u2Þ is Lebesgue measurable

with 0� u1ðtÞ; u2ðtÞ� 1 for t 2 ½0; T �g.

The Hamiltonian H is given by

HðS1; I1;R1; S2; I2;R2Þ

¼ A1I1 þ A2I2 þ A3u
2
1 þ A4u

2
2 þ k1ðtÞ

dS1
dt

þ k2ðtÞ
dI1
dt

þ k3ðtÞ
dR1

dt
þ k4ðtÞ

dS2
dt

þ k5ðtÞ
dI2
dt

þ k6ðtÞ
dR2

dt

ð12Þ

where the co-state variables kiðtÞ (for i ¼ 1; 2. . .6) are to be

found out using the following set of equations (see Pon-

tryagin et al. 1962):

dk1ðtÞ
dt

¼ � oH

oS1
¼ �½f�bI1 � a� dgk1ðtÞ þ bI1k2ðtÞ

þ a� caI1ð Þk4ðtÞ þ caI1k5ðtÞ�
dk2ðtÞ
dt

¼ � oH

oI1
¼ �½A1 � k1bS1 � k2ðd þ dþ aþ m� bS1

þ ru2

ð1þ bu2I1Þ2
Þ þ k3ðmþ ru2

ð1þ bu2I1Þ2
Þ

� k4caS1 þ k5 aþ caS1ð Þ�
dk3ðtÞ
dt

¼ � oH

oR1

¼ �½k1p� k3ðpþ d þ aÞ þ k6a�

dk4ðtÞ
dt

¼ � oH

oS2
¼ �½k1ða� caI2Þ

þ k2caI2 � k4ðbI2 þ aþ dÞ þ k5bI2�
dk5ðtÞ
dt

¼ � oH

oI2
¼ �½A2 � k1caS2 þ k2ðaþ caS2Þ � k4bS2

þ k5ðbI2 � ðd þ dþ aþ mþ ru2

ð1þ bu2I2Þ2
ÞÞ

þ k6ðmþ ru2

ð1þ bu2I2Þ2
Þ�

dk6ðtÞ
dt

¼ � oH

oR2

¼ �½k3aþ k4p� k6ðpþ d þ aÞ�

ð13Þ

with the transversality conditions

kiðTÞ ¼ 0; i ¼ 1; 2; 3; 4; 5; 6: ð14Þ

Next, the existence of the optimal control pair is studied.

Theorem 9 System (10) has optimal control u�1ðtÞ;
�

u�2ðtÞÞ such that

JðI1ðtÞ; I2ðtÞ; u1ðtÞ; u2ðtÞÞ ¼ min
u1;u2

J I1ðtÞ; I2ðtÞ; u1ðtÞ; u2ðtÞð Þ

subject to the system of Eq. (1).

Proof Since all the state and co-state variables are non-

negative, the pair ðu1ðtÞ; u2ðtÞÞ is also nonnegative. Here,

also the control domain H is bounded and closed. So, the

optimal control is bounded and hence the existence of a

pair of optimal control (ðu�1ðtÞ; u�2ðtÞÞ that minimizes

R
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objective functional (10) subject to system (1) is

confirmed. h

Now the explicit values of the control parameters are

determined in the next theorem.

Theorem 10 The favorable value of the two controls

ðu�1; u�2Þ which reduces the functional J in the domain H is

obtained as u�1 ¼ max f0; min ð �u1; 1Þg and u�2 ¼
max f0; min ð �u2; 1Þg with �u1 ¼ Aðk1þk4�k3�k6Þ

2A3
and �u2 to be

determined as the positive roots of the equation

2A4b
2ðI�21 Þ2u32 þ 4A4bI

�2
1 u22 þ 2A4u2

� rI�21 ðk2 þ k5 � k3 � k6Þ ¼ 0:

Proof Using conditions oH=ou1 ¼ 0 and oH=ou2 ¼ 0,

we obtain the optimal controls u1ð¼ �u1Þ and u2ð¼ �u2Þ. On
the other hand, these two controls are bounded with lower

and upper bound as 0 and 1, respectively, i.e., u1 ¼ 0 if

�u1\0 and u1 ¼ 1 if �u1 [ 1, otherwise u1 ¼ �u1. Similar

result is for the control parameter u2 also. Hence, we obtain

the optimum result of the objective functional J [defined in

(10)] for the controls pair ðu�1; u�2Þ. h

As we have established that there exists a solution of the

system of differential equations (1) and (13), let us assume

that �S1; �I1; �R1
�S2; �I2; �R2 are the solutions of the initial

value problem (1) and �ki; i ¼ 1; 2; . . .; 6 are the solutions

of final value system (13). Next, with the help of computer

simulation, some numerical solutions of the optimal control

problem are provided.

