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Abstract
Additive manufacturing is familiar among modern manufacturing techniques due to its flexibility, efficiency in material usage 
and ability to manufacture intricate and complex structures. This research uses the Fused Deposition Modelling (FDM) tech-
nique to print the Polylactic Acid (PLA) material for testing the compressive strength. There are numerous process parameters 
which affect the quality of the product available to manufacture the component through FDM. Infill density, Infill Pattern, 
and Layer height have been varied at three levels, and a total of 81 compressive samples have been tested. The compression 
test was conducted with a strain rate of 0.05 mm/min. The highest compressive strength of 71.77 MPa was measured for 0.1 
layer height, 100% infill density, 90-degree raster angle, and infill line pattern. The lower layer height seems to have higher 
compressive strength. Machine learning algorithms have been employed to understand the complicated relations between 
the process parameters. Optuna and GridSearchCV optimization techniques have been used to tune the hyperparameter to 
produce better results and predictions. Based on the Mean Squared Error (MSE) and R2 values, it is found that the Optuna 
optimization techniques are performing better than GridSearchCV for this data set. Support Vector Regression (SVR) is 
observed to be a poor-performing model with and without optimization techniques. CatBoost constantly beats the other 
models, such as Linear Regression, Decision Tree, SVR, and AdaBoost XGBoost, by having the lowest Mean Squared Error 
and R2 score. At the same time, Optuna and GridSearchCV optimization techniques are used. This research work will help 
the research community and the users of additive manufacturing to predict the behaviour of different process parameters and 
the influences of these parameters to predict the compressive strength of the additive-manufactured materials.
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1 Introduction

The manufacturing process has to enrich its capability to 
meet the demand that arises due to the increasing population 
and preferences of individuals. The intricate, dynamic, and 
chaotic behaviours impose constraints on the manufacturing 

system [1], and hence, the manufacturing of high-quality 
products in a fruitful way with the available resources is 
essential. One of the important objectives is manufacturing 
the product at the lowest possible cost [2].

The global landscape of manufacturing gives away a lot 
of challenges that require strategic planning and innovative 
solutions. These challenges admit the fostering of advanced 
manufacturing technology to enrich efficiency and com-
petitiveness. They also admit the increasing consequences 
of manufacturing high-value order products to meet grow-
ing market needs and that it is essential to force advanced 
knowledge, information management, and artificial intel-
ligence systems for sustainability growth [3]. Sustainable 
manufacturing practices and products are highly important 
in meeting environmental interests and assuring long-term 
viability. Moreover, the agility and adaptability of enterprise 
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capabilities and supply chains are essential for implementing 
driving market conditions [4].

Innovation in products, services, and processes is a moti-
vational force for keeping ahead in a competitive market 
while nurturing tight collaboration between industry and 
research that advances the implementation of modern tech-
niques and encourages continuous improvement. Taking up 
a new manufacturing blueprint is highly needed for steering 
the difficulties of the modern industrial landscape and attain-
ing sustainable progress in a fast-growing global economy 
[5].

The traditional manufacturing system finds it difficult to 
face the presumptions of the contemporary industry. This 
is due to the inherent limits of the traditional system for 
manufacturing complex parts. The elegant design and intri-
cate geometry of modern products exceed the proficiency of 
traditional manufacturing processes in the situation [6, 7]. 
Additive manufacturing rises to be a game-changing sce-
nario for this mystery. Additive manufacturing gives extraor-
dinary adaptability and precision in manufacturing the com-
ponents that were not possible or challenging through the 
traditional processes. This is done by stacking the material 
to build up the parts based on digital design [8].

This technology transforms the manufacturing of compli-
cated components in all industries by not only controlling 
the limitations of traditional manufacturing but also gener-
ating new opportunities for producing customized compo-
nents and on-demand production. With the development of 
additive manufacturing, manufacturing capabilities are step-
ping into a new age by noticeable creativity and competency 
rather than complexity acting as a hurdle [9].

