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Abstract
Additive manufacturing (AM) is a relatively novel method to fabricate 3D objects by adding layer-upon-layer materials. As 
one of the most anticipated techniques in recent years, AM already made advances in design, production, and supply chain 
process of the manufacturing industry. AM is a digital manufacturing technology in which a massive amount of data is 
generated during the process. Accordingly, obtaining useful information from these data to improve current AM technology 
becomes a challenge. Meanwhile, Big Data research provides an ideal solution for dealing with the massive data obtained 
from AM processes. Besides the contributions in the AM research and production, Big Data analysis methods can also be used 
to help designers and engineers by collecting valuable information from clients and customers. From a business perspective, 
the manufacturing sector will benefit from the established Big Data sharing platform to promote and popularize new products. 
On the other hand, customers will obtain desired commodities with the help of a new-type 3D printing service system. The 
goal of this article is to summarize the contributions from the existing literature in the AM and Big Data field and prospect 
how Big Data methods can offer a better future for AM technology. It also introduces recent developments in AM technology 
combined with the internet of things (IoT), cloud, and cybersecurity. Future directions in AM and Big Data, which include 
AM data unification, completed AM data-sharing platform, and smart AM production process is pointed out as well.
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1  Introduction

Additive manufacturing (AM), which is also known as three-
dimensional (3D) printing, is defined as a process of adding 
materials layer-by-layer into a 3D product. Unlike the tradi-
tional manufacturing processes, which remove the materials 
from the object, AM can transform the digital files or com-
puter-aided design (CAD) models into 3D objects, directly. 
Therefore, AM considerably reduces the waste materials 
during the manufacturing process. The additive nature of 
this process also makes it significantly more efficient in 
producing complex and custom geometries over traditional 
subtractive manufacturing methods. The early concepts of 

AM were introduced in the 1980s [1]. Hull developed ste-
reolithography (SLA) fabrication system in 1986 [2]. After 
that, many AM process categories such as material extru-
sion, powder bed fusion (PBF), and sheet lamination were 
proposed [3–5]. Nowadays, AM is widely used in the manu-
facturing and medical industries, as well as sociocultural 
sectors. The ever increasing demand for AM technology, 
owing to its potential in fabricating low-cost and custom-
izable objects, provides a broad development prospect for 
AM [6].

However, uncertainty in meeting engineering quality 
standards hinders the widespread adoption of this technol-
ogy in various engineering applications, such as construc-
tion, aerospace, automotive and electronic industries. The 
uncertain quality was the main barrier for the broad adapta-
tion of AM for 47% of surveyed manufacturers [7]. Specifi-
cally, since the material extrusion process is highly depend-
ent on the accuracy of the nozzle to extrude the melted 
materials, it is difficult to 3D print the finely detailed items 
with high quality [8, 9]. Since the grain size of powder may 
not be constant during the fusion process, the PBF method 
also suffers from poor surface quality [10]. In addition, in 
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PBF-based methods, it is relatively difficult to set up appro-
priate control parameters for PBF due to its elaborate pro-
cess [11]. For other AM methods, VAT photopolymerization 
has the problem in brittle components, and sheet lamination 
exhibits curvatures and inaccuracies [12, 13]. In addition to 
the quality, the aesthetics condition is another problem in 
many AM methods [14]. These limitations severely restrict 
the commercialization of AM technology. To further refine 
the existing AM methods, many Big Data technologies and 
machine learning, deep learning and artificial intelligence 
are expected to address many of these challenges associated 
with AM.

As with other emerging technologies like Cloud Com-
puting and the internet of things (IoT), Big Data offers the 
opportunity for AM to replace the traditional manufacturing 
process for various applications. As an emerging topic, Big 
Data has been developing rapidly in recent years. Big Data 
was defined as “an all-encompassing term for any collection 
of data sets so large and complex that it becomes difficult 
to process using traditional data processing applications” 
[15, 16]. The generalized challenges of Big Data include 
data collection, data storage, data analysis, data sharing, data 
visualization, and data security. Recently, an exceeding num-
ber of research efforts in Big Data focused on the Big Data 
analysis. Finance, healthcare, and engineering Industries 
have extensively applied Big Data analysis methods to their 
experimental database. Plenty of innovative contributions 
were accomplished at the intersection of Big Data with tra-
ditional research fields.

Among the subcategories of data analytic, AM and Big 
Data are some of the most noteworthy and anticipated 
research fields. As two of the most valuable technological 
advancements in Industry 4.0, both Big Data and AM tech-
nologies have the potential to trigger a new industrial revolu-
tion [17]. Big Data analysis methods, such as machine learn-
ing, deep learning, and heuristic algorithm can be utilized 
to classify data and predict the output of the AM process. 
The refined information from data analysis of AM processes 
can also support designing better and more efficient AM 
products [23]. Moreover, data sharing is another promis-
ing research direction in Big Data and AM. A developed 
data-sharing platform can improve research efficiency and 
enhance the cooperation in the AM industry [18]. Further-
more, the attractive combination of the IoT and AM could 
further grow the commercial value of AM technology.

In addition, since Big Data and AM technology are both 
selected as nine pillars of technological advancement in 
Industry 4.0 [16], the combination of AM and Big Data is 
expected to have a border impact in the future. Hence, this 
paper analyzes the future of the AM industry in the context 
of the Industry 4.0 evolution and discusses the potential 
development direction of AM and Big Data in the era of 
the internet.

