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Abstract
Microstructure analysis is a crucial aspect of additive manufacturing (AM) processes, as it offers valuable insights into 
material properties, defects, and quality of printed parts. Quantification of microstructural features such as melt pool 
dimensions and porosity can help optimize the process parameters by aiding the development of useful correlations of the 
processing conditions and resulting print quality and properties. However, detecting melt pool boundaries and porosity-related 
defects in cross-sectional microstructure samples presents significant challenges due to the complex nature of these features 
and inherent difficulties in acquiring their images with quality and quantity required for accurate and efficient detection. To 
address this, we propose a deep learning-based approach that leverages state-of-the-art backbone models (EfficientNet b7 and 
DenseNet 201) with various convolutional neural networks (U-Net, LinkNet, and FPN) using transfer learning techniques 
to automatically segment and detect the melt pools and porosity from AM microstructure images. The results demonstrate 
our ability to accurately identify and segment melt pools and porosity, even with limited set of training data. A comparative 
study of the performance of the different neural network architectures was done and it was found that the quantification of 
results (of microstructural features) from the employed set of networks are statistically comparable although the accuracy 
from the combination of U-Net with EfficeintNet b7 backbone was highest.
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1 Introduction

Additive manufacturing (AM), or 3D printing, is an emerg-
ing technology that enables the creation of complex struc-
tures potentially quickly and cost-effectively, revolutioniz-
ing manufacturing processes. Its ability to produce intricate 
designs makes AM a pivotal technology for Industry 4.0 
[1], with wide applications in the medical, aerospace, and 
transportation fields. The quality of AM printing is critical, 
directly affecting the final product’s reliability and safety [1]. 

Laser powder bed fusion (L-PBF) is a well-established metal 
3D printing technique that has gained widespread attention 
and recognition in recent years. LPBF utilizes high-powered 
lasers that allow selectively melt and fuse the metal powder 
to rapidly produce printed parts through a layer-by-layer 
approach. During the printing process, a thin layer of metal 
powder is first spread over a build plate. Then, the laser 
beam is used to scan the surface of the powder bed, selec-
tively melting, and fusing the metal particles to form a solid 
track. This process is iteratively repeated in a track-by-track, 
and layer-by-layer manner until the entire part is complete, 
resulting in a 3D metal object with complex geometries, 
which would be infeasible to achieve with traditional manu-
facturing methods.

During the metal printing processes, the melted material 
experiences a range of complicated physical processes [1], 
such as material compaction, heat transfer, powder melting, 
evaporation, and solidification. The solidification can result 
in the evolution of microstructure, which can be influenced 
by melt pool dynamics [2]. There are various factors that can 
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impact the final quality of the printed parts. For instance, 
the size and morphology of the melt pools can determine 
the consolidation extent and possibility of the formation of 
defects such as porosity and lack of fusion. These defects 
that arise during printing can adversely affect mechanical 
properties and surface finish [1]. To ensure high-quality 
of printed parts and to optimize the process parameters, it 
is crucial to develop effective approaches for monitoring 
and quantifying these defects in the multi-track multi-layer 
LPBF-printing process. In addition, quantifying melt pool 
geometries enables the correlation of process parameters 
with printing outcomes, as melt pool dimensions reflect the 
complex solidification history dictated by processing con-
ditions. Thus, it is highly desirable, for improved process 
control, to identify and quantify features like melt pools and 
any defects or anomalies that arise during the AM by ana-
lyzing microstructure from cross-sectional samples of the 
printed components. Examination of the cross-section sam-
ples enables detailed observation of the material’s internal 
features and characteristics that may not be evident through 
surface inspection. Typically, these features are revealed by 
microscopy techniques such as laser profilometry or optical 
microscopy. Traditionally, the images generated from these 
microscopy techniques are analyzed manually leading to 
a time-consuming process with high cost and subjectivity 
[3]. One possible solution is to apply image-based quanti-
fication approaches to automatically segment and quantify 
defects and melt pools in the microstructure images of pro-
duced parts [4]. Recent advancements in computer vision 
and machine learning have shown promise for automating 
image segmentation tasks, reducing human errors, lowering 
costs, and enhancing efficiency for processing. Deep learn-
ing (DL), as a specialized field within machine learning, 
has become prominent in image processing. While general 
machine learning algorithms and non-machine learning 
methodologies struggle to handle image data efficiently. For 
instance, traditional algorithms used for the identification 
of microstructural features such as grain boundaries [5, 6] 
depend on the contrast difference between the grains and 
boundaries and find it challenging in the case of melt pools 
segmentation due to the associated poor contrast and noise. 
On the other hand, DL has its unique capability to capture 
intricate patterns and complex hierarchical features from 
raw image data based on the structure and depth of neural 
networks, without relying solely on the contrast difference 
of different features. In addition, the deep learning models 
are highly adaptable to different types of tasks for image 
processing, such as object detection, classification, and seg-
mentation. These advantages establish DL model as the best 
suitable method for this research.

Computer vision task aims to interpret and understand 
the visual information from an image and represent it in a 
digital format. Several classical computer-vision methods 

such as statistics-based visual methods [7–9], gradient-based 
edge detection algorithms [10–12], and region segmentation 
using clustering [13] exist. However, these algorithms suffer 
from limitations of being sensitive to variability in imaging 
conditions such as lighting, clutter, occlusion [14] and 
noises, making it challenging to differentiate foreground 
features from background. This can pose a challenge in 
AM image processing as well due to the unpredictable 
and varying quality and noise levels that may occur under 
different conditions and operations of the collected data. 
During the big-data era, DL for computer vision, emerges 
as a sought-after technology in manufacturing. It offers the 
ability for end-to-end training from raw data, improving the 
handling of complex segmentation tasks and reducing the 
reliance on customized processing. [15–20]. Convolutional 
Neural Network (CNN), as one of the popular model 
paradigms in DL, has proven to be efficient and effective in 
learning and extracting local features for processing 2D or 
3D images [21]. CNN takes an image as input and perceives 
it as a collection of pixels arranged in a grid pattern. This 
model then applies a set of signal processing operations 
to extract features using convolution in a sliding window 
manner. The hierarchical structure of CNN allows it to 
abstract high-level features from input data and train with the 
gradient-based learning algorithm to optimized weights of 
the network for better performance. CNN outperforms many 
state-of-the-art approaches [22, 23] implemented in many 
general computer-vision tasks, such as image classification 
[24, 25], object detection [26–29], and segmentation [30, 
31].

In AM, CNN-based methods have also been adopted for 
defect detection and monitoring in various applications. 
These works can be categorized into three different types of 
tasks according to the level of difficulty [32]: classification, 
object detection, and segmentation. Classification problems 
involve categorizing an image into one or more classes to 
make decisions. For example, binary classification problem 
is used to determine whether an image contains defects or 
not, yielding a true or false answer as a result [33–36]. On 
other hand, multi-class classification usually requires a 
model to distinguish between multiple defects. Currently, 
researchers are attempting to construct DL models to address 
problems from three different angles: degree of defects, 
identification of various defect types, and condition-based 
defects classification [37–39], identification of various 
defect types[32, 40–43], and condition-based defects 
classification [44, 45]. Furthermore, the second level of 
difficulty of the AI-based image processing task is object 
detection. This task involves not only categorizing the image 
but also detecting and localizing the objects or defects within 
it. This type of task usually involves labeling data using 
bounding box, a rectangular box that are drawn around the 
region of object. Compared to classification, object detection 
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requires more complex algorithms to identify and locate the 
defects accurately [32, 44]. Lastly, segmentation is the most 
challenging task as it involves recognizing target objects at 
the pixel level, enabling more fine-grained inspection and 
monitoring of the AM process from images. Some existing 
works implemented DL models to detect defects [46], to 
investigate and predict sub-surface pores [32, 47] and to 
measure melt pool geometry [48]. Besides, a recent work 
[49] applied conditional Generative Adversarial Neural 
Network to quantify structure characterization of melt pools 
and porosity.