Additive manufacturing manufactures 3D objects from 
digital blueprints by layer-by-layer deposition. Fused Depo-
sition Modeling (FDM) is one of the most affordable and 
commonly available techniques among all the additive man-
ufacturing processes. The materials that are primarily used 
are metals, powders, polymers, and resin to manufacture 
intricate components. Fused Deposition Modeling makes 
use of thermoplastic and thermoelastic materials [10–12]. 
To easily manufacture prototypes and complex functional 
components at a faster rate, FDM is a convenient and eco-
nomical way. It is the best choice for small-scale industries, 
educational institutes, and researchers. FDM is highly useful 
for investigating the possibilities of additive manufacturing. 
The installation of this facility requires a low investment 
with minimal material waste, ease of use, and simple setup 
[13–15]. FDM is a valuable technique in the field of additive 
manufacturing, because it ensures a good level of adapt-
ability and reliability despite its affordability. It finds a wide 
range of applications across sectors [16, 17].

There are numerous process parameters in the FDM 
process, and the complex relation between the parame-
ters strongly influences the quality and functionality of 

the component. The temperature of filament extrusion, 
speed of deposition, layer height, and infill density play 
an important role in getting the final products [18, 19]. The 
overall quality and consistency of the printed products are 
also governed by ambient temperature and humidity. Cali-
bration of bed levelling and the distance between the noz-
zle and the bed will have an equal influence; a thorough 
knowledge of the FDM process and the ability to meticu-
lously balance these many variables to steer this complex 
set of parameters are needed to avail the final product [20, 
21]. FDM users can fully understand the potential of this 
process by carefully adopting and optimizing these param-
eters, resulting in the manufacturing of high-quality, func-
tional parts that meet the requirements of several indus-
tries and applications [22, 23]. Hence, an understanding 
of these process parameters is highly required to move 
towards successful manufacturing.

Traditional modelling approaches are often challenged 
by the intricate interconnections between the abundance 
of parameters connected in FDM printing and the end 
product’s attributes. The complex and non-linear nature 
of these interconnections provides a major hurdle for 
manufacturers trying to sleek their operations and reli-
ably create high-quality parts. However, the development 
of machine learning algorithms provides a thorough way 
out of this conundrum. These enlightened algorithms can 
highly apprehend the complex interconnections between 
the different printing process parameters, material attrib-
utes, and the intended results by employing the power of 
data-driven learning.

Machine learning models are capable of revealing pat-
terns and intuitions that would be challenging to identify 
with the conventional mathematical relations by look-
ing over large datasets. This creates new possibilities for 
additive manufacturing in terms of consistency, quality, 
and efficiency by permitting businesses to fine-tune their 
FDM processes with previously unprecedented accuracy. 
Machine learning is a rapidly evolving area, and its combi-
nation with additive manufacturing has a huge prospective 
to help industries shoot the limits of 3D printing and ham-
mer out the complexity of this ever-changing environment. 
Most of the research works are available in the develop-
ment of various machine learning models for predicting 
the property. However, not many more works have been 
presented to understand the effect of different hyperpa-
rameter optimization techniques on improving the metrics 
for better prediction. Hence, an initiative is taken through 
this research work to develop a machine learning model 
considering GridSearchCV and Optuna hyperparameter 
optimization techniques to understand the behaviour of 
process parameters and predict the compression strength 
of additive-manufactured specimens.
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2  Machine learning in manufacturing

The industrial sector is moving through a revolutionary 
period as n outcome of the advent of the digital age, and 
the implementation of machine learning algorithms is now 
crucial to growth and innovations.

These enlightened computational tools have become 
the genius of the modern shop floor, setting a euphonious 
interplay between process optimization, quality control, and 
predictive maintenance, much like a harmony of data and 
algorithms. The flexibility of machine learning has become 
a motivational force in the stalking of manufacturing great-
ness, from the accuracy of supervised learning models in 
foreseeing product attributes to the investigational ability of 
unsupervised models in disclosing concealed patterns [24, 
25].

The manufacturing, testing, and adaptability of the 
machining learning process are shown in Fig. 1. These 
data-driven algorithms have materialized as the indus-
try’s ambit, opening new routes to effectiveness, agil-
ity, and resilience as they thrash out the challenges of 
untamed international competitiveness and constantly 
modulate consumer demands. In this new area, the pos-
sibilities are infinite, and the products of the future will be 

manufactured with the accuracy and perception that only 
machine learning can provide. This has been made pos-
sible by the unification of human knowledge and machine 
intelligence [26, 27].

Machine learning algorithms are mainly clustered into 
linear and non-linear algorithms. The foundation of linear 
algorithms is the assumption that there is a linear rela-
tionship between the input features and goal variables. To 
make smoother, simpler explication and forecasting, these 
algorithms search for identifying the linear function that 
best meets the data. Non-linear algorithms do not make the 
presumption of a linear relationship between the input fea-
tures and the goal variable. The data can have more com-
plicated, non-linear patterns modelled by these methods.

