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Abstract

Investment casting (IC) process is one of the oldest and
most advanced to manufacture components with excellent
surface finish, close dimensional tolerance and complex
shape. The property of the final cast part depends upon the
property of the wax pattern. The present study investigated
the development of wax blend pattern by using various
waxes, namely paraffin wax, microcrystalline wax, bees-
wax, polyethylene wax and carnauba wax. The injection
parameters were injection temperature (IT), die tempera-
ture (DT), injection flow rate (IFR) and holding time (HT),
while output process parameters were surface roughness

(SR), needle penetration (NP), linear shrinkage (LS) and
volumetric shrinkage (VS). A L27 orthogonal array with
grey-fuzzy logic was used to optimize the injection process
parameter with multiple output characteristics. The results
indicated that the optimized process parameters signifi-
cantly improved the properties of the wax blend pattern
used in the investment casting process.

Keywords: investment casting, wax blends, injection
process parameters, pattern properties, grey-fuzzy logic

Introduction

Investment or lost wax casting has been broadly used as a

manufacturing process to produce components with close

dimensional accuracy and excellent surface finish for sev-

eral centuries. This process can produce near net-shaped

product with excellent surface finish. This technology had a

great evaluation during the Second World War because

traditional manufacturing processes were unable to pro-

duce the components with complex geometry1. This pro-

cess has been used for ages, and the advancement of this

technology made it more versatile and applicable almost in

all areas such as automobile, aerospace. In ancient period,

the people were using the beeswax pattern to produce their

tools. The material quality of wax is the key to the final cast

part. Various types of waxes have been used by the

researchers which include animal type wax, vegetable type

wax, mineral type wax, and petroleum type wax. A wax

pattern must have lower thermal expansion, sufficient

strength, good surface finish, very low ash content and be

hard enough at room temperature2, 3. Soybean oil and some

chemicals are used as an additive to improve the above-

mentioned characteristics of the wax pattern4. Shen et. al5

stated that properties of wax pattern depend upon injection

parameters such as injection pressure, injection tempera-

ture, injection time and injection speed. Later, Singh et. al6

investigated that the process parameters such as wax

injection temperature, die temperature, injection time and

holding time greatly influence the properties such as sur-

face finish, shrinkage and dimensional accuracy of a wax

pattern. The other process parameters such as room tem-

perature, noise factors, humidity and airflow rate were

constant throughout the process. Wang et. al7 investigated

the influences of injection parameters on the dimensional

stability of the wax pattern. They found that packing
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pressure and holding time influenced greatly the final-di-

mensional stability of the wax pattern. The gate geomet-

rical feature also influences the dimensional accuracy of

the wax pattern7. Gebelin et. al8 suggested that the accu-

racy of the final investment cast product depends upon the

accuracy of the wax pattern used in IC process. The

properties of wax pattern depend upon the wax flow rate,

wax solidification shrinkage and heat transfer rate between

wax and die. Bonilla et. al9 also investigated that injection

process parameters show a key role to produce a best wax

pattern. By controlling the injection parameters such as

injection temperature, injection flow rate, cycle time, die

temperature and injection pressure, the shrinkage rate of

the wax pattern can be eliminated and dimensional accu-

racy can be achieved. Omkar et. al10 prepared blend wax

pattern by using paraffin wax, beeswax, montan wax and

carnauba wax and optimized the input process parameters

by Taguchi method. Wang et. al11 used pattern made by

rapid prototyping process to optimize the process param-

eters. Sabau12 studied the phenomena of thermal expan-

sion–contraction and hot deformation in pattern wax.