Although most of these works have utilized CNN-based 
model to investigate the formation of various defects in 
AM, there are still several limitations. First, many studies 
examining melt pool characteristics are limited to analyze 
single-track or single layer samples, which may not capture 
the complexity of real-world scenarios. Considering that 
multi-layer multi-track printing involves more physical 
processes and interactions at the microstructural level, these 
analyses may not be sufficient. While there are several state-
of-the-art DL models available for image segmentation tasks 
[50–52], previous studies have not explored the comparative 
performance of applying these different methods to the task 
of segmentation of the melt pools and defects in laser-based 
AM processing. Further, these works have not critically 
evaluated different backbone networks for the efficient 
utilization of transfer learning capabilities. This is a crucial 
aspect particularly in case of AM where generation of 
large data sets for training is impractical. The advantage 
of transfer learning is that the model trained on the great 
variation and less biased large training dataset provides a 
generic representation of learned features and enable faster 
and efficient learning for new and limited data sets as in the 
case of AM samples. While some new approaches in DL 
techniques such as Multi-Fidelity Deep Neural Networks 
(MF-DNN) [53] potentially can be used for the cases where 
significant data noise exists or limited data exists, they are 
apparently more suitable for numerical data and regression 
problems rather than the image data and vision tasks.

In this work, we aim to address the above gap areas by 
applying a DL-based framework to automatically detect 
the melt pool morphology and porosity simultaneously, 
using the micro-structural images taken from the cross-
section of the multi-track multi-layer samples printed by 
the L-PBF process. This enables us to quantify and thereby 
gain a better understanding of the impact of both melt 
pool geometry and porosity on the quality of the printed 
parts. In addition, seeking consistent-annotation strategy 
for multi-class segmentation in AM data, multiple labeling 
strategies have been examined to provide a comprehensive 
evaluation of the model performance as a function of the 
annotation strategies. Moreover, various state-of-the-art 
backbone networks, and DL models were employed to 

bring out the comparative evaluation of these networks 
for the current task. To further examine the robustness of 
the trained model and identify the minimum amount of 
data needed to achieve comparable performance, a data-
sensitivity test was performed. Overall, this study aims to 
provide a robust DL-based model and training strategies 
for improving AM data analysis and quality control for 
multi-layer multi-track analysis on the L-PBF process.

2  Methods

This section outlines the comprehensive process and meth-
odology employed in the current work for applying the 
DL-based techniques for the segmentation of the micro-
structural images for the identification of melt pool bound-
aries and pores. The process consists of several key stages, 
beginning with data acquisition where a range of sam-
ples are printed, and image data is collected. The second 
stage involves data pre-processing steps such as cleaning, 
annotation, and preparing the training dataset for use to 
train the model. Following this, the model-building stage 
involves model training on the prepared data and tuning 
based on evaluation metrics. Once the model is considered 
satisfactory, it can be used for inference on unseen data 
by feeding new inputs to obtain predictions. Finally, post-
processing steps are taken on predicted results to allow for 
statistical analysis based on the automated generated pre-
dicted masks. The method flowchart can be seen in Fig. 1.

2.1  Material and specimen preparation

2.1.1  AM experiment

The Trumpf Truprint 1000 machine was used to execute 
the LPBF fabrication processes (Fig. 2a), which involved 
using gas-atomized SS 316L powder obtained from CT-
PowderRange. The powder’s chemical composition is pre-
sented Table 1.

The printing was carried out using a bi-directional 
scanning approach, as shown in Fig. 2b, where the laser 
beam scan direction was rotated by an angle of 90 degrees 
for each layer with a fixed laser beam spot size of 55 µm. 
To ensure the diversity of samples obtained from the 
builds, a range of processing parameters was selected for 
the experiments. The selective combination of different 
processing parameters, including laser power, scanning 
speed, hatch space, and layer thickness is listed in Table 2.



 Progress in Additive Manufacturing

2.1.2  Sample preparation

The sample preparation process involved multiple steps to 
ensure high-quality samples obtained for subsequent image 
analysis. First, the printed samples were sectioned along 
the xz plane using EDM machine (Electrical Discharge 
Machine). This cutting technique ensures minimal physi-
cal distortion and damage to the material while maintain-
ing its microstructure. Next, the sectioned samples were 
subjected to mechanical polishing using Silicon Carbide 
(SiC) paper to remove surface irregularities and EDM-
induced surface artifacts. This process started with coarse 
400 grit SiC paper and progressed to fine 1200 grit SiC 
paper. Lastly, the final stage involves VibroMet polishing, 

where the samples were polished with a colloidal silica 
solution to enhance the surface quality even further.

2.1.3  Profilometer measurements

Following the completion of standard metallographic 
polishing techniques on the printed samples, an 
examination of their surface topographies was carried 
out using the Keyence VK-X 1000 laser microscope. This 
state-of-the-art instrument allowed for the capture of high-
resolution image data by utilizing a 50× magnification lens 
which was employed during the examination process.

Fig. 1  Flowchart of the proposed scheme of DL-based segmentaion of microstructural features (melt pool and porosity) of AM (LPBF) samples

Fig. 2  Schematics of a LPBF 
process b Bi-directional scan-
ning used in L-PBF fabrication

Table 1  Chemical composition 
of SS 316L powder

Element Cr Mn Mo Ni Si Fe

Content (wt%) 18.0 2.0 2.5 13.0 0.75 Balance
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2.2  Dataset preparation

To better prepare the data for DL model training and 
performance analysis, several image processing steps are 
applied as described below.

2.2.1  Data preprocessing and image enhancement

When training with DL models for computer-vision tasks, 
image quality plays an important role in the entire process. 
To better refine the image quality of raw images, image 
enhancement is an essential step that helps improve the 
perceptibility of the information in images. [54, 55] has 
shown that high-contrast images can effectively improve the 
training of deep neural networks. Accordingly, the operations 
in this study contain brightness and contrast adjustment 
for readily accentuating the features of target objects. 
Besides, noisy data adversely affects the performance of 
DL models [56]. Hence, Despeckle filter [57] is applied to 
reduce the visual impact of speckle noise from an image 
while preserving the details of detected edges. It is worth 
mentioning that applying filters to reduce noise is always 
a trade-off between noise reduction and maintaining the 
complete image information. Thus, this work applied as 
least smoothing filters as possible to retain the original 

information from images maximally and improve perceptual 
quality to enable efficient labeling and subsequent training.

2.2.2  Data annotation and labeling methods

Image annotation or data labeling involves assigning 
labels to the objects in images, which could assist the 
models to train and detect certain patterns based on the 
visual representation. In current context, porosity requires 
region-based segmentation whereas melt pool boundary 
requires localizing class-specific contours. Hence, the pixel-
level annotating method was chosen to satisfy these two 
contrasting requirements. The polygon-annotation method 
is selected in this work because it is more suitable to meet 
the requirements by outlining the melt pool border (MP) and 
filling the enclosed area of porosity [32, 48].

Acknowledging the variability in annotation processes 
across different scenarios, this study also investigates 
labeling strategies to identify a standardized method for 
object annotation in additive manufacturing applications. 
In AM, there are no consistent rules for labeling, which can 
make it difficult to evaluate the model performance from 
heterogeneous data. To better understand how labeling 
strategies impact model performance and how to improve 
it, we have attempted five different labeling strategies. The 
annotation was performed using GIMP [58]. Each target 
object is individually annotated in separate layers using 
unique colors (pixel values) for labeling. In the case of 
multi-class labeling, all the classes are merged together to 
generate a final mask for each raw image.

Figure 3 shows the labeling examples/strategies. The 
original input images consist of four objects,  including 
melt pool border (MP), porosities (P), material (MA), and 
mounting material (MM), an area from the top which does 
not belong to printed part. MP and P are the two primary 
targeted objects. MA are the areas inside MP boundaries. 
Although MM is not a focus of this study, its high similarity 
in pixel values to porosity may lead to misclassification and 
potentially affect model accuracy. Based on this assumption, 
various labeling methods are tested to identify an efficient 
and optimal approach for annotating the data.

In training a DL model, two types of input are fed into the 
network. First, the raw images are utilized to preserve their 
originality and assess the model’s performance with such 
raw heterogeneous inputs. Second, masks are employed to 
enable the network to learn the features of the target objects. 
Multiple types of labeling strategies are explored. A variety 
of samples are used to ensure a more representative and to 
overcome potential data imbalance issue.