ML models are capable of carrying out operations, 
including dimensionality reduction, grouping, regression, 
and classification [28, 29]. In this research work, linear 
regression, a well-established technique from the linear 
models category, has been used to assist as a baseline for 
prediction. In addition, we employed a variety of non-
linear models, such as support vector machines (SVM), 
XGBoost, decision trees, random forests, and AdaBoost, 
to capture the potentially intricate relationships between 
the influencing factors and the compression behaviour of 
additively manufactured PLA material.

Fig. 1  Flow of manufacturing, testing, and machine learning
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2.1  Linear regression

Linear regression is a fundamental statistical method used 
in machine learning and data science to predict a continu-
ous outcome variable based on one or more predictor vari-
ables. It gets its name as it assumes a linear relationship 
between the input variables and the single output variable. It 
mathematically models the unknown or dependent variable 
and the known or independent variable as a linear equa-
tion. Linear regression models are relatively simple and pro-
vide an easy-to-interpret mathematical formula to generate 
predictions. Linear regression is an established statistical 
technique that is easily applied to software and computing. 
Many fields, including biology and the behavioural, envi-
ronmental, and social sciences, employ linear regression to 
conduct preliminary data analysis and predict future trends. 
Many data science methods, such as machine learning and 
artificial intelligence, use linear regression to solve complex 
problems [30].

2.2  Support vector regression (SVR)

Support Vector Regression (SVR) is a type of Support Vec-
tor Machine (SVM) that is used for regression problems. 
Unlike linear regression, which aims to minimize the error 
between predicted and actual values, SVR aims to find a 
function that deviates from the actual observed values by 
a value no greater than a specified margin. SVR uses the 
concept of a hyperplane and margin, but their definitions 
are different. In SVR, the margin is defined as the error tol-
erance of the model, which is also called the ε-insensitive 
tube. This tube allows some deviation of the data points from 
the hyperplane without being counted as errors. The hyper-
plane is the best fit possible to the data that fall within the 
ϵ-insensitive tube. SVR can be mathematically formulated 
as a convex optimization problem. The objective of the prob-
lem is to find a function f(x) that is as flat as possible while 
having a maximum deviation of ε from the actual targets for 
all the training data. The flatness of the function implies that 
it is less sensitive to small changes in the input data, which 
reduces the risk of overfitting [31].

2.3  Decision tree (DT)

A decision tree is a non-parametric supervised learning 
algorithm which is utilized for both classification and 
regression tasks. It has a hierarchical tree structure, which 
consists of a root node, branches, internal nodes, and leaf 
nodes. Decision tree learning employs a divide-and-con-
quer strategy by conducting a greedy search to identify 
the optimal split points within a tree. This process of 
splitting is then repeated in a top–down, recursive manner 
until all or the majority of records have been classified 

under specific class labels. Pruning techniques in deci-
sion trees are essential to enhance the model’s generali-
zation capability and prevent overfitting, which occurs 
when the tree captures noise in the training data rather 
than the underlying patterns. Pruning can be categorized 
into two main types: pre-pruning and post-pruning. Pre-
pruning, also known as early stopping, involves halting 
the tree growth at an early stage by setting conditions, 
such as a maximum tree depth, a minimum number of 
samples required to split a node, or a minimum number 
of samples required to be at a leaf node. By imposing 
these constraints, pre-pruning reduces the complexity of 
the model and thus mitigates overfitting. Post-pruning, 
on the other hand, allows the tree to grow to its full depth 
and then removes nodes that contribute little to the pre-
dictive power of the model. This is done by evaluating 
the impact of removing certain branches on the model’s 
performance, typically using metrics like cost complexity 
pruning. Post-pruning techniques include reduced error 
pruning, which removes nodes if their absence does not 
reduce model accuracy on a validation set, and cost com-
plexity pruning, which prunes the tree by considering a 
trade-off between the complexity of the tree and its fit to 
the data. Both pre-pruning and post-pruning aim to cre-
ate a balance between model complexity and predictive 
accuracy, ensuring the decision tree remains interpretable 
while effectively generalizing to unseen data [32].