4.1 Numerical experiments based on the optimal

control problem

In this section, we present some numerical simulations

using a simulated parameter set A1 ¼ A2 ¼ A3 ¼ A4 ¼
10; b ¼ 0:12; A ¼ 50; d ¼ 0:05; a ¼ 0:012; b ¼ 0:03; c ¼
0:31;m ¼ 0:0953; d ¼ 0:025; r ¼ 2; p ¼ 0:018: Further,

we consider the time duration as 200 units, for which

the optimal control is applied. We make a comparison

among the four different cases such as (1) only vaccination

is applied, (2) only treatment is applied, (3) both the con-

trols are applied simultaneously and (4) no control is

applied.

Using Runge–Kutta fourth-order iterative procedure, we

solve the original system (1) and the adjoint Eq. (13)

simultaneously. We solve the initial value problem (1)

using Runge–Kutta forward procedure, whereas Runge–

Kutta backward iterative scheme is applied to find the

solution of system (13) (see Lenhart and Workman 2007;

Jung et al. 2002).

We present the various figures representing the model

prediction under different combinations of controls. In

Fig. 6, variation in the susceptible population is presented

and it is observed that the total size of the susceptible

people reduces when the optimal control is applied in

comparison to the no control situation. Our ultimate goal is

to reduce the infected population, and in Fig. 7, we com-

pare the outcomes of both the cities among the infected

population cases, and it is observed that a significant

amount of infected populations is reduced when the two

controls are adopted optimally in comparison with any of

the other three combinations. Similarly, when applying the

optimal control among the recovered individuals (Fig. 8), it

is observed that application of both the controls provides a

sound improvement in the quantity of recovered popula-

tions compared to no control case. The graph representing

recovered populations for both the cases is strictly mono-

tonically increasing compared to that for no control sce-

nario, which is always a strictly decreasing curve.

However, the recovered populations also increase for one

control situation but their rate of increment is less com-

pared to both the control cases. In Fig. 9, time evolution of

both the control parameters u1 and u2 is presented, and in

Fig. 10, time evolution of adjoint variables is presented.

Similar to both the control variables, it is easy to sub-

stantiate that all the six adjoint variables evaporate at their

corresponding final time.

In Fig. 11, we compare the impact of the parameter c on
the infected populations. It is shown that the effect of c is

directly proportional to the increase in the infected indi-

viduals in each city as lower value of that parameter would

enable to reduce the infected populations from each city.

4.2 Illustrations connected to SARS

In this section, the results are compared with the 2003

SARS epidemic scenario, which occurred in several

regions of the eastern and southern Asia. Denphedtnong

et al. (2013) presented the cumulative population fre-

quency of SARS in Hong Kong in 2003 for 54 days (within

March and April). Here, we use the same values of the

parameters as in Denphedtnong et al. (2013) and try to fit

the parameter set in the proposed model. It is observed that

it is a good model to explain the SARS at that time. In

Fig. 12, the model is compared with the SARS outbreak at

Hong Kong during 2003. The simulation result shows that

398 A. Khatua et al.

123



0 50 100 150 200
0

10

20

30

40

50
City 1

Time

Su
sc

ep
tib

le

 

 

With both control
With vaccination control only
With treatment control only
Without any control

0 50 100 150 200
0

10

20

30

40
City 2

Time

Su
sc

ep
til

e

 

 

With both control
With vaccination control only
With treatment control only
Without any control