• MP: When annotating an image, only the melt pool 
boundaries are identified and annotated, while the 
remaining objects are masked out by setting their pixels 

Table 2  Processing parameters selected in LPBF printing

No Batch samples Laser 
power 
(W)

Scanning 
velocity 
(mm/s)

Hatch 
space 
(mm)

Layer 
thickness 
(mm)

1 B1C1 100 1000 0.06 0.05
2 B1C2 100 1000 0.1 0.05
3 B1C4 125 1000 0.1 0.05
4 B1C5 125 1000 0.06 0.05
5 B1C6 100 1000 0.08 0.05
6 B1C7 150 1000 0.06 0.05
7 B2C1 150 1000 0.06 0.05
8 B2C2 150 400 0.08 0.05
9 B2C3 150 400 0.06 0.05
10 B2C4 150 600 0.1 0.05
11 B2C5 150 600 0.08 0.05
12 B2C6 150 600 0.06 0.05
13 B2C7 150 800 0.1 0.05
14 B2C8 150 800 0.08 0.05
15 B2C9 150 800 0.06 0.05
16 B2C10 200 1500 0.1 0.05
17 B2C11 200 1500 0.08 0.05
18 B2C12 200 1500 0.06 0.05
19 B3C10 200 2000 0.1 0.03
20 B3C11 200 2000 0.08 0.03
21 B3C12 200 2000 0.06 0.03
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to 0, which serve as the background. For this category, 
the input image and corresponding mask can be seen in 
Fig. 3a and b, respectively.

• P: Similar to the melt pool, P represents the porosity 
class. During annotation, regions of porosity are 
identified and annotated independently. The raw input 
image and its corresponding mask are displayed in 
Fig. 3a and c, respectively.

• MP + P: Both melt pool boundary and porosity regions 
are labeled simultaneously in a single mask as shown in 
Fig. 3d.

• MP + P + MM: Considering the similarity with pixel 
values of mounting material to other classes, the 
mounting material are added as a distinct class in 
addition to the melt pool boundary and porosity on 
the masks in the hope of distinguishing them to reduce 
erroneous judgment from raw-image inputs during the 
training. This mask sample is displayed in Fig. 3e.

• MP + P + MM + MA: All the existent objects in the raw 
images are annotated and formed masks for each pixel 
segmentation. Figure 3a and f are an example of input 
image and the corresponding mask.

The mask comprises pixel-wise class labels distinguished 
by various colors, which are subsequently transformed 

into continuous pixel values during processing. The total 
processed dataset consists of 21 images with corresponding 
masks. 19 out of 21 images are extracted for the purpose 
of training and validation of segmentation model and the 
rest images remain as unseen data and would be used for 
inference purposes. Each of the raw images has size ranging 
from 1047 × 1056 pixels to 2815 × 2112 pixels.

2.2.3  Generated datasets for model training and inference

The annotated masks are prepared for the training input 
by assigning unique class numbers (background:0, MP:1, 
porosity: 2, mounting material: 3 and solidified metal: 
4) [59]. The raw images and generated label masks for 
training purposes are randomly cropped into small patches 
with sizes of 256 × 256 pixels. Each of the raw images 
and corresponding masks are randomly cropped into 100 
images. For the inference data, the raw images are cropped 
contiguously next to each other without overlapping between 
patches. The masks for inferences are used to evaluate the 
final performance of predicted results. In order to maintain 
the spatial dimensions and prevent the loss of important 
information at the edges of inference image data, padding 
is added around the edges of the images and corresponding 
masks [60].

Fig. 3  Example about the labeling in various settings. a Example of 
original raw image b The labeling mask only includes the melt pool 
(indicated by green boundary lines) c The labeling mask includes 
only porosity (indicated by filled yellow area). d The labeling mask 
includes melt pool boundary and porosities. e The labeling mask 

includes melt pool, porosities, and mounting material (shown in red 
area). f The labeling mask includes all objects in the image: melt 
pool, porosity, mounting material, and material (shown in light blue 
color)
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The dataset used for training purposes is partitioned into 
three subsets: training set, validation set, and testing set. The 
training set is used to train the model and the validation set 
can evaluate the model’s performance during the training 
and assist with hyperparameters tunning. The test set is used 
to evaluate the final performance and generalization ability 
of the model. In this work, the ratio of dataset division is 
80:10:10 with 80% of the data used for training, 10% for 
validation, and the rest of the 10% for testing.

Furthermore, given the challenge of limited data 
availability in AM, an extra analysis has been designed to 
examine sensitivity of the model performance to the quantity 
of data. Various training data sets are generated by selecting 
different ratio of data from the available collections Table 3. 
illustrates the images that were selected for this experiment 
and the total amount of patches of data used for training 
models in various settings.

2.3  Deep learning methods

2.3.1  Deep learning‑based image segmentation

In this study we employed encoder–decoder type of CNN 
networks for achieving semantic segmentation considering 
the specific characteristics of the data being used 
(microscopy data) and the huge success of these networks 
in image segmentation tasks of natural images [61].

The first half of the network encodes the input by per-
forming a compression of raw data from high-dimensional 
image into a low-dimensional representation. And then the 
decoder tries to decode and up-sample the representation 
from previously compressed information to construct a seg-
mentation map. The properties of the decoder part naturally 
fit for image segmentation purposes. One of the advantages 
of this type of approach is that it can produce sharper bound-
aries which can delineate objects of different classes more 
efficiently [62]. This characteristic is particularly suited to 
our needs for melt pool segmentation and porosity detection, 
as microscopy data often contains noise and unclear bound-
aries. Our work utilizes three encoder–decoder networks: 

U-Net [50], LinkNet [51], and FPN (Feature Pyramid Net-
work) [52].

U-Net has been employed in a variety of fields such as 
biomedical image segmentation, satellite imagery or remote 
sensing [63]. It makes use of a U-Shaped architecture to 
build a contracting path and a symmetric expansive path. 
In the contracting process, the network down-samples the 
input images and extracts growing abstract features with 
3 × 3 convolutions. Then, the network utilizes transposed 
convolutional layers to up-sample the features to enable 
precise localization and generate predicted masks with 
same spatial dimensions as the input images during the 
second half of the network, where the expanding path is 
located. The feature maps obtained from the contracting 
part (down-sampling) are forwarded to the expanding part 
(up-sampling). This architecture design allows the network 
to capture both local and global information from images 
[64].

LinkNet also follows encoder–decoder structure but 
incorporates several modifications to the network on the 
basis of U-Net. One of the key modifications that LinkNet 
makes to the U-Net architecture is the use of residual blocks 
to combine feature maps from the encoding phase to the 
corresponding feature maps in the expanding path, instead of 
merely applying the conventional convolution structure. In 
addition, LinkNet replaces the concatenation operation used 
in U-net with an “addition” operation in different layers. The 
addition operation provides the element-wise addition of the 
feature maps, which allows the network to focus more on 
local information. These modifications advance the network 
to enhance the ability of capturing both coarse and fine-
grained features from images and improve the stability and 
robustness of network.

Feature pyramid network (FPN) is designed for 
addressing multi-scale problems in image processing tasks. 
The FPN consists of three parts: a bottom-up pathway, 
lateral connections, and a top-down pathway. The bottom-up 
pathway in FPN extracts features from images either from 
the original input or through a backbone network at a 
different scale using a feedforward network. Images are 
progressively down-sampled at each layer to create feature 
maps while lower layers extract fine-grained details and 
abstract features can be extracted from higher layers. These 
feature maps are then processed to construct the feature 
pyramid in the part of top-down pathway. Next, the top-
down pathway progressively up samples the feature maps 
using transposed convolutions. At each layer, the lateral 
connection takes feature maps from the bottom-up pathway 
and combines them  with the up-sampled feature maps 
obtained from the top-down pathway. This combination 
helps the network to learn information at multiple scales 
and refine the feature maps to maintain spatial information 
that might be missing in the down-sampling stage.

Table 3  Data set setting for sensitivity test of data ratio

No. of images Total 
cropping 
patches

Training set Validation set Testing set

1 100 80 10 10
3 300 240 30 30
5 500 400 50 50
7 700 560 70 70
9 900 720 90 90
20 2000 1600 400 400
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While these three models share some similarities in 
structure and can be used for segmentation tasks, they also 
have some differences. For example, compared to U-Net, 
LinkNet added batch normalization and residual connections 
in its network architecture to seek for improvement on 
network performance, but it also contains more parameters 
than U-Net which may increase the computational cost and 
memory usage during network training. Compared to U-Net 
and LinkNet, FPN have more modifications in the network 
design. It designed to tackle problems on input images with 
various scales and resolutions. Specifically, to achieve this, 
FPN is designed to adopt and integrate features from each 
layer of the backbone network while U-Net and LinkNet 
only extracts the features from the last layer of encoder. 
These unique features of different networks make them 
suitable for different tasks and may result in different effects 
and performance for AM-specific data. Therefore, training 
and comparing their performance is indispensable.

2.3.2  Model training optimization techniques

In general, the quality of the ML model performance 
increases with the quantity and diversity of the input data, 
as demonstrated by existing deep networks trained on data 
sets of millions of natural images [61]. However, in the field 
of manufacturing, collection, and annotation of such huge 
quantities of data is not practicable leading to low accuracy 
and high variance in the model performance. To circumvent 
the deficiencies due to limited quantity of data sets, data 
augmentation techniques such as random cropping, flipping, 
random rotation, Gaussian noising, random brightness, and 
contrast changing, image scaling and shifting were applied.

In model-based optimization, an essential technique, 
namely transfer learning, employing pre-trained mod-
els on large datasets, alongside refining architecture and 

hyperparameters tunning [65]. Transfer learning provides 
a significant advantage by training the model on a diverse 
and less biased large dataset. This results in a generic rep-
resentation of learned features, which mitigates overfitting 
and enhances generalizability [66].

In current work, we have adopted the transfer learning 
to exploit the benefits of general-purpose feature extractor 
capabilities of the large pre-trained models. [4, 60]. In 
this study, ImageNet [61] is utilized for feature extraction. 
ImageNet is one of the largest and most diverse image 
datasets, containing over 14 million hand-annotated 
images. Two state-of-the-art convolutional neural network 
architectures are implemented in this study, EfficientNet [67] 
and DenseNet [68]. A summary of these networks is listed in 
the Table 4. The number that attaches to the network name 
refers to the depth of layers.

We initiate the training with the weights of these backbone 
networks (transfer learning) and let training proceed with 
the AM-specific data set for fine tuning of model weights 
for the current task using the primary networks stated in 
Sect. 2.3.1 to learn segmenting the melt pool boundaries and 
porosities. Other optimization techniques are focused on the 
model training and hyperparameters tuning. The following 
table displays the final setting of the training parameters 
after careful consideration regarding the scale of data and the 
type of task and multiple rounds of experiments (Table 5).

In this work, the compound loss techniques [49] are applied 
using the linear combination of Focal loss[69] and dice loss 

Table 4  Summary of backbone networks

Backbone Description Strength

DenseNet DenseNet-201 [68] A densely connected convolutional networks 
invent the Dense block where the input of 
each layer are outputs from all preceding 
layers. Between each dense block, a transition 
layer consists of convolution followed by max 
pooling layer used to change the feature-map 
sizes

DenseNet try to reduce the impact of information vanishes 
due to long distance between input and output layer and 
the design allows to reduce the number of parameters

EfficientNet EfficientNet b7 [67] The key design of EfficientNet is the 
employment of compound scaling which 
uniformly scales three dimensions (width, 
depth, and resolution) with a fixed scaling 
coefficient for a given image. EfficientNet 
has 8 models from b0-b7. The variant with 
higher index has more parameters and higher 
accuracy. “b7” is selected to this study due to 
our prior experiments

EfficientNet is faster to train and have higher accuracy than 
other large CNN models in general computer-vision tasks

Table 5  Hyperparameter in model training

Learning rate Optimizer Activation function Batch size Epochs

1 ×  10–4 Adam Single class: softmax
Multi class: sigmoid

8 50
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[70] to evaluate the difference between the prediction and 
ground truth while aiming for minimizing them during the 
training.

2.3.3  Model evaluation metrics

To better assess and improve the approach, the evaluation 
metrics are introduced in the process of the model training and 
testing. Considering the complexity of the image segmentation 
task in AM, multiple evaluation metrics are used aiming to 
provide a comprehensive view for the model’s performance.

The evaluation metrics for the proposed semantic 
segmentation models that adopted in this work are Intersection 
over Union (IoU) and Dice coefficient (F-Score).

(1) IoU is calculated by the overlapping area between 
predicted map and ground truth divided by the union of them. 
For a multi-class segmentation task where multiple objects 
are being processed simultaneously, the mean IoU of the 
image is calculated by taking the IoU of each labeled class 
and averaging them.

(2) Dice coefficient (F-score) is positively correlated to IoU 
but IoU tends to penalize single instances of bad segmentation 
more. The equation of Dice coefficient metrics is as follows:

(1)IoU =

∑N

i=1

�

pi × gi
�

∑N

i=1

�

pi + gi − pi × gi
�
.

(2)F − score =
2
∑N

i=1
(pi × gi)

∑N

i=1
(pi + gi)

,

where pi and gi represent the predicted label and ground 
truth, respectively, for the i-th pixel in the image, where N 
is the total number of pixels.

3  Results and discussion

3.1  Predictive performance and comparison 
of various data annotation strategies

3.1.1  Single class segmentation

Initially, we describe the model performances for single class 
segmentation problem. In this case, the model is trained to 
segment only one class of the objects (melt pool or poros-
ity). The predictive performances of melt pool-intensive 
and porosity-intensive tests are displayed in Fig. 4 to show 
the capability of trained model on the inference data. The 
predictions for both the melt pool and porosity demonstrate 
a remarkable ability to match the MP and porosity area of 
intricate inputs. The results are from a network (U-Net with 
backbone network EfficientNet b7) trained for 50 epochs. 
One can notice that the model was able to capture the melt 
pool boundaries despite relatively poor contrast of the input 
image, demonstrating the power of this approach in handling 
realistic and complex input images for the efficient segmen-
tation. The single class accuracies achieved were mean IoU 
of 68.67% for melt pool and 74.96% for porosity. See Fig. 4. 
These values are found to be better than the earlier reported 
IoU values of 0.38 for melt pools [48] where in VGG-19 
network was employed for the segmentation task.

While the perceptual similarity between the ground 
truth and prediction is quite striking, it was observed that 

Fig. 4  Predictive results for melt pool and porosity on inference data from best-performed single class model
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the predicted melt pool boundaries had some discontinues 
at some of the places. This could be attributed to the insuf-
ficient contrast of the melt pool boundaries in the input 
images and also to the imperfections in the manually anno-
tated data. In several instances, manual judgment of the melt 
pool boundaries was rather difficult and resulted in imperfec-
tions in the annotated training data. It may be noted that this 
is a common issue in manually annotated data sets and may 
be circumvented by further increasing the data-set size and 
enhancing the quality of the input images further. In spite 
of these challenges in the quality and quantity of the input 
data, the performance of the model in capturing the melt 
pool boundaries appears to be remarkable and significantly 
more than any conventional segmentation scheme (using 
thresholding and morphologic operations) and helps us in 

getting statistical distribution of the features of interest to 
an acceptable accuracy as demonstrated in further sections.

3.1.2  Multi‑class segmentation

In multi-class segmentation trials, the combination of 
MP + P performed poorly compared to other labeling strate-
gies with mean IoU of 59.35% and mean F-score of 65.02%, 
see Fig. 5. However, after adding more objects as distinct 
classes, the accuracy was observed to increase as shown in 
Fig. 5. The hybrid labeling method with MP + P + MM + MA 
exhibited the highest performance, with a mean IoU score of 
72.25% and a mean F-score of 75.79%. The improved per-
formance when incorporating more objects, such as mount-
ing material and material, may be attributed to the potential 
confusion resolution between foreground and background in 
AM images, because of availability of higher level of details 
in the training data. The model can acquire a better under-
standing of the objects, leading to enhanced segmentation 
performance. This additional information allows the model 
to distinguish between target objects and background more 
accurately and improve its segmentation capabilities.

In summary, single class (Fig. 6b) have more accurate 
performance while multi-class (Fig. 6a) provides capabil-
ity of detecting multiple sparse objects simultaneously. 
This results in tradeoff between accuracy and speed. Due 
to the nature of multiclass labeling, some areas from mul-
tiple objects may overlap with each other causing the pixel 
missing in one of the objects. This adds to the difficulty in 
contour detection for melt pool boundaries. This aspect has 
been demonstrated in Fig. 6, where in inference results on 
the same test image for the detection of melt pool boundaries 
was compared for single class vs multi-class segmentation 
schemes. It is easy to observe that the single class has higher 
connectivity and continuity in pixels compared to the pre-
dicted mask from multi-class segmentation.Fig. 5  Performance on inference data with various labeling strategies

Fig. 6  a Melt pool prediction from multi-class segmentation. b Melt pool prediction from single class segmentation
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As a summary, the suggestions on labeling strategies are 
as follows. First, independent labeling on interested object 
is preferred when dealing with complicated and dissimilar 
objects using CNN. Second, in scenarios where a multi-class 
segmentation task is desired, it is preferable to incorporate as 
many distinct classes as possible, particularly when there is 
confusion between foreground and background pixels.

3.2  Insights into model training: training curves 
and losses

Training curve provides an additional perspective for evalu-
ating the direct process of a model’s performance during 
training and its generalizability. The performances among 
the three networks are shown in Fig. 7. The figure illustrates 

the evolution in accuracy and the training loss over the 
course of multiple epochs during training and validation 
stages.

When comparing the single class training curves 
(Fig. 7a–d) with the multi-class training curves (Fig. 7e–f), 
it can be observed that for both melt pool and porosity 
curves, the training and validation curves approach each 
other closely toward the end of the training process. 
This convergence implies that the model has achieved 
optimal performance and is not suffering from significant 
overfitting or underfitting issues. However, for the multi-
class training curves, there remains a gap between the 
training and validation curves in the results. This indicates 
that the model may still be overfitting to the training data, 
resulting in weak generalization when tested on unseen 

Fig. 7  Evolution of training and 
validation scores for various 
settings (single class and multi-
class segmentation) and models 
(U-Net, LinkNet, FPN). a, b 
validation accuracy and training 
loss for melt pools (single class 
segmentation), c, d validation 
accuracy and training loss for 
porosity (single class segmenta-
tion), e, f validation accuracy 
and training loss for multi-class 
segmentation models
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data. Therefore, in order to address this issue and improve 
the model’s generalization performance on unseen data, 
it may be necessary to acquire and incorporate more data 
for training the complex multiclass segmentation task. For 
single class segmentation task, however, current data sets 
appear satisfactory.

Furthermore, it can be observed that the performance of 
the segmentation differs for each class within the single class 
segmentation. The overall accuracy scores for porosity are 
higher and the loss scores are lower than those for melt pool. 
This shows that the MP segmentation is a more challenging 
task in comparison with the porosity. A plausible 
explanation for this observation is that implemented deep 
learning algorithms learn based on pixel values, and the 
porosity area exhibits a notable contrast in pixel values 
compared to the surrounding region of material unlike the 
melt pool areas whose contrast is generally weak. Therefore, 
applying better image-acquisition techniques to increase 
the melt pool contrast during the data collection (through 
more optimized etching, illumination, and exposure during 
image acquisition) and processing stage (digital contrast 
enhancement using adaptive histogram equalization) may 
potentially enhance the segmentation accuracy.

In summary, choosing the optimal method to meet the 
specific requirements often involves a trade-off. Multi-class 
segmentation allows to segmenting multiple interested 
objects simultaneously while it also faces some limitation 
due to the complexity of various characteristics of objects. 
On the other hand, developing distinct models for individual 
classes could lead to better accuracy, although it requires 
multiple rounds of training to achieve results for multiple 
objects.

3.3  Comparative performance analysis of backbone 
models

Comparing different combinations of backbone models and 
network architectures provides insights for a comprehen-
sive evaluation and selection process of the suitable network 
architecture. In Fig. 8, the combination of three primary 
network architectures (U-Net, LinkNet, and FPN) and two 
backbone models (EfficientNet b7 and DenseNet 201) are 
examined in this study. Regarding the backbone models, the 
results indicate that the combinations involving EfficientNet 
b7 generally achieve higher accuracy scores compared to 
the DensetNet 201 combinations. Specifically, among Effi-
cientNet b7 combinations, both U-Net and FPN show the 
highest accuracy during inference, while LinkNet exhibits 
the lowest performance. Similar trend is observed in the 
DensetNet 201 combinations, with the combination involv-
ing U-Net continuing to perform the best. According to the 
results, it appears that the combination of U-Net’s ability to 
capture fine-grained details and EfficientNet’s strong feature 

extraction capabilities maximize the models’ performance 
in learning.

Apart from algorithmic optimization based on the 
performance accuracy, the additional perspectives to 
evaluate the capability of a built model are parameters and 
floating-point operation ratio. Model parameters, in general, 
are learnt weights during training which keeps track of the 
size of a model and provide an overview of the scope of 
model with respect to memory usage in computing. Total 
parameters refer to the overall number of parameters in 
the model and trainable parameters represent the number 
of weights that are being updated during training to 
optimize the model’s performance. The number of trainable 
parameters can provide insight for the model’s capacity 
to learn, while the total parameters indicate the overall 
complexity and resource requirements of the model.

The performance of backbone network combination is 
summarized in Table 6 with reference to their accuracy 
metrics and total and trainable parameters for a holistic 
comparison of the different models employed in the current 
work. The total number of parameters varies across differ-
ent combinations. The pairing of U-Net and EfficientNet b7 
exhibits the highest total parameters, while the combination 
of LinkNet with DenseNet 201 has the lowest total param-
eters. When considering trainable parameters, The U-Net 
and EfficientNet b7 combination has the highest computa-
tional cost among the other combinations, having the high-
est trainable parameters. In addition, comparing different 
backbone models, it can be observed that the EfficientNet b7 
tends to have a larger number of total and trainable param-
eters compared to DenseNet 201. As expected, the network 
with higher complexity (U-Net with EfficientNet b7), had 
given the better performance (in terms of accuracy metrics, 
see Table 6). These results suggest that the EfficientNet b7, 

Fig. 8  Performance of different combination of backbone networks 
on testing data
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with its larger parameter space, may have a higher capacity 
to capture complex patterns compared to others backbone 
networks.

3.4  Sensitivity to training data ratio

Figure 9 demonstrates the trend of prediction performance 
on unseen test images when applying various amounts and 
ratios of data to train the models. In this case, single class 
segmentation of melt pools was considered. The results 
show an increasing accuracy in predictions with an increased 
number of images in input data. However, the gain in the 
accuracy saturates beyond 9 images, indicating that there is 
negligible improvement in the performance even though the 
input data size is increased to 20. This indicates that mere 
increasing the data size beyond the optimal value does no 
proportionally gain in terms of prediction accuracy. There-
fore, there exists an optimal data size that provides the best 
performance for the given task. This finding is valuable as 
it indicates that collecting a massive amount of data may 

not always lead to significant improvements in prediction 
accuracy.

It is impressive that even with a relatively small data set of 
nine images, a significant mean IoU of 0.68 was achieved for 
the complex case of melt pool segmentation. This highlights 
the effectiveness of the chosen deep learning approach, as it 
demonstrates the model’s ability to learn from limited data 
and produce accurate predictions. Comparing this result with 
a recent work that employed a different architecture (U-net 
with VGG-19), where a mean IoU of 0.63 was achieved, 
further emphasizes the advancements made in the current 
study.

3.5  Melt pool quantification from ML‑predicted 
segmentation maps

In an effort to distinguish the form of the segmentation 
of individual melt pool for further analysis, watershed 
algorithms are applied to improve the visibility of enclosed 
melt pool area. Watershed [71] is a classical segmentation 
algorithm using region-based technique in digital image 
processing field. It considers an image as a topographic 
landscape and uses the gray values of their corresponding 
pixels to decomposes an image into catchment basins. 
Then each pixel is placed either in a region or a watershed 
which identified as the boundaries of the object in an image. 
Watershed algorithm in this work is used for segmenting the 
melt pool area across multi-layers based on the predicted 
results of our trained model.

The results of the three trained models, which were exam-
ined using the watershed algorithm to segment the melt pool 
area from the detected MP, are shown in Fig. 10. It can be 
observed that the performances of melt pool detection with 
different neural networks are relatively similar among three 
methods as shown in Fig. 10a–c. The color map (Fig. 10d–f) 
obtained when watershed algorithm is applied showed minor 
differences in the final segmented maps. The results from the 
three models are characteristically similar with very minor 
and subtle differences. However, among the three networks, 

Table 6  Performance of backbone network selection

Highest values achieved in the respective accuracy metrics are highlighted in bold for readers reference

Network Backbone Testing IoU Inference IoU Testing F-score Inference
F-score

Inference MSE Total parameters Trainable 
parameters

U-Net EfficientNet b7 74.24% 67.85% 80.56% 72.49% 0.0396 75.05 M 74.74 M
DenseNet 201 73.39% 68.47% 79.76% 72.49% 0.0399 26.38 M 26.15 M

LinkNet EfficientNet b7 72.41% 64.66% 78.74% 69.23% 0.0392 72.26 M 71.94 M
DenseNet 201 68.47% 66.60% 74.90% 71.15% 0.0404 22.55 M 22.31 M

FPN EfficientNet b7 74.24% 66.05% 80.56% 70.62% 0.0403 67.71 M 67.40 M
DenseNet 201 72.11% 67.91% 78.41% 71.82% 0.0414 21.53 M 21.30 M

Fig. 9  Performance of Melt pool prediction based on different ratio of 
training data
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segmentation with U-Net captured more details and had bet-
ter melt pool boundary connectivity.

Overall, the developed models outperform the traditional 
segmentation algorithms dramatically to segment the 
regions for melt pools and porosity and makes microscopy 
image data accessible for automated quantification. Our 
proposed method has the capability to handle noisy data and 
produce reliable segmentation results, which is a significant 
advantage for applications where the quality of AM images 
is limited. Overall, our study demonstrates a robust and 
efficient solution for accurate AI-enhanced segmentation of 
AM microstructure image analysis.

To further evaluate and quantify the effects on model 
predicted results of melt pool geometry among three net-
works, Fig. 11 is presented with a comparative analysis of 
melt pool area distribution, quantified by relative frequency, 
as displayed by ground truth (Fig. 11a) and three deep 
learning segmentation models: U-Net (Fig. 11b), LinkNet 
(Fig. 11c), and FPN (Fig. 11d). The proximity of the distri-
butions generated by the deep learning models to the labeled 
ground truth indicates a high degree of accuracy in melt 
pool segmentation. The U-Net model exhibits a highly effec-
tive alignment of the proper distribution of melt pool area, 
reflected in the highest IoU and F-score among the models’ 
testing. The distribution pattern of the LinkNet model is 
slightly wider than the ground truth but still maintains a 
similar peak. The FPN model’s distribution maintains the 

general trend. Overall, the close resemblance across the 
models, particularly U-Net, to the ground truth highlights 
the robustness of our proposed methods in dealing with var-
ied forms of defects and complex printing scenarios.

The performance on the distribution of the melt pool 
area confirms that the predicted results are consistent 
with the trend of ground truth, indicating the reliability 
and consistency of our proposed method. To summarize, 
the obtained segmentation map facilitates the automated 
quantification of multi-layer, multi-track melt pools from 
samples fabricated by L-PBF, significantly improving 
efficiency and minimizing manual intervention. The 
capability of our methods significantly helps in detecting 
melt pools on samples that are generated across a range of 
process parameters involving complicated-solidification 
processes and various defect scenarios. In addition, current 
methodology is highly robust and capable of handling noisy 
data. An important practical implication of this feature is the 
possibility of applying it in the actual-production settings for 
potential quality monitoring and performance tuning.

4  Conclusion

This paper presented a deep learning-based approach for 
defects detection and segmentation for porosity and melt 
pool geometry from cross-sectional microstructures of 

Fig. 10  Colormap of melt pool area segmentation. The top row a–c presents the output of the deep learning models for melt pool segmentation a 
U-Net, b LinkNet c FPN. d–f are corresponding unique color maps (using watershed algorithm) of the identified melt pools
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samples manufactured using laser-powder bed fusion. The 
proposed method addresses the challenges associated with 
detecting melt pool boundaries and porosities in noisy 
microscopy data and segments heterogeneous objects 
with high accuracy, among the complexities of multi-
layer, multi-track microstructures. The method adopts 
an encoder–decoder based network and utilizes various 
optimization techniques through a data-centric approach 
with noise reduction and data augmentation and a model-
based optimization that leverages transfer learning with pre-
trained models. Our work has made significant progress by 
enabling the simultaneous detection of multiple features, 
such as pores and melt pool morphologies. Previous 
studies [35, 48] have mainly focused on identifying defects 
in a single layer or segmentation of a single feature in a 
multilayer setting. In contrast, our approach demonstrates 
superior capacity to identify multiple objects with significant 
variations in characteristics, all while maintaining high 
performance.

The main findings and implications of this work are 
highlighted as follows:

• The proposed deep learning-based approach presents an 
opportunity to automate the simultaneous segmentation 
of melt pools and porosity in 3D printed parts, which 
could pave the way for effective quality monitoring and 
quantitative assessment of defects in AM.

• The combination of EfficientNet b7 and U-Net emerged 
as the most effective choice, among the evaluated deep 
learning models U-Net, LinkNet, and FPN paired 
with various backbone networks. This superiority was 
evidenced by achieving the highest testing IoU score 
of 74.24%, along with the top testing and inference 
F-Scores (80.56% and 72.39%, respectively) with 
limited training data. Availability of large number of 
parameters in the EfficientNet b7 + U-Net combination 
was found to be the reason for its observed best 
performance.

• Our proposed method for melt pool segmentation has 
demonstrated a significant enhancement over the existing 
work [48], with our results showing an approximately 
twofold increase in the IoU score compared to the 
cited study. Furthermore, our approach to porosity 

Fig. 11  Area distribution of melt pools. a Area distribution from labeled mask (ground truth). b Area distribution from prediction with U-net. c 
Area distribution from prediction with LinkNet. d Area distribution from prediction with FPN
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segmentation is innovative, presenting a novel solution 
in the absence of comparable existing work.

Acknowledgements Authors acknowledge the infrastructure and 
support of Center for Agile and Adaptive Additive Manufactur-
ing (CAAAM) funded through State of Texas Appropriation: 
190405-105-805008-220.

Data availability The computational and experimental data required to 
reproduce these findings can be made available upon request.

Declarations 

Conflict of interest On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

References

 1. Fu Y, Downey ARJ, Yuan L et al (2022) Machine learning 
algorithms for defect detection in metal laser-based additive 
manufacturing: a review. J Manuf Process 75:693–710. https:// 
doi. org/ 10. 1016/j. jmapro. 2021. 12. 061

 2. Liu Z, Zhao D, Wang P et al (2022) Additive manufacturing of 
metals: Microstructure evolution and multistage control. J Mater 
Sci Technol 100:224–236. https:// doi. org/ 10. 1016/j. jmst. 2021. 
06. 011

 3. Holm EA, Cohn R, Gao N et al (2020) Overview: computer 
vision and machine learning for microstructural characterization 
and analysis. Metall Mater Trans A 51:5985–5999. https:// doi. 
org/ 10. 1007/ s11661- 020- 06008-4

 4. Qin J, Hu F, Liu Y et al (2022) Research and application of 
machine learning for additive manufacturing. Addit Manuf 
52:102691. https:// doi. org/ 10. 1016/j. addma. 2022. 102691

 5. Anantatamukala A, Mani Krishna KV, Dahotre NB (2023) Gen-
erative adversarial networks assisted machine learning based 
automated quantification of grain size from scanning electron 
microscope back scatter images. Mater Charact 206:113396. 
https:// doi. org/ 10. 1016/j. match ar. 2023. 113396

 6. Campbell A, Murray P, Yakushina E, Marshall S, Ion W (2018) 
New methods for automatic quantification of microstructural 
features using digital image processing. Mater Des. https:// doi. 
org/ 10. 1016/j. matdes. 2017. 12. 049

 7. Otsu N (1979) A threshold selection method from gray-level 
histograms. IEEE Trans Syst Man Cybern 9:62–66. https:// doi. 
org/ 10. 1109/ TSMC. 1979. 43100 76

 8. Sural S, Gang Q, Pramanik S (2002) Segmentation and histo-
gram generation using the HSV color space for image retrieval. 
In: Sural S, Gang Q, Pramanik S (eds) Proceedings International 
Conference on Image Processing Image Processing. IEEE, p 
II-589–II−92

 9. Rafael C, Gonzalez REW (2018) Digital image processing, 4th 
edn. Pearson

 10. Canny J (1986) A computational approach to edge detection. 
IEEE Trans Pattern Anal Mach Intell PAMI-8:679–698. https:// 
doi. org/ 10. 1109/ TPAMI. 1986. 47678 51

 11. Marr D, Hildreth E (1980) Theory of edge detection. Proc R 
Soc Lond B Biol Sci 207:187–217. https:// doi. org/ 10. 1098/ rspb. 
1980. 0020

 12. Fukunaga K (1990) Introduction to statistical pattern recogni-
tion. Elsevier

 13. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans 
Inf Theory 28:129–137. https:// doi. org/ 10. 1109/ TIT. 1982. 
10564 89

 14. Zhang J, Marszałek M, Lazebnik S, Schmid C (2007) Local 
features and kernels for classification of texture and object cat-
egories: a comprehensive study. Int J Comput Vis 73:213–238. 
https:// doi. org/ 10. 1007/ s11263- 006- 9794-4

 15. Wang M, Deng W (2021) Deep face recognition: a survey. Neu-
rocomputing 429:215–244. https:// doi. org/ 10. 1016/j. neucom. 
2020. 10. 081

 16. Grigorescu S, Trasnea B, Cocias T, Macesanu G (2019) A sur-
vey of deep learning techniques for autonomous driving. J Field 
Robot. https:// doi. org/ 10. 1002/ rob. 21918

 17. Qian R, Lai X, Li X (2022) 3D object detection for autonomous 
driving: a survey. Pattern Recognit 130:108796. https:// doi. org/ 
10. 1016/j. patcog. 2022. 108796

 18. Kumar Y, Koul A, Singla R, Ijaz MF (2022) Artificial intel-
ligence in disease diagnosis: a systematic literature review, 
synthesizing framework and future research agenda. J 
Ambient Intell Humaniz Comput. https:// doi. org/ 10. 1007/ 
s12652- 021- 03612-z

 19. Shen D, Wu G, Suk H-I (2017) Deep learning in medical image 
analysis. Annu Rev Biomed Eng 19:221–248. https:// doi. org/ 10. 
1146/ annur ev- bioeng- 071516- 044442

 20. Yang S, Zhu F, Ling X et al (2021) Intelligent health care: applica-
tions of deep learning in computational medicine. Front Genet. 
https:// doi. org/ 10. 3389/ fgene. 2021. 607471

 21. Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin 
MS, Van Esesn BC, Awwal AAS, Asari VK (2018) The history 
began from alexnet: a comprehensive survey on deep learning 
approaches. arXiv: 1803. 01164

 22. Alrfou K, Kordijazi A, Zhao T (2022) Computer vision methods 
for the microstructural analysis of materials: the state-of-the-art 
and future perspectives. arXiv: 2208. 04149

 23. Dai Z, Liu H, Le QV, Tan M (2021) Coatnet: marrying convolu-
tion and attention for all data sizes. Adv Neural Inf Process Syst 
34:3965–3977

 24. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classifi-
cation with deep convolutional neural networks. Commun ACM 
60:84–90. https:// doi. org/ 10. 1145/ 30653 86

 25. Simonyan K, Zisserman A (2014) Very deep convolutional net-
works for large-scale image recognition. arXiv: 1409. 1556

 26. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look 
once: unified, real-time object detection. In: Proceedings of the 
IEEE conference on computer vision and pattern recognition, pp 
779–788

 27. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: 
Proceedings of the IEEE international conference on computer 
vision, pp 2961–2969

 28. Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards 
real-time object detection with region proposal networks. In: Cor-
tes C, Lawrence N, Lee D et al (eds) Advances in neural informa-
tion processing systems. Curran Associates Inc

 29. Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE inter-
national conference on computer vision, pp 1440–1448

 30. Long J, Shelhamer E, Darrell T (2015) Fully convolutional net-
works for semantic segmentation. In: Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp 
3431–3440

 31. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature 
hierarchies for accurate object detection and semantic segmenta-
tion. In: Proceedings of the IEEE conference on computer vision 
and pattern recognition. pp 580–587

 32. Wen H, Huang C, Guo S (2021) The application of convolutional 
neural networks (CNNs) to recognize defects in 3D-printed parts. 
Materials 14:2575. https:// doi. org/ 10. 3390/ ma141 02575

https://doi.org/10.1016/j.jmapro.2021.12.061
https://doi.org/10.1016/j.jmapro.2021.12.061
https://doi.org/10.1016/j.jmst.2021.06.011
https://doi.org/10.1016/j.jmst.2021.06.011
https://doi.org/10.1007/s11661-020-06008-4
https://doi.org/10.1007/s11661-020-06008-4
https://doi.org/10.1016/j.addma.2022.102691
https://doi.org/10.1016/j.matchar.2023.113396
https://doi.org/10.1016/j.matdes.2017.12.049
https://doi.org/10.1016/j.matdes.2017.12.049
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1098/rspb.1980.0020
https://doi.org/10.1098/rspb.1980.0020
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1007/s11263-006-9794-4
https://doi.org/10.1016/j.neucom.2020.10.081
https://doi.org/10.1016/j.neucom.2020.10.081
https://doi.org/10.1002/rob.21918
https://doi.org/10.1016/j.patcog.2022.108796
https://doi.org/10.1016/j.patcog.2022.108796
https://doi.org/10.1007/s12652-021-03612-z
https://doi.org/10.1007/s12652-021-03612-z
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.3389/fgene.2021.607471
https://arxiv.org/abs/1803.01164
https://arxiv.org/abs/2208.04149
https://doi.org/10.1145/3065386
https://arxiv.org/abs/1409.1556
https://doi.org/10.3390/ma14102575


Progress in Additive Manufacturing 

 33. Zhang B, Jaiswal P, Rai R et  al (2019) Convolutional neu-
ral network-based inspection of metal additive manufacturing 
parts. Rapid Prototyp J 25:530–540. https:// doi. org/ 10. 1108/ 
RPJ- 04- 2018- 0096

 34. Farhan Khan M, Alam A, Ateeb Siddiqui M et al (2021) Real-time 
defect detection in 3D printing using machine learning. Mater 
Today Proc 42:521–528. https:// doi. org/ 10. 1016/j. matpr. 2020. 10. 
482

 35. Westphal E, Seitz H (2021) A machine learning method for defect 
detection and visualization in selective laser sintering based on 
convolutional neural networks. Addit Manuf 41:101965. https:// 
doi. org/ 10. 1016/j. addma. 2021. 101965

 36. Snow Z, Diehl B, Reutzel EW, Nassar A (2021) Toward in-situ 
flaw detection in laser powder bed fusion additive manufacturing 
through layerwise imagery and machine learning. J Manuf Syst 
59:12–26. https:// doi. org/ 10. 1016/j. jmsy. 2021. 01. 008

 37. Li J, Zhou Q, Huang X et al (2023) In situ quality inspection with 
layer-wise visual images based on deep transfer learning during 
selective laser melting. J Intell Manuf 34:853–867. https:// doi. org/ 
10. 1007/ s10845- 021- 01829-5

 38. Zhang B, Liu S, Shin YC (2019) In-process monitoring of poros-
ity during laser additive manufacturing process. Addit Manuf 
28:497–505. https:// doi. org/ 10. 1016/j. addma. 2019. 05. 030

 39. Li X, Jia X, Yang Q, Lee J (2020) Quality analysis in metal addi-
tive manufacturing with deep learning. J Intell Manuf 31:2003–
2017. https:// doi. org/ 10. 1007/ s10845- 020- 01549-2

 40. Scime L, Beuth J (2018) A multi-scale convolutional neural net-
work for autonomous anomaly detection and classification in a 
laser powder bed fusion additive manufacturing process. Addit 
Manuf 24:273–286. https:// doi. org/ 10. 1016/j. addma. 2018. 09. 034

 41. Angelone R, Caggiano A, Teti R et al (2020) Bio-intelligent selec-
tive laser melting system based on convolutional neural networks 
for in-process fault identification. Procedia CIRP 88:612–617. 
https:// doi. org/ 10. 1016/j. procir. 2020. 05. 107

 42. Baumgartl H, Tomas J, Buettner R, Merkel M (2020) A deep 
learning-based model for defect detection in laser-powder bed 
fusion using in-situ thermographic monitoring. Prog Addit Manuf 
5:277–285. https:// doi. org/ 10. 1007/ s40964- 019- 00108-3

 43. Cui W, Zhang Y, Zhang X et al (2020) Metal additive manufactur-
ing parts inspection using convolutional neural network. Appl Sci 
10:545. https:// doi. org/ 10. 3390/ app10 020545

 44. Zhang Y, Hong GS, Ye D et al (2018) Extraction and evaluation 
of melt pool, plume and spatter information for powder-bed fusion 
AM process monitoring. Mater Des 156:458–469. https:// doi. org/ 
10. 1016/j. matdes. 2018. 07. 002

 45. Caggiano A, Zhang J, Alfieri V et al (2019) Machine learning-
based image processing for on-line defect recognition in additive 
manufacturing. CIRP Ann 68:451–454. https:// doi. org/ 10. 1016/j. 
cirp. 2019. 03. 021

 46. Davtalab O, Kazemian A, Yuan X, Khoshnevis B (2022) Auto-
mated inspection in robotic additive manufacturing using deep 
learning for layer deformation detection. J Intell Manuf 33:771–
784. https:// doi. org/ 10. 1007/ s10845- 020- 01684-w

 47. Ertay DS, Kamyab S, Vlasea M et al (2021) Toward sub-surface 
pore prediction capabilities for laser powder bed fusion using data 
science. J Manuf Sci Eng Trans ASME. https:// doi. org/ 10. 1115/1. 
40504 61

 48. Schmid S, Krabusch J, Schromm T et al (2021) A new approach 
for automated measuring of the melt pool geometry in laser-pow-
der bed fusion. Prog Addit Manuf 6:269–279. https:// doi. org/ 10. 
1007/ s40964- 021- 00173-7

 49. Peles A, Paquit VC, Dehoff RR (2023) Deep-learning quantitative 
structural characterization in additive manufacturing. arXiv: 2302. 
06389

 50. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional 
networks for biomedical image segmentation. In: Medical image 

computing and computer-assisted intervention–MICCAI 2015: 
18th international conference, Munich, Germany, October 5–9, 
2015, proceedings, part III 18. Springer International Publish-
ing, pp 234–241

 51. Chaurasia A, Culurciello E (2017) LinkNet: Exploiting encoder 
representations for efficient semantic segmentation. IEEE Vis 
Commun Image Process. https:// doi. org/ 10. 1109/ VCIP. 2017. 
83051 48

 52. Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie 
S (2017) Feature pyramid networks for object detection. In: 
Proceedings of the IEEE conference on computer vision and 
pattern recognition, pp 2117–2125

 53. Li Z, Montomoli F (2023) Surrogate modeling and uncertainty 
quantification based on multi-fidelity deep neural network. 
Reliab Eng Syst Saf. https:// doi. org/ 10. 1016/j. ress. 2024. 109975

 54. Cowley B, Pillow JW (2020) High-contrast “gaudy” images 
improve the training of deep neural network models of visual 
cortex. Adv Neural Inf Process Syst 33:21591–21603

 55. Maini R, Aggarwal H (2010) A comprehensive review of image 
enhancement techniques. arXiv: 1003. 4053

 56. Liang W, Tadesse GA, Ho D et al (2022) Advances, challenges 
and opportunities in creating data for trustworthy AI. Nat Mach 
Intell 4:669–677. https:// doi. org/ 10. 1038/ s42256- 022- 00516-1

 57. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to 
ImageJ: 25 years of image analysis. Nat Methods 9:671–675. 
https:// doi. org/ 10. 1038/ nmeth. 2089

 58. GIMP - GNU image manipulation program. https:// www. gimp. 
org/. Accessed 29 Mar 2023

 59. Takahashi R, Matsubara T, Uehara K (2020) Data augmentation 
using random image cropping and patching for deep CNNs. 
IEEE Trans Circuits Syst Video Technol 30:2917–2931. https:// 
doi. org/ 10. 1109/ TCSVT. 2019. 29351 28

 60. Chollet F (2017) Deep learning with Python. Manning Publica-
tions, New York

 61. Deng J, Dong W, Socher R et al. (2009) ImageNet: A large-
scale hierarchical image database. In: 2009 IEEE Conference on 
Computer Vision and Pattern Recognition. IEEE, pp 248–255

 62. Ghosh S, Das N, Das I, Maulik U (2020) Understanding deep 
learning techniques for image segmentation. ACM Comput Surv 
52:1–35. https:// doi. org/ 10. 1145/ 33297 84

 63. Yan C, Fan X, Fan J, Wang N (2022) Improved U-net remote 
sensing classification algorithm based on multi-feature fusion 
perception. Remote Sens (Basel) 14:1118. https:// doi. org/ 10. 
3390/ rs140 51118

 64. Wang Z, Zou N, Shen D, Ji S (2020) Non-local U-nets for 
biomedical image segmentation. Proc AAAI Conf Artif Intell 
34:6315–6322. https:// doi. org/ 10. 1609/ aaai. v34i04. 6100

 65. Tan C, Sun F, Kong T et al (2018) A survey on deep transfer 
learning. Springer International Publishing, Cham

 66. Goodfellow I, Yosgua Bengio AC (2016) Deep learning. The 
MIT Press, Cambridge

 67. Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for 
convolutional neural networks. In: International conference on 
machine learning. PMLR, pp 6105–6114

 68. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) 
Densely connected convolutional networks. In: Proceedings of 
the IEEE conference on computer vision and pattern recogni-
tion, pp 4700–4708

 69. Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss 
for dense object detection. In: Proceedings of the IEEE inter-
national conference on computer vision, pp 2980–2988

 70. Sudre CH, Li W, Vercauteren T et al (2017) Generalised dice 
overlap as a deep learning loss function for highly unbalanced 
segmentations. Lecture Notes Comput Sci. https:// doi. org/ 10. 
1007/ 978-3- 319- 67558-9_ 28

https://doi.org/10.1108/RPJ-04-2018-0096
https://doi.org/10.1108/RPJ-04-2018-0096
https://doi.org/10.1016/j.matpr.2020.10.482
https://doi.org/10.1016/j.matpr.2020.10.482
https://doi.org/10.1016/j.addma.2021.101965
https://doi.org/10.1016/j.addma.2021.101965
https://doi.org/10.1016/j.jmsy.2021.01.008
https://doi.org/10.1007/s10845-021-01829-5
https://doi.org/10.1007/s10845-021-01829-5
https://doi.org/10.1016/j.addma.2019.05.030
https://doi.org/10.1007/s10845-020-01549-2
https://doi.org/10.1016/j.addma.2018.09.034
https://doi.org/10.1016/j.procir.2020.05.107
https://doi.org/10.1007/s40964-019-00108-3
https://doi.org/10.3390/app10020545
https://doi.org/10.1016/j.matdes.2018.07.002
https://doi.org/10.1016/j.matdes.2018.07.002
https://doi.org/10.1016/j.cirp.2019.03.021
https://doi.org/10.1016/j.cirp.2019.03.021
https://doi.org/10.1007/s10845-020-01684-w
https://doi.org/10.1115/1.4050461
https://doi.org/10.1115/1.4050461
https://doi.org/10.1007/s40964-021-00173-7
https://doi.org/10.1007/s40964-021-00173-7
https://arxiv.org/abs/2302.06389
https://arxiv.org/abs/2302.06389
https://doi.org/10.1109/VCIP.2017.8305148
https://doi.org/10.1109/VCIP.2017.8305148
https://doi.org/10.1016/j.ress.2024.109975
https://arxiv.org/abs/1003.4053
https://doi.org/10.1038/s42256-022-00516-1
https://doi.org/10.1038/nmeth.2089
https://www.gimp.org/
https://www.gimp.org/
https://doi.org/10.1109/TCSVT.2019.2935128
https://doi.org/10.1109/TCSVT.2019.2935128
https://doi.org/10.1145/3329784
https://doi.org/10.3390/rs14051118
https://doi.org/10.3390/rs14051118
https://doi.org/10.1609/aaai.v34i04.6100
https://doi.org/10.1007/978-3-319-67558-9_28
https://doi.org/10.1007/978-3-319-67558-9_28


 Progress in Additive Manufacturing

 71. Beucher S (1992) The watershed transformation applied to image 
segmentation. Scan Microsc 1992:28

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Deep learning-based melt pool and porosity detection in components fabricated by laser powder bed fusion
	Abstract
	1 Introduction
	2 Methods
	2.1 Material and specimen preparation
	2.1.1 AM experiment
	2.1.2 Sample preparation
	2.1.3 Profilometer measurements

	2.2 Dataset preparation
	2.2.1 Data preprocessing and image enhancement
	2.2.2 Data annotation and labeling methods
	2.2.3 Generated datasets for model training and inference

	2.3 Deep learning methods
	2.3.1 Deep learning-based image segmentation
	2.3.2 Model training optimization techniques
	2.3.3 Model evaluation metrics


	3 Results and discussion
	3.1 Predictive performance and comparison of various data annotation strategies
	3.1.1 Single class segmentation
	3.1.2 Multi-class segmentation

	3.2 Insights into model training: training curves and losses
	3.3 Comparative performance analysis of backbone models
	3.4 Sensitivity to training data ratio
	3.5 Melt pool quantification from ML-predicted segmentation maps

	4 Conclusion
	Acknowledgements 
	References