2.4  XGBoost

XGBoost (eXtreme Gradient Boosting) is an advanced 
implementation of the gradient-boosting machine learning 
algorithm designed for speed and performance. Developed 
by Tianqi Chen, XGBoost provides an efficient and scalable 
framework for tree boosting, which is particularly power-
ful for structured/tabular data [33]. The algorithm uses an 
ensemble of decision trees to improve predictive accuracy 
through iterative boosting, where each new tree corrects 
errors made by the previous ones. Key features of XGBoost 
include parallelization for faster computation, handling of 
missing values, and regularization techniques to prevent 
overfitting. Its ability to manage large datasets and sup-
port custom optimization objectives and evaluation criteria 
makes XGBoost a preferred choice for many data scientists 
and machine learning practitioners [34].

2.5  AdaBoost

AdaBoost, short for Adaptive Boosting, is an ensemble 
learning algorithm that combines multiple weak classifiers 
to form a strong classifier. Developed by Yoav Freund and 
Robert Schapire in 1996, AdaBoost works by sequentially 
training weak learners, typically decision trees with a single 
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split (decision stumps), on the weighted versions of the 
dataset [35]. After each iteration, the algorithm adjusts the 
weights of incorrectly classified instances, increasing their 
importance in the next round. This process helps subsequent 
classifiers focus on the harder-to-classify instances. Ada-
Boost’s ability to improve the performance of weak learners 
while maintaining simplicity and interpretability has made it 
a widely used technique in machine learning. However, it is 
sensitive to noisy data and outliers, which can significantly 
affect its performance.

2.6  CatBoost

CatBoost (Categorical Boosting) is a gradient-boosting 
algorithm specifically designed to handle categorical fea-
tures effectively. Developed by Yandex, CatBoost aims 
to provide high performance and ease of use, particularly 
for datasets with a significant number of categorical vari-
ables [36]. Unlike traditional gradient-boosting algorithms, 
which require extensive preprocessing of categorical data, 
CatBoost automatically processes categorical features dur-
ing training, thereby reducing the need for manual feature 
engineering. This is achieved through techniques like target-
based statistics and efficient handling of categorical splits. 
CatBoost also includes features like ordered boosting, which 
mitigates overfitting and is known for its robustness and 
speed [37]. Its ability to handle categorical data without 
extensive preprocessing makes it particularly valuable for 
tasks involving tabular data with mixed types of features.

3  Materials and methods

PLA is utilized in a wide range of 3D printing applications, 
including medical equipment, food packaging, injection 
moulding, and general prototyping. Its biodegradability 
and biocompatibility make it ideal for applications such as 
implanted devices.

PLA has been sourced from WOL 3D. It has been used 
for several small- and large-scale applications based on its 
specific strength. The prediction of the compression strength 
of PLA will further enhance its usage in different fields. 
Some of the special applications of PLA where its compres-
sive behaviour plays a vital role are brackets, load bearings 
members, partitions, non-load-bearing walls, and interior 
wall panels. It is also used in a scale to hold the medicine in 
plants during healing.

The most popular type of additive manufacturing (AM) 
is material extrusion, and the most popular method of this 
type of AM is desktop-scale thermally driven fused deposi-
tion modelling [38]. A variety of process parameters are 
crucial in explicating the quality and attributes of additively 

manufactured components using fused deposition modelling 
(FDM).

In this research work, PLA has been chosen as the candi-
date material. ASTM D695 has been used to fabricate sam-
ples with the dimensions of 15 × 10 × 5 mm [39, 40]. The 
samples were fabricated using the PRATHAM 3.0 (India), a 
multi-purpose 3D printer. It comes with a silicon pre-heated 
build plate, which lowers the model warpage during manu-
facture. The machine can produce complex geometries fast 
and components up to 300 mm × 300 mm × 300 mm in size. 
The Fabrication of Samples in the FDM Printer is shown 
in Fig. 2. UltiMaker Cura 5.8 slicing engine has been used 
for slicing.

3.1  Process parameters

These parameters include machine settings as well as print-
ing parameters. Nozzle temperature, bed temperature, and 
diameter of the nozzle are coming under the machine set-
tings category. Layer thickness, raster angle, infill %, build 
orientation, and printing speed are coming under the print-
ing parameters category. Material composition, extrusion 
speed, and temperature are material (filament) features that 
will have a noteworthy influence on the printing outcomes. 
Part quality, mechanical characteristics, dimensional accu-
racy, surface finish, productivity, and energy efficiency will 
be critically impacted by these complex relations. To have 
high quality and efficiency in FDM 3D printing processes, 
this complex seat of process parameters has to be optimized 
successfully.

Among the large process parameters, infill, infill pat-
tern, raster orientation, and layer thickness have an exten-
sive impact on 3D printing results. Figure 3 illustrates the 
selected process parameters, and Table 1 shows the varia-
tions of levels in the process parameters.

Further, these parameters will have a noteworthy impact 
on the final product’s strength, durability, weight, material 
usage, print time, cost, finish, and printability. Understand-
ing and adjusting these process parameters require attention 
to manufacturing high-quality, efficient, and cost-effective 
components. This research work highlights the complicated 
relations between these parameters and their effects on the 
compressive strength of the printed parts and notes the sig-
nificance of rigorous process parameter management and 
optimization.

3.2  Evaluation of compressive strength

The printed samples have been subjected to compressive 
tests. The test was conducted in the Tinus Olsen Universal 
Testing Machine that can test the materials with a 50 kN 
load cell connected with a data acquisition system to get 
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real-time data and store it. The strain rate has been main-
tained at 0.5 mm/min. The testing of additive-manufactured 
PLA and the overall methodology followed in the research 
are shown in Figs. 4 and 5, respectively.

Fig. 2  Fabrication of samples in FDM printer

Fig. 3  Selected process param-
eters

Table 1  Process parameters and their variations

S. no Parameters Level 1 Level 2 Level 3

1 Layer Height 0.1 mm 0.2 mm 0.3 mm
2 Infill density 50% 75% 100%
3 Infill Pattern Lines Cubic TriHexagonal
4 Raster Orientation 0° 45° 90°
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Fig. 4  Testing of additive-man-
ufactured PLA

Fig. 5  Methodology of research 
work
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4  Results and discussion

In this research work, additive manufacturing of PLA com-
pressive specimens was printed using the FDM technique. 
Infill, Infill pattern, layer height and Raster Orientation 
have been varied during the printing of the specimens. 
Linear Regression, Support Vector Regression, Adaboost, 
XGBoost, CatBoost, and Decision tree machine learning 
models have been employed to understand the relationship 
between the process parameters and predicting the ulti-
mate compressive stress. Python code has been developed 
to predict the performance metrics without hyperparam-
eter optimization. GridSearchCV and Optuna optimization 
techniques were used to predict performance metrics indi-
vidually. The measured compressive strength of different 
process parameter combinations is shown in Table 2.

4.1  Effect of input parameters on compressive 
strength

The box plots (Fig. 6) reveal that most of the data points 
and the median for compressive strength are situated 
higher at 0.1 mm layer height as conflicting with 0.2 mm 
and 0.3 mm layer heights. This indicates that when the 
material is printed with 0.1 mm layer height, it has a 
higher compressive strength. The reason for notifying the 
higher compressive strength is that a stronger bonding 
could have been formed between the layers, which might 
have fused and yielded the higher compressive strength. 
This will result in good load-bearing capacity when sub-
ject to compressive loading. When the layer thickness (0.2 
and 0.3 mm) is increased, the bonding between the layers 
may not be as good as the one printed with the lower thick-
ness (0.1 mm), which could be the reason for the decreased 
compressive strength. Overall, the infill density height 
has a positive correlation with compressive, and the Ras-
ter orientation does not have any effect on Compressive 
strength. Among the Line, cubic and TriHexagonal infill 
Patterns, the compressive strength is higher for TriHex-
agonal followed by cubic and lines.

Figure 7 presents the pair plots of the effect of input 
parameters on compressive strength. Infill density, layer 
height, infill pattern, and raster orientation are all impor-
tant aspects in determining the ultimate stress or strength 
of 3D printed items. They play a crucial role in determin-
ing the compressive strength of printed components. Infill 
density has the greatest apparent outcome, with higher 
infill ensuing in greater strength amongst all other param-
eter combinations. The influences of layer height, infill 
pattern, and raster orientation are more complicated and 
interrelated. Increasing layer height can somewhat reduce 

strength for some infill patterns, such as linear lines, most 
likely due to weaker bonding between thicker layers.

Nevertheless, more sophisticated infill patterns, such as 
TriHexagonal, show less fluctuation in strength across layer 
height. The infill pattern is a significant effect, with TriHex-
agonal typically surpassing linear infill in terms of ultimate 
stress. Raster orientation also has an effect, with 0 and 90 
degree orientations yielding stronger linear infill than 45 
degrees. However, the TriHexagonal pattern is less affected 
by the raster angle. Overall, optimizing the combination 
of these 3D printing settings is critical for increasing the 
strength and performance of the finished part.