During pattern preparation, the dimension of the pattern

changes due to thermal expansion–contraction, which

resulted in the dimension change in the corresponding cast

part. They used various additives for making investment

casting wax pattern and found the effects of these additives

on dimensional deviations between the wax pattern and its

corresponding cast part during the process. Sabau and

Viswanathan13 used numerical simulation to predict the

shrinkage of wax pattern during solidification stage. They

also determined the heat transfer coefficient between wax

pattern and metallic die. Taguchi method has been most

commonly used method to optimize a single-output per-

formance14. It is also very important to establish a relation

between wax shrinkage rate and pouring temperature of the

wax. Some researcher had tried to establish the relation

between heat transfer coefficient between wax pattern and

metallic die15. Taguchi method is commonly used to

optimize the process parameters. However, this method is

not dealing in a better way with multiple output parameters

characteristics16–20. In this work, an attempt has been made

to enhance the properties of blend wax pattern by using

paraffin wax, microcrystalline wax, beeswax, polyethylene

wax and carnauba wax. The main purpose of making waxes

blend is to enhance the properties of pattern. Various wax

proportions were used to prepare the blends, and their

properties were evaluated and compared each other to find

the best waxes blend. The technique of grey-fuzzy logic

has been applied to optimize the injection process param-

eters with several output characteristics. The input injec-

tion parameters taken in this study are injection

temperature (IT), die temperature (DT), injection flow rate

(IFR) and holding time (HT). The output performance

characteristics are surface roughness (SR), needle pene-

tration (NP), linear shrinkage (LS) and volumetric shrink-

age (VS). Grey-fuzzy response table and graph are studied

to find out the optimum process parameters in this study.

The optimized process parameters significantly improved

the properties of blend wax pattern.

Experimental Work

The experiments were conducted on a hydraulic wax

injection machine. The hydraulic wax injection machine is

shown in Figure 1a, and geometry of the pattern is shown

in Figure 1b. The ingredients of each wax blend were

melted together in a container of wax injection machine

with constant agitation in order to get a homogeneous

mixture.

The molten wax was injected into an aluminium die. After

solidification of the wax pattern, it was removed from the

die. The wax blend patterns are shown in Figure 1c.

Development of Wax Blend

The wax patterns were developed by mixing five types of

waxes, namely paraffin wax, microcrystalline wax, bees-

wax, polyethylene wax and carnauba wax. Paraffin wax

was selected to enhance the surface properties of the wax

pattern. Microcrystalline wax gives the cohesiveness to the

pattern. Beeswax also called natural wax gives the better

surface finish to the pattern. Polyethylene wax has good

fluidity and better surface properties. Carnauba wax gives

good dimensional accuracy to the pattern. The proportions

of these waxes are shown in Table 1.

The blend wax was prepared by melting these waxes in a

container of wax injection machine with constant agitation.

Hydraulic wax injection machine was used to inject the

semisolid wax at constant process parameters into an alu-

minium die. After solidification of the wax blend pattern, it

was removed from the aluminium die. The response

parameters of the blend wax pattern were surface rough-

ness, needle penetration, linear shrinkage and volumetric

shrinkage. Surface roughness of each blend wax pattern

was measured by Veeco WYKO NTI 100. 2-D and 3-D

images of surface roughness are shown in Figure 2.

The needle penetration test was used to measure the

hardness of wax pattern. In needle penetration test, a

standard needle was penetrated inside the wax pattern for

5 sec under a load of 100 gm and corresponding depth of

needle penetration was measured. Linear shrinkage is the

difference between die dimension and pattern dimension.

Volumetric shrinkage was calculated by filling the die

cavity with water and measured its volume VD with the

help of measuring flask. Then another measuring flask is

filled with water and taken its initial reading Vi. Finally,

pattern was dipped inside the flask and final reading Vf was

taken. The following formula was used to calculate the

volumetric shrinkage.
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Volumetric shrinkage ¼ 1� Vf � Vi

Vd

� �
� 100

The wax pattern properties are shown in Table 2. After

conducting the experiments, it was observed that wax blend

first gives best properties. The wax blend first has

minimum surface roughness, penetration, linear shrinkage

and volumetric shrinkage. Therefore, wax blend first was

taken to be the best wax blend among all the blends,

containing 40 % paraffin wax, 30 % microcrystalline wax,

20 % beeswax, 10 % polyethylene wax and 0 % carnauba

wax. Hence, further experiments were conducted by using

wax blend first to get the effect of various injection process

Figure 1. (a) Wax injection machine, (b) geometry of wax pattern, (c) wax blend patterns.

Table 1. Wax Blends and Their Weight Proportions

Blend No. Paraffin wax (% wt) Microcrystalline wax (% wt) Beeswax (% wt) Polyethylene wax (% wt) Carnauba wax (% wt)

1 40 30 20 10 0

2 40 30 10 10 10

3 50 20 15 10 5

4 50 20 10 10 10

5 60 10 10 10 10
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parameters such as injection temperature, die temperature,

injection flow rate and injection time on surface roughness,

hardness, linear shrinkage and volumetric shrinkage.

Selection of Process Parameter and Orthogonal
Array

Taguchi L27 design of experiment technique was applied to

wax blend first. The selection of process parameter was

based on literature review and subsequent pilot experi-

mentation. Injection process parameters such as IT, DT,

IFR and HT are taken as the variable process parameters.

The other process parameters like ambient temperature and

cooling rate were fixed throughout the whole investigation.