Fig. 6 Comparison of the susceptible populations of each city with different controls
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our developed model almost approximates that disease

dynamics. The parameters used for the simulation of SARS

are A ¼ 50;A1 ¼ A2 ¼ A3 ¼ A4 ¼ 1; b ¼ 0:16; b ¼ 0:005;

d ¼ 0:5; p ¼ 0:078; a ¼ 0:32; c ¼ 0:31; d ¼ 0:24; r ¼ 0:2;

m ¼ 0:0953: Due to the absence of suitable vaccination of

SARS in 2003 in Hong Kong, we take u1 ¼ 0.
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Fig. 9 Time evolution of two controls u1 and u2
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5 Cost-effectiveness study

As here both the vaccination and treatment control

parameters are used optimally, in the process of optimal

controlling, one must eager to obtain what is the best

strategy among four available strategies, viz. application of

no control, only treatment control, only vaccination control

and both the controls together. In this regard, the cost-

effectiveness analysis method is very popularly used to find

out the most cost-effective strategy. Some well-known

techniques to select the best cost-effective scheme can be

found in Okosun et al. (2011, 2013), Agusto (2013), Kar

et al. (2019). However, the three techniques, namely (1)

infected averted ratio (IAR), (2) average cost-effectiveness

ratio (ACER) and (3) incremental cost-effectiveness ratio

(ICER), are widely used. Here, only the incremental cost-

effectiveness ratio is considered to obtain the most cost-

effective plan among the following strategies: (1) Strategy

A : only vaccination control is used, (2) Strategy B: only

treatment control is used and (3) Strategy C: both the

treatment and vaccination controls are used.

5.1 Incremental cost-effectiveness ratio

Now we apply the ICER technique to identify the best cost-

effective strategy. The main objective of this method is to

make a comparison of the cost-effectiveness of two com-

peting intervention strategies in increasing rank. The ICER

values of the different strategies are obtained following the

work of Agusto (2013).

From Table 1, it is observed that the ICER value of

strategy A is lower than that of strategy B. It implies that

scheme B is more costly and less effective compare to

Strategy A. Hence, strategy B is excluded from the set of

0 50 100 150 200
20

40

60

80

Time

In
fe

ct
ed

 in
 c

ity
1

 

 
γ=0

γ=0.4

γ=1

0 50 100 150 200
20

40

60

80

Time

In
fe

ct
ed

 in
 c

ity
2

 

 
γ=0

γ=0.4

γ=1

Fig. 11 Variations in infected populations for both the cities as c
varies

0 10 20 30 40 50

200

400

600

800

1000

1200

1400

1600

1800

Time

C
um

ul
at

iv
e 

fr
eq

ue
nc

y 
of

 S
A

R
S

model prediction
original data

Fig. 12 Correlation between model prediction and original data of SARS outbreak (where the dotted and solid lines represent original data and

model prediction, respectively)

Impact of human mobility on the transmission dynamics of infectious diseases 401

123



considerations. So now we can compare strategy A and

strategy C using Table 2.

From Table 2, it is noticed that the ICER value for the

scheme C is lower than that of the strategy A, so strategy A

is strongly dominated. This indicates that strategy A is

more costly and less effective than strategy C. Therefore,

we may conclude that scheme C (i.e., combination of both

vaccination and treatment controls optimally) is more cost-

effective than strategy A.

6 Concluding remarks

The development of socioeconomic status, globalization,

tourism and population dispersal between two places cause

the spread of various emerging infectious diseases. In the

recent past, several diseases threaten to become epidemic

due to population dispersal. In this perspective, a transport-

related epidemic model is very much relevant to study.