4.2  Hyperparameter optimization of GridSearchCV 
and Optuna

Table 3 shows the best hyperparameter optimization param-
eters for GridSearchCV and Optuna. The best parameter for 
both the optimization of the decision tree algorithm indicates 
that the model is performing well when the maximum depth 
is limited to 4 levels. When we go deeper, it will lead to 
overfitting, while shallow depth will lead to underfitting.

In support vector regression (SVR), C is the parameter 
that controls the regularization strength. Here, the value of 
C is 10 for GridSearchCV optimization, which seems to be 
higher, indicating that the model should prioritize fitting 
the training data closely. Epsilon indicates the width of the 
epsilon tube, and the lower value indicates the narrow width 
of the tube and reflects the cause indicated by the C param-
eter. Optuna discovered somewhat different values for C and 
epsilon than GridSearchCV did, suggesting that even tiny 
changes to these hyperparameters could have an impact on 
the model's performance.

The learning rate controls the contribution of each model 
to the final combination. More aggressive boosting is the 
outcome of a higher learning rate, whereas more conserva-
tive boosting is the result of a lower learning rate. The num-
ber of weak learners (base models) to be trained successively 
is determined by the number of estimators (n_estimators). 
An excess of estimators may cause overfitting, whilst an 
insufficient number could cause underfitting. Optuna dis-
covered various values for the learning rate and the num-
ber of estimators, indicating that it looked into a different 
hyperparameter space and discovered a different setup that 
reduced the objective function.

XGBoost has settings for learning rate and number of 
estimators, just like AdaBoost. To prevent overfitting, the 
learning rate is moderated, and the maximum depth of the 
trees is set to 3. This indicates a relatively shallow tree struc-
ture. In contrast to GridSearchCV, Optuna.

identified a different set of hyperparameters, suggesting 
that it may have searched a larger area and found a setup that 
more successfully minimized the objective function.
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The parameters of CatBoost are learning rate, depth, 
and number of iterations. Like max_depth in other models, 
depth regulates the trees’ depth. During the optimization 
process, the step size is governed by the learning rate. In 
comparison to GridSearchCV, Optuna discovered distinct 
values for depth, l2_leaf_reg, border_count, learning rate, 
and iterations, indicating a more thorough examination of 
the hyperparameter space.

Figure 8 shows MSE and R2 values of Training for each 
model with and without Optimization. When compared to 
running multiple models without optimization, optimization 
approaches like GridSearchCV and Optuna have demon-
strated considerable gains in the performance metrics (MSE 
and R2 Score).

Linear Regression was not subjected to optimization 
approaches. The performance of linear regression is con-
sistent with both the test and train datasets. It is understood 
from the Figure that a lower MSE and a marginally higher 
R2 score suggest that Optuna optimization outperforms Grid-
SearchCV optimization for Decision Tree performance on 
the test dataset.

With continuously high MSE and low R2 scores across 
all optimization techniques, SVR performs poorly when 
compared to other models. Moreover, optimization tech-
niques do not significantly enhance SVR’s performance, 
suggesting that SVR may not be the best option for this 
dataset. Compared to GridSearchCV, AdaBoost performs 
better when using optimization techniques, especially with 
Optuna, where it obtains lower MSE and higher R2 scores. 
This suggests that AdaBoost’s performance can be improved 
by tweaking the hyperparameter. Among all the models, Cat-
Boost performs the best, gaining the lowest MSE and the 
greatest R2 scores using both Optuna and GridSearchCV 
optimization techniques.

This indicates that CatBoost performs excellently for 
this dataset, and optimization techniques, particularly with 
Optuna, meaningly progress its performance. The reason 
for CatBoost’s higher performance is its resistance to over-
fitting, ability to accomplish the missing information, and 
backing up regularization strategies.