To discuss the benefits from AM and Big Data with more 
details, this paper searched 272 recent articles from AM 
product diagnosis, prediction, and design area using Big 
Data technics. A major portion of this literature is found 
from academic search engines like Google Scholar, Micro-
soft Academic, and Researchgate using AM and several 
methods of data analytics as keywords. Through reviewing 
the 272 selected articles, 133 of them were excluded in final 
screening due to the less relevance and repetition. The reset 
139 articles from the original search strategy were used in 
the final analysis. The rest of this paper is organized into 
the following sections: we review recent interdisciplinary 
contributions between Big Data analysis and AM in Sect. 2. 
The latest improvements in AM information and communi-
cations technologies are discussed including the IoT shar-
ing concepts, Cloud AM platform, and AM cybersecurity 
in Sect. 3. The prospects of future AM and Big Data are 
analyzed in Sect. 4. Finally, Sect. 5 concludes the discussion 
of the review.

2 � Data analysis methods and additive 
manufacturing research

With the development of Big Data analysis, computer-based 
machine learning has been greatly used in classification, pre-
diction, and numerical optimization. By applying machine 
learning methods, such as Bayesian, Neural Network, and 
Clustering methods, the collected experimental data in the 
AM process can be analyzed and generalized into models or 
general rules. Beyond machine learning and deep learning, 
geometrical analysis, sensitive analysis, signal analysis, and 
optimization are used as supplementary methods to manipu-
late data from AM processes. Both of these analysis methods 
can significantly improve AM research, manufacturing, and 
design.

2.1 � Big data analytics methods for AM products 
identification and diagnosis

As a fundamental method of machine learning, classifica-
tion and identification can utilize the existing labeled data 
as a training set to differentiate the unlabeled data set. How-
ever, the identification for AM products is difficult, since 
the standard statistic, cloud deviations, and conventional 
measurement methods cannot detect a significant differ-
ence between similar 3D-printed components [19]. Moreo-
ver, current 3D printing users always implement their fresh 
ideas by designing unconventional and peculiar products 
[20]. High geometric complexity in shapes also brings tech-
nological difficulties in classifying AM products [21]. Fur-
thermore, dimensional accuracy for various 3D printers is 
not currently uniform [22, 23]. Meaning, AM identification 
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technology is expected to classify products with different 
accuracy standards [24].

To realize real-time monitoring process conditions using 
sensor signals for the mater extrusion method, Bastani et al 
proposed an online sparse estimation-based classification 
method to build a framework to classify and identify AM 
components [25]. They considered the data from sensor 
signals as a linear system and solved the underdetermined 
linear system by machine learning methods. Several algo-
rithms, such as neural networks, support vector machines, 
greedy Bayesian estimation, and quadratic discriminant 
methods were used for the mater extrusion process. The 
greedy Bayesian estimation had the best accuracy rate 
(about 90%) in their implementation [25]. Tootooni et al. 
extended the previous research to differentiate and classify 
the dimensional variation of mater extrusion AM products. 
They employed a laser-scanning technique and consider 2 
million data points for each unclassified component [26]. 
They utilized spectral graph theory to manage the scanned 
data. The implemented sparse representation technique pro-
vided a higher classification accuracy (about 95%). Scime 
and Beuth implemented AM product classification methods 
for the PBF process and developed a monitoring system that 
can detect and classify the unsuccessful components from 
the acceptable PBF products [27]. This trained automatic 
system utilized unsupervised heuristic-based learning algo-
rithms to analyze the images of the AM process. This system 
was already tested to predict the location of defects in the 
final product. It also showed the potential to become a feed-
back control system that can detect the anomalies during the 
AM process. For the selective laser melting (SLM) AM pro-
cess, researchers developed a feedback control system with 
optical sensors [28, 29]. This control system could analyze 
the process parameters and feedback signals and identify 
the current AM process stage. Then, the AM process will be 
corrected by the feedback control system with the updated 
process parameters.

Another well-known application of data analysis methods 
in AM is the diagnosis of 3D-printed products. Machine 
learning was first introduced to diagnose the malicious infill 
defects in mater extrusion AM products by analyzing the 
image data. By extracting the features of AM products from 
the layer-by-layer 3D printing process images, machine 
learning algorithms such as decision trees and naïve Bayes 
were utilized to analyze the data. The analysis results can 
be used to inspect the existing defects in the 3D printing 
process [30]. The accuracy rate of the successful detection 
was around 90% in the validation examples. This method 
was further improved to detect the real-time error for PBF 
products based on sensor signals. The images for each build-
ing layer of powder bed fusion were collected using a high 
resolution digital single-lens reflex camera [31]. Multiple 
visual features were extracted from the images and classified 