Jana et al. (2016b) proposed and analyzed an infectious

disease model with population dispersal between two cities

but the effect of treatment control is neglected in that

article. But, treatment is an effective control measure and it

is used frequently to control almost every infectious dis-

ease. From this perspective, in our present article, we

formulate and study the behavior of an SIRS-type epidemic

system incorporating the infection during transport with

treatment control. All possibilities including (1) no popu-

lation dispersal, (2) only susceptible population dispersal

and finally (3) all classes of population dispersal are con-

sidered. It has been established that in each of the different

cases, the system possesses a infection-free steady state and

two possible endemic equilibria depending on some para-

metric conditions. The existence and the stability criteria of

all the feasible equilibria are discussed. It is further shown

that in each of the above three cases, the system undergoes

a backward bifurcation. The qualitative behavior of a

system with a backward bifurcation differs from that of a

system with forward bifurcation. Since these behavior

differences are important in planning how to control a

disease, it is important to determine whether a system can

have backward bifurcation so that proper control measure

can be applied. The reason for the occurrence of backward

bifurcations is consideration of nonlinear treatment func-

tion as observed in Jana et al. (2016a). Two most popular

control measures to control the spread of infectious dis-

eases are vaccination and treatment (e.g., medicine, sur-

gery, hospitalization, etc). In the present model system, we

use these two control measures, to eradicate the disease.

The optimal control problem is designed and solved by

Pontryagin’s minimum principle. As expected, we observe

from our numerical experiment that the application of

control is always a better choice than without controls.

An SIR model related to an epidemic system is not new;

many researchers including Buonomo and Lacitignola

(2011), Zhou et al. (2014), Laarabi et al. (2015), Jana et al.

(2016a), etc., describe the epidemic system through SIR

model. However, to the best of our knowledge, no attempt

has been made to study the behavior of an SIR-type epi-

demic system considering population dispersal and joint

effect of vaccination and treatment control measures. We

have examined the joint impact of vaccination and treat-

ment controls through optimal control strategies. In this

regard, cost-effectiveness analysis plays an important role

in determining the most effective strategy among the dif-

ferent available strategies. Some researchers including

Okosun et al. (2011, 2013), Agusto (2013), etc., have used

cost-effectiveness strategy with some great success. As

here both the vaccination and treatment control parameters

are used optimally, in the process of optimal controlling,

one must eager to obtain what is the best strategy among

four available strategies, viz. application of no control,

only treatment control, only vaccination control and both

the controls together. From the cost-effectiveness analysis,

it is easy to claim that application of both the control

measures optimally gives the best result from the point of

view of minimizing the effect of the disease with least cost.

Without empirical data used in the model, it is difficult

to make any perfect decision. However, our proposed

model can be used to determine the optimal level of

treatment and vaccination, possibility of backward bifur-

cation when the actual model parameters are available. The

model with population dispersal proposed in this work is a

better model to analyze an epidemic system compared to

the mathematical models proposed by Cui et al. (2006),

Liu and Takeuchi (2006), etc., in the sense of nonlinear

saturated treatment function, optimal vaccination and

treatment control, etc. Simulation works of this model

deliver a very good approximation toward the SARS

Table 1 ICER of all strategies

Strategies Total infection averted Total costs ICER

No strategy 0 0 –

Strategy B 3:290� 103 9:4672� 104 28.7757

Strategy A 4:199� 103 9:008� 104 - 5.0517

Strategy C 7:049� 103 7:6690� 104 - 4.6982

Table 2 ICER of strategy A and strategy C

Strategies Total infection averted Total costs ICER

Strategy A 4:199� 103 9:008� 104 21.4592

Strategy C 7:049� 103 7:6690� 104 - 4.6982
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outbreak of Hong Kong in 2003. Other researchers such as

Denphedtnong et al. (2013) and Jana et al. (2016b) also

proposed their models which can be applied to describe

SARS in 2003, but in our present work, we have estab-

lished a good estimation of the epidemic SARS in 2003.

Although for modeling purpose, in the present article, the

population dispersal is considered between two cities only,

but in our future research, we would consider multicity

dispersal. Similarly, in our future research, we would also

consider the demographic parameters of the cities are of

different values and that would increase both the realistic

phenomenon and the degree of complexity. But still we

expect that our proposed model can be used to describe

some infectious diseases which threaten to become epi-

demic mainly due to population scattering.
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Appendix 1

For local stability analysis, we use the Routh–Hurwitz

criteria and we consider the Jacobian matrix of (3) at

E0
2ðS2; I2;R2Þ

J ¼
a11 a12 a13

a21 a22 0

0 a32 a33

0
B@

1
CA:

where a11 ¼ �bI2 � d; a12 ¼ �bS2; a13 ¼ p; a21 ¼ bI2;
a22 ¼ bS2 � ðd þ dþ mÞ � ru2

ð1þbu2I2Þ2
; a23 ¼ 0; a31 ¼ 0; a32

¼ mþ ru2
ð1þbu2I2Þ2

; a33 ¼ �ðpþ dÞ.
Now let the characteristic equation of the Jacobian

matrix J be k3 þ c1k
2 þ c2kþ c3 ¼ 0, where

c1 ¼ �ða11 þ a22 þ a33Þ;
c2 ¼ a11a22 þ a22a33 þ a33a11 � a12a21 and

c3 ¼ a12a21a33 � a13a21a32 � a11a22a33:

Then, as stated in the Routh–Hurwitz criteria, the

eigenvalues of J have negative real parts if c1, c3 and

c1c2 � c3 all are positive.

Now we calculate the coefficients as

c1 ¼ pþ dþ mþ 3d þ bI2 þ ru2

ð1þ bu2I2Þ2
� bS2;

c2 ¼ ðbI2 þ dÞðpþ dÞ þ ru2bI2

ð1þ bu2I2Þ2

þ ðd þ dþ mÞðbI2 þ 2d þ pÞ

þ ð2d þ pÞ ru2

ð1þ bu2I2Þ2
� bS2

 !
and

c3 ¼ ðpþ dÞ b2S2I2 þ pbI2 þ ðbI2 þ dÞðd þ dþ mÞ
� �

þ ðbI2 þ dÞðpþ dÞ ru2

ð1þ bu2I2Þ2
� bS2

 !
:

Also,

c1c2 � c3 ¼
ru2

ð1þ bu2I2Þ2
� bS2

 !2

ðbI2 þ pþ 2dÞ

þ ru2

ð1þ bu2I2Þ2
� bS2

 !
b2S2I2 þ ðbI2þ
�

p

þ 2dÞðpþ 2dþ 4d þ 2mþ bI2Þ
�

þ ðpþ dþ mþ 3d þ bI2Þðd þ dþ mÞ
ðbI2 þ pþ 2dÞ þ b2I2S2

ðdþ mþ 2d þ bI2Þ þ ðpþ dÞððbI2 þ dÞ
ð2d þ bI2Þ þ pdÞ

Now it is easy to note that for ru2
ð1þbu2I2Þ2

[ bS2, c1; c2; c3 all
are positive and also c1c2 [ c3. Thus, for

ru2
ð1þbu2I2Þ2

[ bS2,

Routh–Hurwitz criteria are satisfied. Hence, the endemic

steady state E0
2 is locally asymptotically stable for R0

0 [ 1

and ru2
ð1þbu2I2Þ2

[ bS2.

Appendix 2

The Jacobian matrix of system (5) at E1
2 is given by

JðE1
2Þ ¼

A4 B

B A4

� �

where

A4 ¼

�ðbI1�1 þ d þ aÞ � bS1�1 p

bI1�1 bS1�1 � ðd þ dþ mÞ � ru2

ð1þ bu2I
1�
1 Þ2

0

0 mþ ru2

ð1þ bu2I
1�
1 Þ2

� ðd þ pÞ

0
BBBBB@

1
CCCCCA

and B is the same as earlier. We observe that A4 þ B is

similar as JðE0
2Þ and the detailed proof is similar as given in

Appendix 1. Hence, A4 þ B is stable if R1
0 [ 1 and
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ru2
ð1þbu2I

1�
1
Þ2 [ bS1�1 .

Now

A4�B¼

�ðbI1�1 þdþ2aÞ �bS1�1 p

bI1�1 bS1�1 �ðdþdþmÞ� ru2

ð1þbu2I
1�
1 Þ2

0

0 mþ ru2

ð1þbu2I
1�
1 Þ2

�ðdþpÞ

0
BBBBB@

1
CCCCCA
:

Thus, it is enough to verify that the matrix A4�B fulfills

the Routh–Hurwitz criteria. We already checked that

R0
0 ¼R1

0. Now let the characteristic equation of the matrix

A4�B be k3þd1k
2þd2kþd3 ¼ 0, then

d1¼3dþ2aþpþdþmþbI1�1 þ ru2

ð1þbu2I
1�
1 Þ2

�bS1�1

 !
;

d2¼ðbI1�1 þdþ2aÞðpþdÞþðbI1�1 þ2dþ2aþpÞðdþdþmÞ

þ ru2bI1�1
ð1þbu2I

1�
1 Þ2

þðpþ2dþ2aÞ

ru2

ð1þbu2I
1�
1 Þ2

�bS1�1

 !
and

d3¼ðpþdÞ b2S1�1 I1�1 þpbI1�1 þðbI1�1 þdþ2aÞðdþdþmÞ
� �

þðbI1�1 þdþ2aÞðpþdÞ ru2

ð1þbu2I
1�
1 Þ2

�bS1�1

 !
:

Also after some simplifications, we obtain

d1d2�d3¼
ru2

ð1þbu2I
1�
1 Þ2

�bS1�1

 !2

ðbI1�1 þpþ2dþ2aÞ

þ ru2

ð1þbu2I
1�
1 Þ2

�bS1�1

 !
b2S1�1 I1�1
�

þðbI1�1 þpþ2dþ2aÞ
ðpþ2dþ4dþ2mþ2aþbI1�1 Þ

�
þðpþdþmþ3dþbI1�1 þ2aÞðdþdþmÞ
ðbI1�1 þpþ2dþ2aÞ
þb2S1�1 I1�1 ðdþmþ2dþbI1�1 þ2aÞ
þ ðpþdÞ ðbI1�1 þdþ2aÞð2dþbI1�1 þ2aÞ

�
þpðdþ2aÞÞ

Now it is easy to observe that for ru2
ð1þbu2I

1�
1
Þ2 [ bS1�1 ,

di [ 0; i ¼ 1; 2; 3 and d1d2 [ d3. Then, all the conditions

of Routh–Hurwitz criteria are satisfied for ru2
ð1þbu2I

1�
1
Þ2 [

bS1�1 . Hence, A4 � B is stable for R1
0 [ 1, ru2

ð1þbu2I
1�
1
Þ2 [ bS1�1 .

Therefore, combining the above two cases, we conclude

that the endemic steady state E1
2 is locally asymptotically

stable if R1
0 [ 1 and ru2

ð1þbu2I
1�
1
Þ2 [ bS1�1 . Hence, the theorem

is proved.

Appendix 3

The Jacobian matrix of system (1) at E2
2 is given by

JðE2
2Þ ¼

P3 Q3

Q3 P3

� �
;

where

P3 ¼

�ðd þ bI2�1 þ aÞ � ðbS2�1 Þ p

bI2�1 bS2�1 � ðd þ dþ mþ aþ ru2

ð1þ bu2I
2�
1 Þ2

Þ 0

0 mþ ru2

ð1þ bu2I2�1 Þ2
� ðpþ d þ aÞ

0
BBBBB@

1
CCCCCA

and

Q3 ¼
a� caI2�1 � caS2�1 0

caI2�1 aþ caS2�1 0

0 0 a

0
B@

1
CA:

Now to check that the matrix P3 þ Q3 satisfies the Routh–

Hurwitz criteria, we consider the characteristic equation of

the matrix as k3 þ m1k
2 þ m2kþ m3 ¼ 0, where

m1 ¼ pþ dþ mþ 3d þ bþ cað ÞI2�1
þ ru2

ð1þ bu2I2�1 Þ2
� bþ cað ÞS2�1 ;

m2 ¼ ððbþ caÞI2�1 þ dÞðpþ dÞ þ ru2ðbþ caÞI2�1
ð1þ bu2I2�1 Þ2

þ ðd þ dþ mÞððbþ caÞI2�1 þ 2d þ pÞ

þ ð2d þ pÞ ru2

ð1þ bu2I
2�
1 Þ2

� ðbþ caÞS2�1

 !
and

m3 ¼ ðpþ dÞ ðbþ caÞ2S2�1 I2�1 þ pðbþ caÞI2�1
�

þðd þ dþ mÞðd þ ðbþ caÞI2�1 Þ
�

þ ðpþ dÞðd þ ðbþ caÞI2�1 Þ ru2

ð1þ bu2I2�1 Þ2
� ðbþ caÞS2�1

 !
:

Also after some simplifications, we obtain

m1m2 � m3

¼ ru2

ð1þ bu2I2�1 Þ2
� bS2�1

 !2

ððbþ caÞI2�1 þ pþ 2dÞ

þ ru2

ð1þ bu2I2�1 Þ2
� bS2�1

 !
ðbþ caÞ2S2�1 I2�1

�

þððbþ caÞI2�1 þ pþ 2dÞðpþ 2dþ 4d þ 2mþ ðbþ caÞI2�1 Þ
�

þ ðpþ dþ mþ 3d þ ðbþ caÞI2�1 Þðd þ dþ mÞ
ððbþ caÞI2�1 þ pþ 2dÞ
þ ðbþ caÞ2S2�1 I2�1 ðdþ mþ 2d þ ðbþ caÞI2�1 Þ
þ ðpþ dÞðððbþ caÞI2�1 þ dÞð2d þ ðbþ caÞI2�1 Þ þ pdÞ:

Now it is easy to note that if ru2
ð1þbu2I

2�
1
Þ2 [ bþ cað ÞS2�1 , then

mi [ 0; i ¼ 1; 2; 3 and m1m2 [m3, i.e., the Routh–Hurwitz

criteria are satisfied.
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Now to check the eigenvalue of the matrix P3 � Q3, we

consider that the characteristic equation of the matrix P3 �
Q3 is k3 þ n1k

2 þ n2kþ n3 ¼ 0 where

n1 ¼ pþ dþ mþ 3d þ 6aþ ðb� caÞI2�1
þ ru2

1þ bu2I
2�
2

� �2 � ðb� caÞS2�1 ;

n2 ¼ ðpþ d þ 2aÞ d þ 2aþ ðb� caÞI2�1
� �

þ ðd þ dþ mþ 2aÞ
pþ 2d þ 4aþ ðb� caÞI2�1
� �

þ ru2ðb� caÞI2�1
1þ bu2I

2�
1

� �2
þ pþ 2d þ 4að Þ

ru2

1þ bu2I
2�
1

� �2
 

�ðb� caÞS2�1
�
and

n3 ¼ ðpþ d þ 2aÞ ðb� caÞ2I2�1 S2�1

�

þ pI2�1 ðb� caÞ þ ðd þ dþ mþ 2aÞðd þ 2a

þðb� caÞI2�1 Þ
�

þ ðpþ d þ 2aÞðd þ 2aþ ðb� caÞI2�1 Þ

ru2

ð1þ bu2I
2�
1 Þ2

 

�ðb� caÞS2�1
�
:

Moreover, after some simplifications, we obtain

n1n2� n3

¼ ru2

ð1þ bu2I
2�
1 Þ2

�ðb� caÞS2�1

 !2

ððb� caÞI2�1 þ pþ 2dþ 4aÞ

þ ru2

ð1þ bu2I2�1 Þ2
�ðb� caÞS2�1

 !
ðb� caÞ2S2�1 I2�1

�

þ ððb� caÞI2�1 þ pþ 2dþ 4aÞ
ðpþ 2dþ 4dþ 2mþ 8aþðb� caÞI2�1 Þ

�
þ ðpþ dþmþ 3dþ 6aþðb� caÞI2�1 Þðdþ dþmþ 2aÞ
ððb� caÞI2�1 þ pþ 2dþ 4aÞþ ðb� caÞ2S2�1 I2�1

ðdþmþ 2dþ 4aþðb� caÞI2�1 Þ
þ ðpþ dþ 2aÞðððb� caÞI2�1 þ 2dþ 4aÞðdþ 2a

þ ðb� caÞI2�1 Þþ pðdþ 2aÞÞ:

Now if b� ca[ 0, and ru2
ð1þbu2I

2�
1
Þ2 [ ðb� caÞS2�1 , then

ni [ 0; i ¼ 1; 2; 3 and n1n2 [ n3. Then, all the conditions

of Routh–Hurwitz criteria are satisfied.

So, combining both the above two results, it may be

concluded that the eigenvalues of JðE2
2Þ are all negative or

have negative real part if R2
0 [ 1, b[ ca and

ru2
ð1þbu2I

2�
1
Þ2 [ ðbþ caÞS2�1 . Hence, the theorem is proved.
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