Furthermore, these model-boosting algorithms iteratively 
enhance performance by concentrating on hard-to-predict 

Fig. 6  Effect of input param-
eters—Box plots



Progress in Additive Manufacturing 

Fig. 7  Effect of input param-
eters—pair plots

Table 3  Best parameters (GridSearchCV and Optuna)

Model GridSearchCV Optuna

Decision Tree ‘max_depth’: 4 ‘max_depth’: 4
SVR ‘C’: 10, ‘epsilon’: 1,0 ‘C’: 1.2836107010580213, ‘epsilon’: 0.11607527013126817
AdaBoost ‘learning_rate’: 0.1291549665014884

, ‘n_estimators’: 159
‘n_estimators’: 86, ‘learning_rate’: 0.07009425240632548

XGBoost ‘learning_rate’: 0.1, ‘max_depth’: 3, ‘n_estimators’: 
100

‘n_estimators’: 69, ‘max_depth’: 10, ‘learning_rate’: 
0.0913418081684520, ‘subsample’: 0.8318769335601297, 
‘reg_lambda’: 4.192633254664677, ‘reg_alpha’: 
5.461851966228679

CatBoost ‘depth’: 4, ‘iterations’: 200, ‘learning_rate’: 
0.3593813663804626

‘iterations’: 167, ‘learning_rate’: 0.4101820846675482, 
‘depth’: 5, ‘l2_leaf_reg’: 4.191975349019413, ‘border_
count’: 158
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cases. For all optimization situations, CatBoost performs 
marginally better than XGBoost in terms of MSE and R2 
score, making it the optimal model choice for this data-
set. Because CatBoost has better predictive performance 
and model fit than the other options, it would be the rec-
ommended model selection for this problem based on the 
results that have been supplied.

Figure 9 shows the comparison of MSE with respect to 
the test and train data to understand the performance. It is 
seen that the MSE of test data for all the model’s test data 
without optimization seems to be higher, which indicates 
that all the model behaviours are worse on the unseen data. 
However, the value of MSE is consistent for all the train 
data models, which indicates that there is no considerable 
overfitting or underfitting. The MSE value of Optuna-opti-
mized models is lower when compared with the non-opti-
mized counterparts on dates that the performance has been 
increased.

Since the MSE value of train data is lower when com-
pared with non-optimized values, it states that the train data 
have flitted well when optimizing with Optuna. The Grid-
SearchCV optimization has yielded lower MSEs like Optuna 

for the test data compared to non-optimized models. The 
values of training data MSE are comparable between the 
Optuna and GridSearchCV. The train data have been fitted 
to similar models.

Figure 10 shows the R2 values of train and test data with-
out optimization and with optimization. When we compare 
the R2 values of all the models without optimization, the 
optimized model is high.

This indicates that the model experiences a portion of 
the variance of test data without optimization. However, the 
value of R2 of the train data is consistent with the test data, 
confirming that there is either no underfitting or overfit-
ting. The R2 values of the Optuna-optimized models with 
a counterpart of non-optimized significantly higher indi-
cates the Optuna-optimized models improved the perfor-
mance of the models significantly on unseen data. The R2 
values for the train data are also slightly greater than the 
non-optimized models. This states that the Optuna optimiza-
tion better fits the train data than the non-optimized models. 
The R2 values of the GridSearchCV optimized models with 
a counterpart of non-optimized were significantly higher, 
similar to Optuna on unseen data that compared the results 

Fig. 8  MSE and R2 values of 
training for each model with 
and without optimization
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without optimization. However, the performance of the Grid-
SearchCV is slightly worse than the Optuna optimization.

The residual plot (Fig. 11.) shows the distribution of the 
predicted values for different models. It is visible from the 
plot that the values for the linear regression model are scat-
tered around the actual values. The predicted values are 
sometimes closer to the actual values. This denotes that the 
model has made efforts to understand the relation between 

the process variables, but it is ineffective. The decision tree 
model also has a similar trend, but the predicted values are 
much closer than the linear regression model. This shows 
that both models need to be improved to attain even bet-
ter results. The SVR is a poor-performing model. The plot 
shows that values are distributed at both extremes. This 
proves that the model has made no effort to understand 
the relationship between the process variables. Hence, the 

Fig. 9  MSE comparison for 
training and unseen data
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SVR model will not be suitable for the prescribed task with 
a given set of values. The ensemble models (AdaBoost, 
XGBoost, and CatBoost) have really performed well with 
the given set of values, as seen from the plot. The AdaBoost 
and XGBoost models have predicted the values closer to 
actual values but are scattered. Hence, these models need 
to be improved further to obtain better results. In the case 

of the CatBoost model, the predicted values are too close to 
actual values, which is good. However, in a few cases, the 
predicted and actual values are the same, which means that 
the values are overfitting. Hence, optimization techniques 
are needed to solve this.

Figure  12 shows that improvements in several mod-
els were made with Optuna optimization shows. The 

Fig. 10  R2 comparison for train-
ing and unseen data
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improvisation is visible from the plot, and the predicted 
values are closer to actual values than the previous case. 
Improvisation is seen even in the decision tree model, but 
the predicted values are not closer to the actual values. In 
the case of the SVR model, the Optuna optimization does 
not affect the results. The predicted values are scattered in a 
common pattern ranging from maximum to minimum. This 

proves that the SVR model is not suitable for the current 
task. The use of Optuna optimizer has also made no change 
in the results. Meanwhile, the ensemble models, AdaBoost, 
XGBoost, and CatBoost, have significantly improved their 
results. CatBoost is the best-performing model, as can 
be seen from the plot. The predicted values are closer to 
actual values, which indicates that the model has learned 

Fig. 11  Residual plot without 
optimization

Fig. 12  Residual plot without 
Optuna optimization
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the relationship between process variables and output. As 
a result, the Optuna optimizer has improved the CatBoost 
model considerably compared to AdaBoost and XGBoost. 
The plot shows that the CatBoost model has predicted val-
ues that are much closer to the actual values. Thus, it can 
be confirmed that CatBoost with Optuna optimizer is the 
best-performing model.

The residual plot (Fig. 13) with GridSearchCV shows an 
improvement in the performance of the model. However, 
when comparing GridsearchCV performance on the model, 
it is not up to that of Optuna optimizer. The GridsearchCV 
has improved the performance of ensemble models, par-
ticularly the performance of the CatBoost model. Other 
ensemble models, AdaBoost and XGBoost, have shown 
improvements but not like CatBoost. From the plot, it is 
clear that the predicted values of the CatBoost model are 
closer to the actual values. This confirms that the model with 
GridsearchCV optimizer has learnt the relationship between 
the process variables without memorizing the training data. 
Thus, the CatBoost model remains the best-performing 
model even with GridsearchCV. The SVR model seems to 
be the worst-performing model [41–42], even with Grid-
SearchCV, as the model has failed to show improvements.

5  Conclusion

The increasing population, need for customization, and sus-
tainability make Additive manufacturing a leading technol-
ogy front in the field of Manufacturing. The complex rela-
tionship between the process parameters defines the quality 

of additive-manufactured parts which will be expensive if we 
go for experimentation to predict the relationship between 
the process parameters. Hence, machine learning models 
have been used to learn the data from the physical experi-
ments and evaluate the metrics to predict the compressive 
strength of additive-manufactured PLA material.

• Infill density, Infill pattern, Raster orientation, and Layer 
Height have varied at three levels, and samples have been 
printed. The highest compressive strength of 71.77 MPa 
was measured for 0.1 layer height, 100% infill density, 
90-degree raster angle, and infill line pattern.

• Infill density has the greatest apparent outcome, with 
higher infill ensuing in greater strength amongst all other 
parameter combinations. The influences of layer height, 
infill pattern, and raster orientation are more complicated 
and interrelated.

• Increasing layer height can somewhat reduce strength for 
some infill patterns, such as linear lines, most likely due 
to weaker bonding between thicker layers.

• The infill density height has a positive correlation with 
compressive, and the Raster orientation does not have 
any effect on Compressive strength.

• Among the Line, cubic, and TriHexagonal infill Patterns, 
the compressive strength is higher for TriHexagonal fol-
lowed by cubic and lines.

• CatBoost constantly beat the other models such as Lin-
ear Regression, Decision Tree, SVR, and AdaBoost 
XGBoost by having the lowest Mean Squared Error 
and R2 score. At the same time, Optuna as well as Grid-
SearchCV optimization techniques are used.

Fig. 13  Residual plot without 
GridSearchCV optimization
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• Considering all, the model’s performance can be highly 
influenced by the optimization technique designated, 
mostly for specific algorithms like Decision Tree and 
AdaBoost. On the other side, some models, such as SVR, 
have not gained much from optimization, while others, 
like XGBoost, are reasonably less impacted by it.

• To guarantee data quality and consistency, it is first nec-
essary to invest in reliable data collection and preparation 
methods. This includes creating plans for handling outli-
ers and missing data and investigating data augmentation 
approaches to broaden the range of data.

• When developing and selecting ML models, researchers 
should take into account the intricacy of the issue at hand 
as well as the available data. They should also prioritise 
interpretable models whenever feasible and use regulari-
sation approaches to avoid overfitting.
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