The range and levels of the injection process parameters

Figure 2. 2-D and 3-D images of surface roughness.

Table 2. Properties of Wax Blend Patterns

Blend
No.

Surface
roughness
(nm)

Needle
penetration
(thm)

% Linear
shrinkage

%
Volumetric
shrinkage

1 336.68 8.4 1.79 4

2 688.23 9.5 2.82 7

3 490.44 9.2 2.67 6

4 536.04 10.4 3.01 7.5

5 618.83 9 3.08 7.7

Table 3. Injection Process Parameters and Their Levels

Process parameters Unit Levels

L1 L2 L3

Injection temperature (IT) (�C) 65 70 75

Die temperature (DT) (�C) 35 40 45

Injection flow rate (IFR) (lbm) 2.5 2.75 3

Holding time (HT) (sec) 5 6 7

Table 4. L27 Orthogonal Array and Responses

S.
No.

IT
(�C)

DT
(�C)

IFR
(lbm)

HT
(Sec)

Avg.
SR
(nm)

Avg.
NP
(thm)

Avg.
LS
(%)

Avg.
VS
(%)

1 65 35 2.50 5 436.68 8.4 1.21 8.08

2 65 35 2.75 6 386.42 10.2 1.06 8.24

3 65 35 3.00 7 394.74 8.8 0.98 5.60

4 65 40 2.50 6 354.56 10.8 1.05 5.66

5 65 40 2.75 7 378.84 11.2 1.21 7.92

6 65 40 3.00 5 395.78 11.4 1.23 8.45

7 65 45 2.50 7 424.36 9.6 1.03 5.92

8 65 45 2.75 5 412.28 10.2 1.39 2.96

9 65 45 3.00 6 389.88 10 0.88 5.39

10 70 35 2.50 5 406.68 8.8 1.03 3.34

11 70 35 2.75 6 374.42 11 0.66 5.60

12 70 35 3.00 7 404.74 8.2 0.49 2.80

13 70 40 2.50 6 364.56 10.2 0.95 5.66

14 70 40 2.75 7 388.84 10.2 1.06 8.42

15 70 40 3.00 5 385.78 9.2 0.82 5.66

16 70 45 2.50 7 394.36 9.2 0.81 5.55

17 70 45 2.75 5 405.28 8.8 0.53 5.22

18 70 45 3.00 6 356.88 11.4 1.43 5.87

19 75 35 2.50 5 414.68 10 1.02 5.98

20 75 35 2.75 6 394.42 8.4 0.74 8.40

21 75 35 3.00 7 388.74 9.6 0.87 5.60

22 75 40 2.50 6 367.56 10 1.01 8.19

23 75 40 2.75 7 382.84 10.2 0.83 5.87

24 75 40 3.00 5 387.78 9.2 1.07 5.76

25 75 45 2.50 7 418.36 10.2 1.15 8.30

26 75 45 2.75 5 397.28 9 0.52 2.96

27 75 45 3.00 6 346.88 10 0.79 2.74
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were chosen by conducting the trial experiments with one

factor at a time approach. The range and levels of injection

process parameters for wax blend first are shown in

Table 3.

The complete experimental outline matrix for Taguchi L27

orthogonal array is given in Table 4. The technique of

fuzzy logic is utilized to optimize the injection process

parameters, and results were investigated for analysis of

variance (ANOVA). The surrounding temperature during

blend pattern preparation was in the range of (26–32) �C.
The average values of SR, NP, LS and VS for each trial

experiment are shown in Table 4.

Grey-Fuzzy Logic Approach

Grey-fuzzy logic is used with grey relational analysis to

find out the optimal injection process parameters in the

investment casting process.

Grey Relational Analysis

Grey relational analysis (GRA) is applied to determine the

interrelationships between the multiple input and output

process parameters effectively. In GRA system, the

experimental data are normalized in a range from 0 to 1 to

diminish the inconsistency. This process is called grey

relational generation. These data are used to determine the

grey relational coefficient. There are various methodolo-

gies used in grey relational analysis.

For lower-the-better criterion, the data can be expressed as:

xi kð Þ ¼ max yi kð Þ � yi kð Þ
max yi kð Þ �min yi kð Þ Eqn: 1

For higher-the-better criterion, the data can be expressed

as:

xi kð Þ ¼ yi kð Þ �min yi kð Þ
max yi kð Þ �min yi kð Þ Eqn: 2

where xi(k) is the value after grey relational generation,

min yi(k) is kth smallest response value, and max yi(k) is
the kth largest response value.

The grey relational coefficient ni(k) can be expressed as:

ni kð Þ ¼ Dmin þWDmax

D0i kð Þ þWDmax

Eqn: 3

Here, D0i kð Þ ¼ x0 kð Þ � xi kð Þk k is the difference of absolute
value x0(k) and xi(k), W is a distinguishing coefficient

0�W� 1; Dmin ¼ VjmineiVkmin x0 kð Þ � xi kð Þk k is the

smallest value of D0i, and Dmax ¼
VjmaxeiVkmax x0 kð Þ � xi kð Þk k is the largest value of D0i.

The value of W is taken as 0.5. The grey relational

coefficient is used to represent the correlation between

optimal and actual normalized results 18. The experimental

result will be closed to optimal normalized result for larger

value of grey relational coefficient.

Grey-Fuzzy Logic

Grey relational analysis has various criterion such as lower-

the-better criterion, higher-the-better criterion and nominal-

the-better criterion of each output response in a multiple

objective problem. A fuzzy logic unit has fuzzifier, mem-

bership functions, fuzzy rule base, interface engine and

defuzzifier21. In fuzzifier, membership functions were fuzzi-

fied by using grey relational coefficient. The membership

value of a membership function is between 0 and 1. Interface

engine is used to generate a fuzzy value based on fuzzy rules.

At last, the defuzzifier is used to generate the fuzzy value into

grey-fuzzy reasoning grade (GFRG).

In this study four-input-one-output fuzzy logic unit is

applied to determine the optimal injection process param-

eters as shown in Figure 3. The input parameters of this

fuzzy design are the grey relational coefficients for surface

roughness x1, needle penetration x2, linear shrinkage x3 and
volumetric shrinkage x4. The output characteristics variable
is the grey-fuzzy reasoning grade y0. Membership func-

tions are used to convert input and output characteristics

into linguistic fuzzy subsets.

A fuzzy rule base system is working on if-then mechanism

to show the correlation between input and output. A lin-

guistic fuzzy Mamdani system is termed as:

Rule 1 : If x1 ¼ A1; x2 ¼ B1; x3 ¼ C1 and x4 ¼ D1 then y ¼ E1 else

Rule 2 : If x1 ¼ A2; x2 ¼ B2; x3 ¼ C2 and x4 ¼ D2 then y ¼ E2 else

Rule 3 : If x1 ¼ A3; x2 ¼ B3; x3 ¼ C3 and x4 ¼ D3 then y ¼ E3 else

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .:

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .::

Rule n : If x1 ¼ An; x2 ¼ Bn; x3 ¼ Cn and x4 ¼ Dn then y ¼ En else

where Ai, Bi, Ci, Di and Ei are the fuzzy subsets specified

by corresponding membership functions, i.e. lAi, lBi and
lCi.

Fuzzy interface engine is the brain of fuzzy logic. It solved

the problem by simulating the input values with fuzzy

reasoning system. At last, defuzzification is used to deter-

mine the fuzzy inference output into a non-fuzzy reasoning

grade. Higher value of GFRG shows that the experimental

value is nearer to optimal normalized value.

Proposed Methodology

The schematics representation of proposed grey-fuzzy

logic methodology is as shown in Figure 4.
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Results and Discussion

Grey Relational Coefficients

In this study, the smaller the values of surface roughness,

needle penetration, linear shrinkage and volumetric

shrinkage; better is the properties of blend wax pattern.

Therefore, smaller the better criterion is selected for this

study. The experimental data are normalized by using Eqn.

1. The grey relational coefficient is calculated for each

output characteristics by using Eqn. 3. Table 5 shows the

data preprocessing of experimental results and grey rela-

tional coefficients for surface roughness, needle penetra-

tion, linear shrinkage and volumetric shrinkage. The

experiment nos. 9, 12, 12 and 9 show the best output

response for surface roughness, needle penetration, linear

Membership functions

Fuzzy interface engine

Fuzzy rules

Fuzzifie Defuzzifi

Figure 3. Structure of four-input-one-output fuzzy logic.

Determining the range and level of input process parameters
Designing L27 orthogonal array 

Performing experiments based on L27 orthogonal array

Data pre-processing of experimental results

Determining grey relational coefficient 

Fuzzifying grey relational coefficient 

Determining GFRG by defuzzification

Choosing optimal input injection process parameters

Performing ANOVA

Figure 4. Grey-fuzzy logic methodology.
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shrinkage and volumetric shrinkage, respectively. But, to

improve the quality of output performance, fuzzy logic

technique is further used.

Grey-Fuzzy Reasoning Grade (GFRG) