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Abstract

This paper introduces a thorough approach for classifying
refractory coatings used on chemically bonded sand
according to their thickness, which is essential for moni-
toring mold and core coatings in foundries. The method
combines feature extraction through vectorized principal
component analysis (VPCA) with classification modeling
using a machine learning algorithm. The study examines
five different scenarios, which involve the utilization of raw
axial, radial, and temperature data, as well as the use of
scalar properties. Additionally, the study involves extract-
ing features from the first two approaches and training on
the complete dataset. An assessment of performance is
carried out, showcasing the strong ability to classify
accurately across all levels of coating thickness. In addi-
tion, Hotelling’s T-squared statistics are used to identify

changes in the process, offering valuable information
about the structure and distinctiveness of the data classes.
This study demonstrates the efficacy of feature extraction
methods and machine learning algorithms in accurately
categorizing coating thicknesses, providing practical
solutions for applications in the foundry industry. This
systematic methodology not only improves the compre-
hensibility and effectiveness of classification models but
also offers vital understanding into process monitoring and
identification of abnormalities within intricate datasets.

Keywords: refractory coatings, thermal distortion test,
vectorized principal component analysis, VPCA, machine
learning, Hotelling’s T-squared statistic

Introduction and Purpose

In the manufacturing industry, machine learning is revo-

lutionizing numerous facets of production and product

development. One essential area of application is quality

control (QC). Over the last century, the ability to detect

process shifts has relied heavily on control charts. These

charts have provided valuable insights into deviations from

standard processes, enabling timely interventions to

maintain product quality. With the advent of machine

learning algorithms modern sensor data can now be ana-

lyzed in real-time, leveraging machine learning techniques

to identify process shifts swiftly and accurately. Monitor-

ing this data can detect even subtle deviations from

expected norms ensuring good quality products. This effort

not only enhances product quality but also reduces waste

and the need for rework, ultimately contributing to

improved efficiency and cost-effectiveness in manufactur-

ing operations.

Refractory coatings are utilized in the foundry industry to

form a barrier between the molten metal and the core or

mold surface. The use of these coatings can also lead to

improved castings’ surface quality by producing smoother

casting surfaces and reducing thermal expansion defects.

Monitoring coating thickness is a key aspect of QC as it

helps in maintaining process consistency. This ensures that

every casting produced meets the same quality standard.

This information can also be used to optimize coating

application techniques for better coverage, more uniform

thickness, and improved efficiency.1 Coating thickness can

be monitored with the help of machine learning. By uti-

lizing vectorized principal component analysis (VPCA),

the most relevant features are extracted from the multi-way

data. This data is then used in a machine learning model to

classify the chemically bonded sand specimen based on

their coating thickness.
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Thermal distortion is the expansion, contraction, and

degradation experienced by a mold or core under extreme

heat and liquid pressure of the molten metal.2 This

behavior of the chemically bonded sand system is repli-

cated in the laboratory with the help of a thermal distortion

tester (TDT). Apart from monitoring the thermo-mechan-

ical properties of green sand for QC, the TDT can also be

used to monitor coating thickness and demonstrate the

importance of going beyond traditional features.

Overall, machine learning’s integration in the manufac-

turing environment for data generated from already exist-

ing QC test equipment empowers manufacturers to make

data-driven decisions which helps in optimizing processes

that were not possible before in the industry.

Literature Review

Chemically bonded sand is widely used in metalcasting

industry such as the manufacturing of powertrains in the

U.S. automobile sector and certain aerospace components.

Although sand casting is the most often used method,

accounting for more than 70% of applications, chemically

bonded sand molds are becoming increasingly popular due

to their suitability for certain requirements.3 This sand

system utilizes chemical binders to strengthen molds and

cores. The casting industry faces significant obstacles

associated with imperfections in castings manufactured

from chemically bonded sand cores and molds. Moreover,

there are differences that affect the casting process

parameters, such as the duration of work, the time it takes

to remove the strip, the temperature at which the metal is

poured, and the pressure exerted by the metallostatic

system.

Given the industry’s focus on near-net-shaped castings, it is

crucial to employ advanced QC methods to effectively

manage the many sources of variation.4 This section offers

a thorough examination of the progressions related to

chemically bonded sand in metalcasting, focusing on

important factors such as refractory coatings, impact of its

thickness on QC, and the use of machine learning for

monitoring it.

Chemically Bonded Sand Systems

In the domain of metalcasting technology, cores and molds

formed from chemically bonded sand represent a pivotal

component, prompting extensive focus on comprehending

their interaction with metal, particularly at the interface

between the mold and metal. Currently, the metalcasting

industry places paramount importance on manufacturing

near-net-shape and thin-wall castings, while simultane-

ously striving to meet increasingly rigorous requirements

for dimensional reproducibility.

Chemical binders play a crucial role in the creation of

precision sand molds and cores, serving as the primary

technology for manufacturing powertrains in the U.S.

automotive sector and specific aerospace components.

Despite its prominence, the casting industry grapples with

significant challenges related to defects in castings origi-

nating from chemically bonded sand cores and molds. The

decline in quality can be attributed to various factors,

including fluctuations in materials like grain size, grain

shape, chemical composition, binder concentration, and

additives. To address diverse casting requirements, the

foundry industry employs a range of mold-making tech-

niques tailored to specific needs while utilizing chemically

bonded sand.5

Introduced in the early 1960s, the cold box core process

revolutionized manufacturing with its ability to achieve

superior compaction, facilitate intricate core designs, and

maintain precise dimensional accuracy. Cold box molding

is a process where a blend of sand and a curing chemical is

injected into a core box at ambient temperature. No-bake

molding involves the combination of sand and a liquid

resin binder to form a mold or core. This mixture is then

allowed to solidify without the need for additional heat.

Despite its many advantages, porosity remains a significant

drawback in castings produced using this method.6

Hot box molding utilizes a thermosetting resin and curing

agent combined with heated core boxes to accelerate the

curing process.7 The advent of additive manufacturing has

introduced the innovative technique of 3D-printed mold-

ing, which allows for the intricate shaping of detailed

forms by layering sand-like material. Injection molding is a

process that involves injecting molten material into a mold

cavity, where it then solidifies. The selection of each

method is determined by considerations such as the com-

plexity of the part, the level of precision needed, and the

material requirements. This demonstrates the wide variety

of mold-making techniques available in the industry. Fur-

thermore, variations manifest in casting process parameters

like worktime, strip time, pouring temperature, and met-

allostatic pressure. As the industry increasingly emphasizes

the production of near-net-shaped castings, the develop-

ment of advanced QC approaches becomes imperative to

address the diverse range of variation sources.5

In terms of mold materials, three main types exist: metal

dies, sand molds, and ceramic molds. Sand casting, uti-

lizing sand molds, dominates the landscape, accounting for

over 70% of all metal castings. Most sand molds and cores

are crafted from silica sand, chosen for its widespread

availability as a molding component. Silica sand presents

advantages such as lower tooling costs, versatility with

various metals, and fewer restrictions in part geometry,

particularly when contrasted with permanent mold

processes.4,8

International Journal of Metalcasting



Manual Ramming

Manual ramming entails the manual packing of chemically

bonded sand around a pattern to shape the mold. This

technique commonly employs a two-part or three-part sand

system, where sand is blended with a chemical binder

before being manually compacted around the pattern.

Among the binders utilized, resin types like phenolic ure-

thane are prevalent, imparting the sand mixture with

essential strength and rigidity upon curing. Despite its

efficacy, the manual ramming process demands skilled

labor for achieving the desired density and uniformity in

the mold.

Core Blowing

Core blowing is a more automated method used to create

complex internal shapes within molds. In this process,

chemically bonded sand is blown into a core box (the mold

used to create the mold’s internal cavities) under high

pressure. Once the sand fills the core box, a gas (such as

carbon dioxide or sulfur dioxide) is passed through the

sand, catalyzing the chemical binder and causing it to

harden. This method allows for the production of intricate

cores with high precision and repeatability. In the core

blowing process used for no-bake cores, it is common

practice not to recycle the sand in the discharge magazine

for repeated blowing, unlike in processes such as cold box

or others. Once the blowing is completed, the remaining

sand is typically discharged and not reused in the process.9

Gas-Cured Systems

Gas-cured systems represent a specialized category within

chemically bonded sand molding, wherein a gas is

employed to catalyze the hardening or curing of the binder

in the sand mixture. Typically utilized in conjunction with

core blowing techniques, gas curing can also be adapted for

mold-making processes. Following the placement of sand

in the mold or core box, a gaseous catalyst is introduced,

swiftly initiating the curing reaction and solidifying the

sand. This approach boasts notable efficiency and enables

rapid production cycles, as the curing process is notably

expedited compared to conventional air drying or baking

methods.9

Advantages of Chemically Bonded Molds

Chemically bonded sand molds present distinct benefits

compared to conventional green sand molds. These

advantages include enhanced precision, accelerated pro-

duction times, and increased versatility. The inherent

rigidity and stability of chemically bonded molds enable

the attainment of tighter tolerances and finer details in the

resulting castings, thereby ensuring superior dimensional

accuracy. Additionally, the adaptability of chemically

bonded molds across a diverse array of metals and casting

designs underscores their suitability for producing complex

and large-scale components, addressing varied industrial

requirements. These collective advantages underscore the

significance of chemically bonded sand molds as a pre-

ferred choice for achieving precision, efficiency, and ver-

satility in modern foundry operations.10

Refractory Coating

The significance of foundry coating in enhancing casting

surface quality remains paramount in foundry operations.

Applying mold and core washes establishes a robust ther-

mal barrier between the metal and the mold, mitigating

thermal shock experienced by the sand system. Such shock

often results in surface defects like veining/finning, metal

penetration, burn-on/in, scab, rat tail, and erosion. The

utilization of coatings effectively minimizes the likelihood

of these defects. Foundry coatings are indispensable for

achieving high-quality surface finishes in castings, partic-

ularly intricate internal channels created by cores, despite

notable advancements in binder and sand technology.

While sand particle grading plays a crucial role in casting

surface finish, other factors such as gas venting capability,

binder economy, and sand availability with requisite

grading necessitate the practical use of coatings in foundry

processes.11 Filling a mold with liquid metal subjects its

surface to thermal, mechanical, and physicochemical for-

ces. Metal oxidation reacts with mold materials, forming

low-melting substances like silicates which improves

quartz sand grain lubrication. This facilitates metal pene-

tration into intergranular spaces, causing stubborn

mechanical pick-up on casting surfaces.

Due to high mold and core porosity, defect-free castings

require protecting surfaces with refractory coatings.

Essential coating qualities include minimal porosity, high

refractoriness, and mitigation of physicochemical reactions

at the metal-coating interface, including lubrication, solu-

tion, and penetration. Refractory coatings serve dual pur-

poses: enhancing casting quality and reducing costs. They

improve surface quality by creating smoother metal sur-

faces, achieved by filling the spaces between sand grains or

providing a smoother surface to the metal than the mold

itself. Additionally, coatings facilitate cleaner sand peeling

at shakeout, leading to improved surface finish and elimi-

nation of defects like metal penetration, veining, erosion,

and sand burn-in. These benefits contribute to overall

quality enhancement and cost reduction in casting pro-

duction processes.12

According to Nwaogu and Tiedje, a refractory coating

applied to molds or cores should possess specific attributes

for optimal performance which include sufficient
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refractoriness to endure the poured metal, strong adhesion

to prevent spalling, permeability to minimize air entrap-

ment, rapid drying capacity, resistance to blistering,

cracking, or scaling during drying, effective suspension and

remixing properties, limited degradation of core strength,

adequate safeguard against metal penetration, stability

during storage, high coverage capability, suitable applica-

tion properties for the chosen method, and even leveling to

reduce runs and tear drops. To achieve these characteris-

tics, the coating typically comprises refractory filler, liquid

carrier, rheology-controlling suspension agents, binder

agents, and additives.11

Thermal Distortion Tester

A variety of tests speak about the mechanical behavior of

the sand system like hot friability test, modified cone jolt

test, thermal erosion test and thermal distortion test (TDT)

to name a few. TDT is used to help analyze the thermo-

mechanical properties of chemically bonded sand system

behavior through the multivariate time series data it gen-

erates. Apart from thermo-mechanical properties, the time

series data can be used to monitor the refractory coating

thickness without having to perform the traditional

destructive test of fracturing the specimen and measuring

the coating thickness using an optical equipment. The

application of directional heating to sand composites,

encompassing both mold and core media, induces aniso-

tropic thermal gradients within the materials. Upon contact

with molten metal, the transfer of heat from the metal to the

sand initiates thermo-chemical reactions, culminating in

distortion. To be precise, the binder undergoes thermally

induced reactions concurrently with sand expansion and/or

plastic deformation, resulting in substantial distortions

within the sand core or mold.13,14

In specific chemically bonded systems like organics,

reactions typically involve the release of volatile materials.

These reactions may encompass potential enhancements in

core strength through secondary curing, but they can also

lead to core weakening via pyrolysis. It is crucial to

acknowledge that when analyzing thermal distortion data,

distortions may arise from both the binder and the

aggregate.14

The thermal distortion test (TDT), employing a disk-

shaped specimen, proves to be an effective method for

assessing the thermo-mechanical characteristics, particu-

larly distortions, within chemically bonded sand systems.

The TDT apparatus offers versatility with adjustable tem-

peratures, allowing for the replication of mold–metal

interfacial temperatures tailored to specific alloys, such as

700�C (1292�F) for aluminum or 1200�C (2192�F) for cast

iron. Furthermore, varying loading pressures can be exerted

on the specimen to emulate distinct metallostatic pressures

acting on the core/mold material.5

The data acquisition system of TDT captures a multivariate

time series data of axial displacement, radial displacement,

heating element temperature, head pressure, and backside

temperature of the specimen. The data is captured at a

frequency of 10 observations per second and the test runs

for a total of 90 seconds giving 900 observations per fea-

ture. A cross section of TDT is shown in Figure 1.

Vectorized Principal Component Analysis

Recent literature has shown a growing emphasis on opti-

mizing principal component analysis (PCA) algorithms by

adopting vectorized implementations, capitalizing on the

capabilities of numerical computing libraries. VPCA relies

on array-based operations, where mathematical operations

are applied to entire matrices or arrays, rather than indi-

vidual elements. This approach effectively utilizes parallel

processing in modern computing architectures, leading to

significantly faster computations. The reduction in explicit

loops not only simplifies the code but also improves the

scalability of PCA algorithms.

Different multi-linear extensions of the PCA have been

proposed in literature: Some of them are limited to the case

of 2D data (and are especially used in image analysis), like

2D-PCA or the generalized PCA, whereas some other

extensions may be applied to tensors of any order.15–17

Multi-way data analysis is the extension of two-way

methods to higher-order datasets.18 A two-way dataset may

be represented in terms of a N9P matrix, where N is the

number of samples and P is the number of variables: In this

frame, the PCA is a well understood and used multivariate

technique to explain the variance–covariance structure

through a few linear combinations of the original vari-

ables.17 One possible approach to deal with multi-way

arrays involves the ‘matricization’ operation,19 which

consists of unfolding the multi-dimensional dataset into a

Figure 1. TDT cross-section.
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bi-dimensional one. Vectorized principal component anal-

ysis (VPCA) was first introduced by Nomikos and

MacGregor in 1995 for monitoring batch processes. This

technique involves the unfolding of a three-way array to a

two-dimensional matrix where each row in the matrix

represents the vector for an observation.20

Regular principal component analysis (PCA) is then

employed on this vector data for feature extraction and

analysis of one-dimensional data arrays through a low-rank

decomposition strategy. Essentially, PCA seeks to reduce

the dimensionality of a complex set of interconnected vari-

ables by transforming them linearly into a new set called

principal components (PCs). These components are uncor-

related and strategically arranged to preserve most of the

original data variation in the initial components.17 VPCA is

explained in further detail in the methodology section.

Machine Learning Model

Supervised classification stands out as a widely performed

task within Intelligent Systems, leading to the development

of numerous techniques rooted in both Artificial Intelli-

gence (such as Logic-based and Perceptron-based tech-

niques) and Statistics (including Bayesian Networks and

Instance-based techniques). The primary objective of

supervised learning is to construct a succinct model that

characterizes the distribution of class labels based on pre-

dictor features. Subsequently, the generated classifier is

employed to assign class labels to testing instances, where

the predictor feature values are known, yet the class label

remains unknown based on predictor features. Subse-

quently, the generated classifier is employed to assign class

labels to testing instances, where the predictor feature

values are known, yet the class label remains unknown.21

There are numerous applications for machine learning

(ML), with predictive data mining being one of the most

significant. In ML, each instance within a dataset is uni-

formly represented using a set of features, which can be

continuous, categorical, or binary. The learning process is

categorized as supervised when instances are provided with

known labels (corresponding correct outputs), in contrast to

unsupervised learning, where instances lack labels.22

Machine learning models have become indispensable tools

across diverse domains, driving advancements in data-

driven decision-making. In this context, an overview of

some of the most common machine learning models is

provided before delving into our model of choice, which is

Support Vector Machines (SVMs).

1. Random Forest

Random Forest, a popular ensemble learning

technique introduced by Breiman, has demon-

strated robustness and versatility in various

applications. By constructing multiple decision

trees and aggregating their outputs, Random

Forest excels in tasks such as classification and

regression. Its ability to handle large datasets and

mitigate overfitting makes it widely adopted in

predictive modeling.23

2. Decision Trees

Decision Trees, a foundational concept in

machine learning, remain relevant due to their

interpretability and simplicity. Quinlan’s work on

the C4.5 algorithm significantly contributed to

decision tree modeling. Decision Trees are

widely employed in classification tasks, data

exploration, and feature selection due to their

intuitive representation of decision-making

processes.24

3. K-Nearest Neighbors (KNN)

KNN, a simple and intuitive algorithm, has

proven effective in both classification and regres-

sion tasks. Cover and Hart’s seminal work

introduced the KNN algorithm, which relies on

proximity-based decision-making. KNN is valu-

able for its simplicity, ease of implementation,

and adaptability to various types of data.25

4. Logistic Regression

Logistic Regression, despite its name, is a widely

used model for binary and multiclass classifica-

tion. Applied in fields such as medical research

and social sciences, logistic regression provides a

probabilistic framework for decision-making.

Hosmer and Lemeshow’s work offers an in-depth

exploration of logistic regression’s applications

and statistical underpinnings.26

Table 3. Fscore Per Label

Coating thickness Scenario A Scenario B Scenario C Scenario D Scenario E

1*100 0.6741 0.9767 0.6686 0.7239 1.0

2*200 0.7219 0.9573 0.6123 0.6489 1.0

3*300 0.6498 0.8340 0.6893 0.7234 1.0

No coating 0.6863 0.9230 0.6879 0.6936 1.0

Macro-avg accuracy 0.6830 0.9227 0.6645 0.6974 1.0

International Journal of Metalcasting



5. Support Vector Machines (SVM)

SVMs are classified as a supervised machine

learning technique, focusing on the concept of a

‘‘margin’’—the region on either side of a hyper-

plane that separates two data classes. The key

principle behind SVMs involves maximizing this

margin, aiming to create the widest possible gap

between the separating hyperplane and the

instances on both sides. This maximization has

been demonstrated to reduce an upper bound on

the expected generalization error.

In the context of linearly separable data, once the optimal

separating hyperplane is identified, data points lying on its

margin are termed support vector points. The solution is

then represented as a linear combination of only these

support vector points, disregarding other data points.

Consequently, the model complexity of an SVM remains

unaffected by the number of features encountered in the

training data. Typically, the SVM learning algorithm

selects a small number of support vectors. This character-

istic makes SVMs well-suited for learning tasks where the

number of features is large in comparison with the number

of training instances.

While the maximum margin concept allows Support Vec-

tor Machines (SVMs) to choose from various candidate

hyperplanes, certain datasets may pose challenges, leading

the SVM to be unable to identify any separating hyper-

plane. This situation often arises when the data includes

misclassified instances. To address this issue, a soft margin

approach is employed, permitting some degree of mis-

classification among the training instances.27 In the context

of this paper, an exhaustive grid search was conducted to

fine-tune the SVM model’s hyperparameters. To identify

the most suitable Support Vector Machine (SVM) model

for the classification task, three distinct strategies were

employed: one vs one, one vs rest, and all vs all of which

one vs rest provided the highest accuracy. These approa-

ches aimed to leverage the SVM’s ability to handle multi-

class classification scenarios effectively.

Methodology

This section of paper will showcase different classification

modeling techniques of refractory coatings based on their

thickness. The classification will be based on features

extracted using VPCA as opposed to using scalar properties

of the disk-shaped specimens. The ability to classify the

specimen based on their coating thickness enables moni-

toring the coating of the mold and core. Additionally,

destructive testing is why most foundries do little coating

thickness testing on a routine basis and that is why this

approach of determining coating thickness is important. Figure 2. Combined plots for (a) Axial, (b) Radial, and
(c) Backside temperature.
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Experimental Setup

Data Preprocessing

Data was collected for four different zircon-coated speci-

mens namely – 1 � 100; 2 � 200; 3 � 300, and specimen

with ‘no coating’. The specimen was dipped for a specific

amount of time to achieve the desired thicknesses. The

amount of time was decided by dipping test specimens made

of round grain silica, with furan binder. These cookies were

developed using 3D printing. The nomenclature of the

specimen with coating thickness is such that the first number

indicates the coating thickness in mm below the surface of

the specimen and the second number indicates the coating

thickness in microns above the surface of the specimen. The

time series data for radial and axial displacement was plotted

and the specimen which displayed a sudden drop in radial or

axial displacement indicated fracturing of the specimen

during the TDT. These specimens were excluded from fur-

ther analysis to ensure homogeneity of the dataset. The

collective plotting of average axial, radial, and temperature

attributes for all four coatings thicknesses served as a crucial

step in discerning potential patterns or orders within the

dataset as shown in Figure 2 axial, radial, and backside

temperature time series plots. This graphical analysis aims to

unveil any sequential arrangements in the curves associated

with each coating type. If an order does become apparent in

at least one of the graphics, then further in-depth analysis

may be deemed unnecessary, as the initial exploration has

provided classification for each coating type.

The next step in data preprocessing involves normalizing

the data to ensure that the axial and radial displacement and

backside temperature features are on the same scale.

Feature Extraction Using VPCA

The normalized data is then used as an input for feature

extraction using VPCA. The VPCA technique as described

by Nomikos and MacGregor 1995 is used here. Instead of a

three-way array, our data is already unfolded state and can

be represented as a two-way array. In this array, 900 fea-

tures each of axial, radial, and backside temperature for a

specimen are set up as a 1-D array which is a vector. This

results in a 1 � 2700 vector for each specimen. After

excluding the failed specimen during data preprocessing, a

total of 38 specimen of all 4 coating thicknesses were

obtained resulting in an input matrix M of dimension 38 �
2700 expressed below:

M ¼

x11 x12 ::: x1;2700

x21 x22 ::: x2;2700

: : ::: :
: : ::: :

x38;1 x38;2 ::: x38;2700

2
66664

3
77775

Eqn: 1

The next steps involved in VPCA are similar to that of a

traditional PCA and are explained below:

Step 1 Centering the data

The data is centered by subtracting the mean of each fea-

ture X from its observation X and is expressed as

Di ¼ Xi � Xi where i is the number of feature types:

Eqn: 2

Step 2 Calculating the covariance matrix of the centered

data (C)

The covariance between two features i and j in a dataset

can be calculated using the following formula:

cov Xi;Xj

� �
¼ 1

m

Pm
k¼1

Xki � Xi

� �
� Xkj � Xj

� �
Eqn: 3

Here:

Xi and Xj are the ith and jth feature, respectively.

m is the number of samples in the dataset

Xki and Xkj are the values of the ith and jth features for the

kth sample.

Xi and Xj are the means of the ith and jth feature,

respectively.

The resultant covariance matrix (C) will be –

Var X1;X1ð Þ Cov X1;X2ð Þ . . . Cov X1;X2700ð Þ
Cov X2;X1ð Þ Var X2;X2ð Þ . . . x2;2700

: : ::: :
: : ::: :

Cov X2700;X1ð Þ Cov X2700;X2ð Þ . . . Var X2700;X2700ð Þ

2
66664

3
77775

Eqn: 4

The covariance calculation of a feature with itself gives its

variance causing the diagonal values of the covariance

matrix (C) to be variance values.

Step 3 Computing the Eigenvalues and Eigenvectors

Let A be a square matrix, V a vector and k a scalar that

satisfies A V = k V , then k is called eigenvalue associated

with eigenvector V of A.

The eigenvalues k1; k2::::k2700 are roots to the characteristic

equation

Det A� kIð Þ ¼ 0 Eqn: 5

where I is an identity matrix.
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The eigenvectors are calculated by substituting the ith

eigenvalues (kiÞ into the equation below to find the cor-

responding ith eigenvector Vi

A� kiIð Þ � Vi ¼ 0 Eqn: 6

Step 4 Sorting the Eigenvalues and Eigenvectors

The eigenvalues k and its corresponding eigenvectors V are

arranged in descending order and suppose the top 5

eigenvectors were chosen as they contributed to 97% of the

total variance, the resultant shape of V matrix will be

2700 � 5. This V matrix will be denoted as V top and the

shape of k matrix will be 5 � 5 where the diagonal ele-

ments of the matrix are the eigenvalues.

Step 5 Projection of centered data to reduced dimension

The centered data D is then projected into the reduced

dimension by multiplying it with V top. The resultant matrix

is a 38 � 5 matrix. This matrix now has the features for

each specimen in the reduced dimension and can be used

for further analysis.

Feature Extraction Using VPCA

The classification of the coatings based on their thickness

can be implemented using an array of algorithms, including

decision trees, neural networks, and KNN. When employ-

ing standard supervised learning techniques, it is essential

to select the optimal performance metrics, like accuracy.

It is important to note that our training set incorporates

different types of features explained in the forthcoming

scenarios. To gauge the effectiveness of the proposed

method against other benchmark models, a multi-class

confusion matrix is utilized. Table 1 illustrates the multi-

class classification metrics and formulas.

This matrix represents the actual vs. predicted classifica-

tions for every class. Key metrics that are calculated for

each class include True positive (TP), True negative (TN),

False positive (FP), and False negative (FN). As an illus-

tration, TP represents the count of images from a specific

class that were accurately classified. This model’s perfor-

mance is assessed using prominent multi-class metrics,

namely Accuracy and F-score. These metric formulas are

derived from the work of Sokolova and Lapalme.28

The next section will discuss the different classification

scenarios in detail.

Scenario A Coating classification using axial, radial, and

backside temperature properties:

In this classification approach, the standardized data

becomes the foundation which is used as an input to a

machine learning algorithm. Standardization is performed

by subtracting the mean of each feature from its values as

explained in the first step of VPCA. This data is then used

in the machine learning model to classify based on dif-

ferent coating thicknesses.

Scenario B Coating classification using features extracted

from axial, radial, and backside temperature properties:

In this classification modeling, VPCA is applied on the

standardized data from Scenario A to extract the principal

components (features) which contribute to the maximum

variance. It is important to note that the principal compo-

nents which contributed to 95% of the total variance were

used. These principal components were then used as an

input to a machine learning algorithm.

Scenario C Coating classification using scalar properties:

In this approach, we took a distinctive approach by

exclusively relying on the scalar features of the thermal

distortion test data which include area under curve, Y-axis

displacement and slope of the curve. The curve here is

referred to the time series plots of axial and radial dis-

placements and the backside temperature. These attributes

directly reflect the inherent characteristics of the TDT

which ideally should provide a more interpretable basis for

classification.

Scenario D Coating classification using feature extracted

from scalar properties:

In this research approach, we have focused solely on the

features extracted using VPCA from the scalar properties

Table 1. Multi-Class Classification Metrics and Formulas

Metric Formula

Accuracyi
� TPiþTNi

TPiþTNiþFPiþFNi
(7)

AccuracyM
Pk

i¼1

TPiþTNi
TPiþTNiþFPiþFNi

k
(8)

Precisionl

Pk

i¼1
TPiPk

i¼1
TPiþFPi

(9)

Recalll

Pk

i¼1
TPiPk

i¼1
TPiþFNi

(10)

Fscorel
2·l·l

PrecisionlþRecalll
(11)

PrecisionM

Pk

i¼1
TPiPk

i¼1
TPiþFPi

k

(12)

RecallM

Pk

i¼1
TPiPk

i¼1
TPiþFNi

k

(13)

FscoreM
2·M·M

PrecisionMþRecallM
(14)
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mentioned in scenario C. The features were extracted the

same way as mentioned in scenario B and the number of

principal components retained here contributed to 97% of

the total variance. This process enhances the inter-

pretability and efficiency of the subsequent machine

learning algorithm.

Scenario E Coating classification using features extracted

by training on entire dataset:

This classification was performed by extracting features

from axial, radial, and backside temperature data as men-

tioned in scenario B employing VPCA. The distinctive

aspect of scenario E is the decision to forgo the traditional

practice of splitting the dataset into training and testing

sets. Instead, the machine learning model is trained on the

entirety of the standardized dataset. This departure from

the conventional approach serves a specific purpose: to

establish an upper threshold for the maximum achievable

accuracy. By training on the complete dataset, the model is

expected to achieve its highest possible accuracy, provid-

ing a reference point against which the performance of

other scenarios can be compared.

The data generated from all the above scenarios is used as

an input to a machine learning algorithm. This data is first

split into training and testing datasets except for in scenario

E and a support vector machine (SVM) classifier model is

built using the training data and applied on the testing data.

The choice of this machine learning algorithm was made

by building and applying the model on a variety of dif-

ferent machine learning models like Decision Tree, Ran-

dom Forest, KNN, and Logistics Regression. SVM’s one vs

rest strategy provided the highest accuracy.

An exhaustive grid search was performed to finetune the

hyperparameters of SVM. A K-fold cross-validation tech-

nique is applied to reduce the risk of overfitting and pro-

vide a more reliable assessment of how well the model

performs on unseen data. Consistency is maintained by

employing the same machine learning algorithm with the

same hyperparameters for all the scenarios.

Results and Discussion

This section will present the performance evaluation of all

the different scenarios discussed earlier along with a

Hotelling’s T-squared chart which detects a process shift

when the coating thickness changes. The classification

model is developed for each of the previously described

scenarios. We aim to compare the effectiveness of these

models in the context of coating classification based on

their thickness. For each of the scenarios, the model is built

and applied using the same datatype. The comparison will

focus on the models’ ability to accurately classify coating

thickness without a priori preference for any methodology,

offering insights into the strengths of feature extraction

versus directly utilizing axial, radial, backside temperature

or scalar properties.

Our process for all the models’ development and validation

was bifurcated into two stages, utilizing a dataset that was

divided into a training set (comprising 85% of the data) and

a testing set (the remaining 15%). During the initial stage,

we engaged in the model development by employing

VPCA to perform dimensionality reduction on our dataset

in scenario B, D, and E. This technique was pivotal in

extracting and preserving features responsible for 95% of

the total data variance in scenario B and E and 95% of the

total data variance in scenario E. By doing so, we ensured

that the model encapsulated the critical attributes indicative

of coating thickness, providing a robust foundation for

accurate classification.

Subsequently, the second stage entailed a thorough evalu-

ation of the developed model using the designated testing

set. This step was instrumental in gauging the model’s

performance on data that was not previously exposed to

during the training phase, simulating how the model would

operate when confronted with new samples in a practical

setting. The comparative analysis of all the five models was

conducted under uniform conditions to maintain the

integrity of the performance assessment.

The evaluation metrics including the accuracy (%) per

label and Fscore per label results are shown in Tables 2 and

Table 2. Accuracy (%) Per Label

Coating thickness Scenario A Scenario B Scenario C Scenario D Scenario E

1*100 61.70 87.50 62.32 63.71 100

2*200 75.23 85.71 58.47 60.24 100

3*300 66.67 74.24 66.77 64.92 100

No coating 71.42 78.64 69.59 67.84 100

Macro-avg accuracy 68.75 81.52 64.28 64.17 100
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3, respectively. These metrics provide an in-depth look at

the model’s performance across different labels, offering

insights into the precision and reliability of the classifica-

tion results. This structured approach underscores the

comprehensiveness and practicality of our proposed

methodology for coating thickness classification.

Detection of Process Shift Using Hotelling’s
T-Squared Statistics

This analysis delves into distinctions within a dataset

comprising axial, radial, and temperature data. The PCA

model is initially built using data from a portion of a class

1. Subsequently, this trained model is applied to the

remainder of that class and its neighboring classes, pro-

jecting them onto a reduced subspace.

Within this reduced space, Mahalanobis distance, quanti-

fied as Hotelling’s T-squared statistic (T2), is calculated for

each observation. To assess the distribution of T2 values for

each class, a scatter plot is utilized for visualization. This

visual representation aids in understanding the variability

within and between classes, offering insights into potential

shifts in data patterns (Figure 3).

Conclusions and Future Work

Overall, this study has showcased a methodical strategy for

monitoring the thickness of refractory coatings using

classification techniques, offering useful information for

quality control in foundry instead of physically measuring

it. We have developed a robust framework that reliably

categorize coating thicknesses and detect process shifts by

utilizing features extracted using VPCA from axial, radial,

and temperature information from the TDT. By utilizing

Hotelling’s T-squared statistics, we were able to detect the

process shift when the coating thickness changed. This has

paved the way for better process monitoring and quality

control.

The transition from classification to prediction in moni-

toring refractory coating thicknesses signifies a significant

step toward aligning with the principles of Industry 4.0. It

emphasizes the integration of digital technologies and data-

driven processes to enhance manufacturing efficiency and

flexibility. By leveraging advanced machine learning

algorithms and real-time monitoring technologies, the

proposed predictive models can transform foundry opera-

tions into highly responsive and adaptive systems.

Incorporating sensor data and continuous monitoring sys-

tems further enhances the predictive models, facilitating

real-time insights into coating dynamics. This integration

of data streams mirrors the interconnectedness and data-

driven nature promoted by Industry 4.0, where the

Figure 3. Combined plots for Hotelling’s T-squared
statistic (T2) values showing differences in a Class 1
and 2 and b Class 0 and 1.

Table 3. Fscore Per Label

Coating thickness Scenario A Scenario B Scenario C Scenario D Scenario E

1*100 0.6741 0.9767 0.6686 0.7239 1.0

2*200 0.7219 0.9573 0.6123 0.6489 1.0

3*300 0.6498 0.8340 0.6893 0.7234 1.0

No coating 0.6863 0.9230 0.6879 0.6936 1.0

Macro-avg accuracy 0.6830 0.9227 0.6645 0.6974 1.0
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Industrial Internet of Things (IIoT) plays a central role in

capturing and analyzing vast amounts of operational data.
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