using supervised machine learning. Computed tomography 
(CT) scan was applied to validate the classification results. 
After the cross-validation, more than 80% of the defects 
in the 3D-printed products could be successfully detected. 
Using an infrared camera, features in electron beam melt-
ing (EBM) components could be extracted from thermal 
images [32–35]. The thermal images included detailed sur-
face temperature profiles which can be analyzed to provide 
information to update the setting for the next layer. To fur-
ther improve the quality and repeatability of PBF parts, Yao 
et al introduced a novel multifractal analysis technique for 
the detection of defects during the direct metal laser sin-
tering (DMLS) process [36]. This method can characterize 
the image data of AM components using the multifractal 
spectrum, then locate the defects by analyzing the image 
data. In addition, other research groups considered different 
supervised learning methods for detection in PBF to bet-
ter control the material thickness, geometry errors, cool-
ing rate, microstructure, and composition during PBF and 
mater extrusion AM process [37, 38]. Mazumder considered 
an innovative smart optical-monitoring system that could 
observe spectral intensity during the AM process [39]. The 
relation between the spectral and defects was obtained by 
supervised learning. The smart optical-monitoring system 
could locate the defects by analyzing the spectral intensity 
and interrupt the manufacturing process to cease the prop-
agation of the defects. Rather than a supervised learning 
method, unsupervised learning technique is another method 
to detect defects of AM parts. To improve the geometric 
accuracy, researchers used self-organizing map method to 
analyze the AM data from sheet lamination and mater extru-
sion AM parts [40]. This method could effectively remove 
97% of extraneous and irrelevant AM data by unsupervised 
learning, then established the relationship between process 
conditions and geometric accuracy in AM parts. Therefore, 
this relationship could be utilized to improve geometric 
accuracy using appropriate process conditions. In addition 
to the above contributions, related researches also promoted 
the development in AM components diagnosis [38, 41–47], 
and the sustainability of the AM components [48–50].

Instead of using the image and signal AM data, Wu et al 
collected the acoustic emission data from the mater extru-
sion process as feature information [51]. With the help of 
support vector machines (SVMs) method, acoustic emission 
data could be utilized to detect if the extrusion nozzle is 
blocked. Validation results showed that this new method can 
effectively serve as a non-intrusive diagnostic method for the 
extrusion nozzle process.

In Table 1, the advantages and deficiencies of existing 
methods in identification and diagnosis are summarized by 
different AM types. Instead of the deficiencies listed on the 
table, two common problems existed in the most current 
AM methods. First, the above analysis methods are highly 
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dependent on the accuracy of the data. Since most of the 
data are collected during the AM process, high-quality data 
acquisition equipment is required to guarantee the accuracy 
of the collected data. Second, in most of the current meth-
ods, the AM process is separated from the data analysis pro-
cess. Meaning, AM process has to be slow down to obtain 
the result of data analysis. To save time and corresponding 
cost, the data analysis process should be combined as a part 
of the AM process in the future.

Currently, the contributions mainly focus on the mater 
extrusion and power bed-related AM methods. Data-based 
diagnosis methods still lack in the rest of AM types, such as 
light polymerized, binder jetting, and directed energy depo-
sition. Since these methods are less popular than the widely 
used AM method like extrusion nozzle and PBF, only a few 
research attempts to improve these non-mainstream AM 
methods using data. The future research in data-based AM 
diagnosis is expected to cover more AM methods.

2.2 � Big data analytics methods for AM process 
prediction

Setting control parameters for the AM process is extremely 
challenging for many 3D printing methods. To find a suitable 
parameter setting before the AM process, data analysis, and 
machine learning methods were largely applied for param-
eter prediction based on the historical process data. Machine 
learning was first used in the prediction of the main process-
ing parameters of laser cladding. To better evaluate the effect 
of the laser processing parameters, Davim et al collected 
plentiful geometric data of cladding (deposit height, width, 
and depth penetration) using different combinations of pro-
cessing parameters (laser power, scanning velocity, and pow-
der mass flow rate) [52]. With this experimental data set, 
multiple regression analyses determined the mathematical 

relationship between the processing parameters and geomet-
ric data of laser cladding. Based on this predictive model, 
laser cladding could find new applications (for example: the 
repairs of metal components) owing to the convenience of 
this mathematical model. This research was extended by 
considering processed variables (for example: the powder 
feeding rate divided by laser scanning speed) in the regres-
sion analysis [53]. Neuro-fuzzy is an alternative method of 
regression to predict the clad height in terms of laser pulse 
frequency, laser pulse energy, and traverse speed [54]. With 
the cross-validation based on the experiment data, the abso-
lute error rate of clad height prediction was only around 
0.07%. To further improve the geometry effects on the layer 
thickness, surface quality, and dimensional accuracy in the 
layered deposition process, Xiong et al. utilized a neural 
network to analyze the experimental data from gas metal 
arc welding based rapid manufacturing (as shown in Fig. 1) 
[55]. They used wire feed rate, welding speed, arc voltage, 
and the distance between the nozzle to plate as input vari-
ables to predict the width and height of their products. The 
predicted error rates of their final products varied from 1.5 to 
5.5%, which was better than the error rates from regression-
based methods (1.8–6.7%). To quantify the ultimate tensile 
strength and nominal strain of polylactic acid with low-cost 
material extrusion 3D printers, Lanzotti et al. utilized a 
supervised learning method to differentiate the important 
processing parameters with insignificant parameters [56]. 
By analyzing the experimental data with a regression-based 
learning method, they found out that layer thickness, infill 
orientation, and the value of shell perimeter have a deci-
sive impact on the product failure mechanism, i.e., ductile 
and brittle failure. To reduce human intervention during the 
material extrusion AM process, Vijayaraghavan et al com-
pared several different supervised learning methods to char-
acterize the process parameters of 3D-printed components 

Table 1   Summary of current contributions in the identification and diagnosis of AM products

AM types Data source Big Data analytics methods Advantages Deficiencies

Material extrusion Sensor signal data [25]
Laser-scanning data [26]
Acoustic emission data [47]

Machine learning algo-
rithms: neural networks, 
support vector machines, 
Bayesian estimation, deci-
sion trees [25]

Spectral graph theory [26]

High accuracy rate in identi-
fication and diagnosis

High implement ability

Receiving excessive amounts 
of irrelevant data

Non-uniform approach to 
process data

Powder bed fusion Image data [27, 30, 36]
Thermal images data [32]
Process control parameters: 

material thickness, cooling 
rate, geometry errors [37]

Supervised learning: 
regression, support vector 
machines [39]

Unsupervised learning: 
clustering, anomaly detec-
tion [36]

Heuristic algorithm [27]

Ability to locate the exact 
position of defects

Automatically setup the 
feedback control to correct 
the process

The training process takes 
time

Low accuracy in the diagnosis 
and corresponding feedback 
control

Sheet lamination Layer-by-layer image [40] Neural networks, self-organ-
ized map [40]

Improve the overall geomet-
ric accuracy

Takes time to analysis the 
image data by each layer
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[57]. They employed computational comparisons and sen-
sitivity analysis for different machine learning methods 
(genetic programming; support vector regression; artificial 
neural network). Based on the accuracy of the prediction 
results, the artificial neural network received the best per-
formance in building a functional relationship between input 
and output data from the material extrusion AM process. 
Recently, to address the shape deviation of CAD models in 
the material extrusion process, Zhu et al analyzed the toler-
ance of material extrusion with a guess-process multi-task 
supervised learning algorithm [58]. They mapped in-plane 
geometric deviations into an established deviation space, 
then they used statistic learning to estimate the geometric 
deviation in multiple geometries. In addition to the material 
extrusion AM method, the influence of process parameters 
for the powder bed fusion were researched by other groups 
[59, 60]. Using supervised regression and ANOVA, it was 
determined that printing direction can significantly affect the 
dimensional error and surface roughness. Beyond that, AM 
parameter setting could also be predicted by finite element 
methods and analysis of the geometric data [61–64].

In addition to geometric characteristics, machine learn-
ing was also utilized to analyze the porosity and bending 
elasticity of AM products. To improve the density, surface 
quality, and mechanical properties of AM components, 
Gaussian process-based predictive model was utilized to 
predict the porosity of metallic products produced by power 
bed fusion [65, 66]. Bayesian inference framework was 

used to estimate the statistical model parameters for spatial 
prediction based on the previous experimental data. The 
validation was completed by calculating the standard error 
between observed porosity and the fitted porosity from the 
model. Lam and Savalani further studied the porosity of AM 
products in selective laser sintering (SLS) by genetic pro-
gramming based heuristic algorithm [67]. In their research, 
genetic programming was utilized to discover the hidden 
non-linear relationship between open porosity data and the 
corresponding dominant input process parameters. The anal-
ysis reflected that laser power, laser scan speed, and layer 
thickness contributed to the open porosity with different per-
centages (53%, 32.09%, and 14.81%, respectively). Zhang 
et al. discussed the factors that can influence the bending 
elasticity of 3D-printed objects [68]. They trained an echo 
state network using an experimental dataset that stored the 
relationship between multi-dimension shell thickness and 
bending elasticity. The experimental results verified that the 
bending behavior is controllable using a reasonable setting 
for shell thickness.

In Table 2, the advantages and deficiencies of existed con-
tributions in AM process prediction are summarized. The 
common advantage is that most of the current contributions 
can predict the outcome of AM components with the pro-
cessing parameters. Therefore, the predicted model can help 
us to adjust the parameters for receiving better 3D-printed 
results. The common problem reflected in prediction accu-
racy, difficulty in data measurement, and feasibility in 

Fig. 1   Multilayer neural network using input parameters to predict the system output [55]



186	 Progress in Additive Manufacturing (2021) 6:181–197

1 3

parameter selection. In most cases, the prediction model 
can not consider the uncertain condition and accidents dur-
ing the AM process. Meaning, the most prediction model 
work for the ideal conditions. In addition, some process and 
characteristic parameters are hard to measure or exist the 
non-negligible measuring errors. Moreover, the predicted 
model cannot cover all of the relative control parameters. 
Therefore, to guarantee the accuracy of the prediction, sig-
nificant AM process parameters have to be included in the 
model.

2.3 � Big data analytics methods for AM design

Although quality, material, and construction characteristics 
are very important for AM products, designers and engineers 
still need to consider other factors to obtain a valuable AM 
product. A good visual artifact has to be guaranteed to main-
tain the utility value of the 3D-printed products [69]. For the 
majority of 3D printing techniques, the support material is 
necessary to keep the balance during the manufacturing pro-
cess [23]. Even though the balance of AM products can be 
maintained by adding support, removing the added supports 
may result in unsightly surface artifacts and a rough surface 
finish. Especially, when the supports are attached to small 
features, it is hard to distinguish the details of AM products 
with removable support. Although using support material is 
unavoidable in most cases, the negative influence of support 
can be reduced by avoiding using the supports in visually 
significant regions. Zhang et al. utilized a machine learning-
based perceptual model to analyze the collected human pref-
erence data [70]. The learning results could provide sugges-
tions for some known metrics, including the area of support, 
visual saliency, preferred viewpoints, and smoothness pres-
ervation. The neural network-based learning algorithm also 

provided an F-score, which represented the goodness of the 
printing direction on account of human aesthetic perception. 
The experimental result with the highest F-score achieved 
a better performance compared to existing state-of-the-art 
softwares (as shown in Fig. 2). Adapting mimic modification 
to reduce support is another way to keep the beauty of the 
AM products [71, 72]. Using K-means clustering learning 
algorithm to process the data of joint point between support 
and part, the shape of mater extrusion products were revised 
based on the computation. Historical experimental data were 
used to minimize the volume of support material (as shown 
in Fig. 3). The validation examples showed a good balance 
between beauty and stability of these mater extrusion AM 
products.

Support material is not the only factor to restrict the 
visual artifact of the AM products. Color, material choice, 
geometry, and aesthetics also greatly affect the AM design 
[73]. Topology optimization is a typical geometrical method 
to reduce material waste [74–76]. To verify the optimiza-
tion result, a well-known topological optimization problem 
Messerschmidt-Bölkow-Blohm (MBB) beam was used as 
a validation example. AM researchers implemented their 
optimization algorithms into a mater extrusion-based MBB 
problem [77–79]. The topology optimization algorithm 
could reduce material utilization and improve relative com-
pliance for the given AM example (as shown in Fig. 4). In 
addition to the topological optimization of AM, the material 
of AM components could also be adjusted to improve the 
performance of the AM process. AM technology is compat-
ible with a large range of materials such as polymers, metals, 
ceramic, and even biological materials [80]. Thus, Gu et al. 
utilized a database including thousands of structured data 
for mater extrusion AM products. They utilized finite ele-
ment analysis to calculate the mechanical properties of mater 

Table 2   Summary of current contributions in AM process prediction

AM types Data source Big Data analytics meth-
ods

Advantages Deficiencies

Material extrusion AM processing parame-
ters: layer thinness, infill 
orientation, the value of 
shell perimeter [56]

Supervised learning: 
regression, support 
vector machines, neural 
networks [55, 57]

Genetic programming [57]

Reduce the ductile and 
brittle failure

Reduce the shape deviation
Reduce human interven-

tion during the mater 
extrusion process

Numerous preplanned 
experiments are required 
to train the prediction 
model

The prediction model may 
not be accurate due to bias 
from the collected data

Powder bed fusion Geometric data, surface 
data, printing directions 
[59, 64, 67]

Supervised learning: 
regression, echo state 
network, naïve Bayes 
[59, 64]

Heuristic algorithm [67]

Reduce dimensional error 
and surface roughness

Improve the density and 
mechanical properties

Some characteristics of AM 
components are hard to 
quantitate and measure, 
such as surface roughness, 
porosity, and elasticity

Directed energy deposition Heat treatments data, 
chemistries and micro-
structures data, yield and 
tensile strength data [62]

Neural network [62]
Genetic algorithm [64]

Obtain appropriate yield 
and tensile strength of 
the AM components

High requirements on the 
accuracy of the measure-
ment
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extrusion AM components and trained the unsupervised 
learning algorithm with processed data [81]. This algorithm 

was then used to design hierarchical materials with better 
stiffness and roughness properties. Beyond the geometry and 

Fig. 2   Comparison of the ‘best’ printing directions determined by a linear SVM learning (a), Autodesk MeshMixer (b) and learning model (c). 
Zhang et al. nonlinear model results in less material cost and better feature preservation [70]

Fig. 3   Result of shape optimization on the dinosaur’s model: (left) the input model needs to add supports with 29 APs and (right) the optimized 
model and its supporting structure with 19 APs—that is 34.5% reduction [71]
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material, some AM processes can create products in full 
color to improve the commercial value of AM products [82]. 
Specifically, the colored 3D printing methods are applied 
in photonic crystals and bio-compatible materials [83, 84].

The existed contributions using the data analysis method 
to improve AM design are summarized in Table 3. In gen-
eral, these methods are effective to reduce material waste, 
enhance visual aesthetics, and improve the commercial value 
of AM products. Currently, most contributions are limited 
at the research stage. Future work should focus on how to 
apply these methods to benefit the AM design in the com-
mercial AM industry. For the research part in AM design 
and data analysis, the future works are expected on other 
different types of contributions, such as prolong the life of 
AM products, simplify the AM design to save the processing 
time, and increase the robustness of 3D printing process.

3 � Information and communications 
technology of additive manufacturing

In 2015, the Boston Consulting Group defined nine pillars 
of technological advancement in Industry 4.0: Big Data 
and Analytics, Autonomous Robots, Simulation, Horizon-
tal and Vertical System Integration, the Industrial internet 
of things (IoT), cybersecurity, the cloud, additive manu-
facturing, augmented reality [16, 85]. Most of them are 
already applied to the industry, but in the Industry 4.0 
era, these techniques have the potential to cause a new 
industrial revolution. In this section, we will review the 
contributions of IoT, Cloud, and cybersecurity in AM.

Fig. 4   Compliance Pareto curve 
for the MBB beam under topol-
ogy optimization [78]

Table 3   Summary of current contributions in AM design

Contributions Methods Advantages Deficiencies

Enhance the aesthetics and 
commercial value of AM 
products

Change the printing direction and 
the area of support [70]

Avoid using supports in visually 
significant regions

Highly depends on the shape of the 
components

May require more supports
Create full-color AM products 

[83, 84]
Broad application prospects Limitations in combined with other 

AM methods
Reduce the materials Minor adjust the body shape of 

the AM products by algorithm 
[71, 72]

Reduce the support and the poten-
tial damage due to removing the 
support

Change the original design of the 
AM products

Topology optimize the geometrical 
characteristic of mater extrusion 
AM components [74-79]

Reduce the material volume frac-
tion and improve the relative 
compliance

Increase the possibility of failure due 
to the more sophisticated design

Experimental design and regres-
sion analysis [73]

Optimize both energy consumption 
and material waste during the 
AM process

Only could be applied for mater 
extrusion with a standard shape
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3.1 � Digital manufacturing technologies for AM 
products

IoT is a new concept, which is interpreted as the worldwide 
network of interconnected objects that are allowed to con-
nect, interact, and exchange data based on standard com-
munication protocols [86]. Overall, IoT has two kinds of 
general advantages. First, IoT can build an object-system 
that connect specific objects in the system constantly. Sec-
ond, IoT can provide virtual reachability for the object-sys-
tem through the internet. With the help of the internet and 
the Big Data environment, the sensors from the IoT system 
can follow the object through the whole life cycle [87]. IoT 
can improve the manufacturing process to become “smart”. 
Since IoT provides not only the object-system environment 
with data but also the possibility of digital automation and 
control equipment, IoT has been one of the main factors to 
lead the rapidly changing manufacturing industry in the last 
decade [88].

AM requires virtual design and digital control during the 
3D printing process [89]. In general, the rapid development 
of the Internet and Big Data environment benefits the AM 
through sharing the manufacturing data. Caputo et al devel-
oped a conceptual framework to explain the AM benefits 
from IoT in four stages [90]. First, 3D printing products can 
be embedded in 3D readable codes, meaning the 3D printing 
data is shareable through the Internet. Second, 3D print-
ers are always connected to the Internet and therefore the 
shared data can be transmitted between 3D printers through 
the environment of IoT. Third, the 3D printing process is 
considered as the connection between AM products and 3D 
printers. This printing process can be remotely controlled 
and monitored, which accords with the general concept of 
“smart manufacturing”. Fourth, AM products can be modi-
fied during the printing process with help from the data pro-
vided by current or previous 3D printing processes. The suc-
cessful implementation of all four stages could promote AM 
technology to a high level of “smart manufacturing”. Qin 
et al introduced an IoT framework to reduce the energy con-
sumption of AM processes [91]. This framework could dis-
cover the energy consumption knowledge of the AM system 
using a material attribute parameter and design information. 
Mourtzis et al. discussed a massive volume of data collected 
from the IoT adoption in AM [92]. Lu and Cecil proposed an 
IoT collaborative framework [93], which used the engineer-
ing Enterprise Modeling Language to exchange AM data 
between the various software and physical components.

Beyond IoT applications in AM processes, the combina-
tion of AM and IoT may launch a revolution in the supply 
chain of the manufacturing industry. As shown in Fig. 5, the 
IoT can improve the existing design, manufacturing, and dis-
tribution process in the 3D printing industry. Kaur applied 
the concept of “Machine to Machine” to AM in which AM 

products can be delivered as tangible goods to our com-
puter through the internet [94]. Kaur also anticipated that 
3D printing will participate in wider application fields and 
receiving goods in a digital form will become mainstream. 
Kaur’s anticipation was partially proved by research of 3D 
Printing Services in Europe from Rogers et al. [94, 95]. 
Their research showed that there are 558 companies cur-
rently working on 3D Printing Services and fringe works 
in six selected European countries of Germany, Austria, 
Switzerland, Luxembourg, Belgium, and the Netherlands. 
Among all of these 558 companies, 105 of them work on 
Consumer 3D Printing Services, meaning that the revolu-
tion of digital-based delivery is currently ongoing. In the 
future, it is expected that the AM industry (include design-
ers, factories, and franchisers) will be distributed to various 
separate locations [96]. Moreover, the current restrictions on 
the location of production will be removed with personal and 
customized fabrication associated with AM.

The word “The Cloud” derived from the concept of cloud 
computing, which is a model for enabling ubiquitous, con-
venient, and on-demand network access to a shared pool 
of configurable computing resources [97]. Xu considered 
cloud manufacturing (CMfg) as a manufacturing version of 
cloud computing [98]. In CMfg, distributed manufacturing 
resources are centralized at cloud services and managed 
uniformly. Therefore, CMfg resources can be utilized by 
clients according to their requirements without any waste. 
Wu et al. discussed the key commercial implementations 
of CMfg, which include automation, industrial control sys-
tems, service composition, flexibility, business models, and 

Fig. 5   The 3D printing service provider supply chain on the internet
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proposed implementation models and architectures [99]. Tao 
et al. introduced four typical CMfg service platforms, i.e., 
public, private, community, and hybrid CMfg service plat-
forms [100]. They also analyzed main advantages of CMfg: 
(1) reduce resource idle capacity and increase utilization; 
(2) reduce the up-front investments and lower the cost to 
benefit from high-value manufacturing resources; (3) reduce 

infrastructure and administrative cost, energy-saving, and 
maintenance cost; (4) generate new types and classes of 
manufacturing/business model; and (5) optimize industrial 
distribution and speed up the transformation.

As one of the digital manufacturing techniques, 3D 
Printing Services could massively benefit from sharing 
AM resources into the cloud system. As shown in Fig. 6, 

Fig. 6   Various services in cloud manufacturing
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Cloud service greatly reduces the production and inventory 
cost for 3D printing manufacturers. In the meantime, the 
Cloud-based 3D printing process saves a lot of efforts from 
customers and designers. Liu et al discussed the benefits 
of an established Cloud-based 3D printing platform with 
data [101]. Their research showed that the key to profit-
ability from a Cloud-based 3D printing platform is to keep 
the platform sustainable and healthy. Mai et al proposed a 
framework for a 3D printing service platform [102]. This 
research integrated the distributed data from different 3D 
Printing Services by establishing and analyzing a 3D Model 
library. However, due to the limitation of funds and data 
from collaborating institutions, currently, this sharing plat-
form remains in the local area network testing stage. Guo 
and Qiu further discussed the prospect of cloud-based 
AM [103]. They summarized the emphasis and the future 
research direction of 3D printing cloud manufacturing, 
namely 3D printer access technology, 3D printing service 
control and scheduling technology, and 3D printing service 
evaluation technology. Baumann and Roller reviewed recent 
researches in AM and cloud manufacturing [104]. They sug-
gested that AM resources should adopt a strict principle of 
transparency and service composition in adherence to the 
Cloud computing paradigm. However, the Cloud-based 3D 
printing platform is still a concept and in an ongoing stage 
due to two general reasons: (a) the lack of profit opportuni-
ties and investment motive; (b) the difficulty in managing 
and exhibiting the data from distributed 3D printing services 
[105].

3.2 � Cybersecurity considerations for AM products

Cybersecurity is the protection of cyberspace and assets 
that can be reached via cyberspace [106]. Since AM is a 
digital thread, which allows rapid communication, iteration, 
and sharing of a design model through the internet, hack-
ers have the opportunity for cyber-attacks aimed at the AM 
products [107]. Sturm et al classified cyber-attacks in the 
AM process in four main steps: the CAD model, the STL 
file, the toolpath file, and the physical machine itself [108]. 
Hackers can steal and corrupt CAD files in the first step by 
worms. The example is the Crypto Locker malware, which 
can encrypt CAD files and then ask ransom from users to 
unlock these files [109]. Hackers can also design an attack to 
cause fatal damage for AM products. They can imagine mal-
ware to build AM products that have almost no difference 
in appearance with normal products. However, the hacked 
AM products may contain critical defects at the interior of 
the structure.

To reduce harmful effects from cyber-attacks, researchers 
obtained achievements to secure the 3D printing process. 
Al Faruque et al simulated the cyber-attacks using emit-
ted cyber-data via physical side-channels, which included 

acoustic, power thermal, and electromagnetic emissions 
[110]. To mimic the cyber-attackers, researchers adopted 
thermal emission data collected by the thermal camera to 
reconstruct the 3D objects. They can extract the nozzle/plate 
movement track data from thermal video, then obtain the 
speed of 3D printer actuators at each direction (as shown 
in Fig. 7). Reconstructed code can be obtained by recod-
ing the actuator’s speed data, therefore this research proved 
the serious vulnerability of AM systems. Al Faruque et al 
extended their previous research to simulate acoustic side-
channel attacks on AM systems [111]. They built a learning 
model to analyze the relationship between moving direction, 
moving speed, nozzle coordinates, and extrusion amount 
using training acoustics data. Utilizing this trained learning 
model, researchers could predict the manipulation of infor-
mation with the hacked acoustic data. They used the mater 
extrusion AM system as a validation example and the aver-
age accuracy of their prediction was 78.35%. Chhetri et al 
proposed a kinetic cyber-attack detection method to prevent 
the cyber-attack through side-channels [112]. Their method 
set up a fictitious adversary, manipulated by the learning 
model. By analyzing the analog emission with the adver-
sary model, researchers could detect the vulnerable infor-
mation points that are useful to hackers. The security level 
of AM processes is enhanced by improving the design of 
these vulnerable information points. More recently, another 
new side-channel attacking method against cloud-based AM 
systems was proposed using the smart-phone as the attack 
carrier [113]. In this research, both acoustic and magnetic 
side-channel attacks were formulated using the smartphone 
built-in sensors (as shown in Fig. 8). In this experiment, 
the side-channel signals could reconstruct the G-code of 
the ongoing AM process with the mean tendency error of 
6–10%. The potential defense mechanisms are also discussed 
in this work. Using dummy task injections, hardware shield-
ing, or side-channel interfaces, the threats of side-channel 
attacks could be reduced.

4 � Prospect of the future AM and big data

Nowadays, AM is moving from an initial research stage to a 
mature technology [114]. Many of AM practitioners believe 
that AM technology has a significant commercial value [21, 
115, 116]. Huang et al. considered that education and train-
ing will replace research to become mainstream in AM, and 
the wide University-Industry Collaboration and technology 
transfer will further promote the development of AM tech-
nology [24]. AM technology is expected to have a significant 
impact on multiple industries, including aerospace, logistic, 
healthcare, automotive, and electronics [23, 117–120].

In the meantime, the future of Big Data area is also 
extensively favored due to the updates in both software and 



192	 Progress in Additive Manufacturing (2021) 6:181–197

1 3

hardware. With the steady improvement at the hardware 
level, Big Data technology will be benefited in various areas, 
such as data variety and velocity, data storage, data integra-
tion solutions, and data processing and analysis [121]. Fan 
and Bifet’s forecast for the future of Big Data suggest that 
it will greatly improve in analytics architecture, distributed 
mining, time-evolving data, data visualization, and hidden 
big data [122]. These technological innovations will also 
bring the development of cloud technology [15, 123].

In view of the bright prospects for both AM and Big data, 
the AM and Big data interdisciplinary field will reflect a 
growing role in the future of manufacturing research. In the 
coming years, modeling, sensing, control, and process inno-
vation with data will still be the crucial technical research 
goals of AM [24]. Cloud-based and internet-based platforms 
will benefit the AM research in the near future [124–129]. 

Under the influence of the big data technology, several inno-
vative concepts are proposed for manufacturing systems: 
predictive manufacturing [130–132], smart manufacturing 
[133–135], and cyber-physical manufacturing [136–138]. 
The goal of these new concepts is to enable the AM process 
with “self-aware” capabilities and intelligence. The future 
development of these concepts can be utilized in AM sys-
tems. Additionally, new technologies, such as predictive 
AM and smart AM will further benefit the research on AM 
systems.

Compare to the AM in research, the commercial prospect 
of this interdisciplinary technology has a brighter anticipated 
future. Jiang et al. made a prediction for the economic and 
societal implications of AM in 2030 [139]: (1) more than 
50% of the AM industry capacity will be in-house produc-
tion capacity; (2) small and medium enterprises will share 

Fig. 7   Tracking a pin installed on the baseplate moving from right to left by a thermal camera [110]
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their AM production resources to achieve higher assess-
ments; (3) local AM production near customers will result 
in a de-globalization of supply chains; (4) more than 25% of 
final products will be sold as digital files instead of physical 
products (similar to digital format selling); (5) more con-
sumers will utilize online databases to purchase product 
designs and have private 3D printers at home; (6) normal 
forms of intellectual property will be largely used in the 
AM industry. To reach these expectations by 2030, a uni-
form AM information sharing platform with a corresponding 
database will be required. Standard AM data format will 
be recognized and unified at a worldwide level. Well-estab-
lished AM intellectual property will be necessary to protect 
the benefit of designers and manufacturers in the AM field.

5 � Conclusion

As an emerging technology, AM promotes a new digital 
transformation of the manufacturing industry. It built a 
connection between manufacturing and multiple new tech-
nologies born in the information era. These new technolo-
gies provide fresh ideas to develop and improve 3D print-
ing crafts. Meanwhile, AM also offers an environment for 
new technologies to practice and grow. In this chapter, we 
summarize the past contributions, current situation, and 
future potential development in the AM and Big Data area. 
The corresponding time shift is shown in Fig. 9.

Fig. 8   A specific trajectory is 
designed to investigate the rela-
tionship between the directional 
movement and the magnetic 
side-channel [113]

Fig. 9   Past, current, and future of AM and Big Data analysis
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Big Data is one of the most famous new technologies in 
the information era. The prevalence of Big Data technology 
can be an opportunity for AM to become a viable fabrication 
technique in the manufacturing industry. This opportunity 
benefits AM in both research and commercial popularizing. 
For AM research, massive amounts of data from the 3D 
printing process can be processed by Big Data analysis to 
obtain various types of useful information. A variety of Big 
Data analysis methods can be used to classify or diagnose 
the AM products and predict the outcome of the AM pro-
cess before the production. Specifically, Big Data technology 
can facilitate the AM process in detecting product defects, 
reducing geometry errors, analyzing feedback signals, and 
updating process parameters. Big Data techniques could help 
to control the cooling rate, microstructure, composition and, 
other mechanical properties for various AM systems, such 
as PBF, mater extrusion, and sheet lamination. In addition, a 
portion of the AM product design may be processed by Big 
Data methods according to the client requirements.

Utilization of Big Data data and transfer technology has 
a great effect on commercial AM systems. IoT technology 
enhances the marketization ability of AM technology. Cus-
tomers can order 3D printing services through the Internet 
on demand. Meanwhile, IoT technology speeds up the AM 
service processes in both production and delivery. In addi-
tion, Cloud-based AM brings benefits to AM service provid-
ers by improving the profit model. AM service companies 
can offer their idle 3D printing equipment to be used on 
the Cloud and reduce the waste of resources. Similarly, AM 
companies can borrow 3D printers from the Cloud when 
their equipment is occupied. Therefore, the AM industry will 
receive better prospects with the development and integra-
tion of Big Data technology.

The next step in the AM and Big Data integration is data 
unification and generalization in the AM process. At the 
current stage, the main barrier of data sharing for both AM 
research and AM commerce is the unstandardized database 
existed in different institutions. Data transmission effi-
ciency will be substantially increased if a common data-
base format is adopted in the AM industry. Cybersecurity is 
another potential problem that may exist in the future of AM 
research. Even though only seldom cases reported the attack 
to the AM systems, complete information safety mechanism 
should be established to provide a reliable environment for 
the mainstream adoption of Big Data in the AM industry.
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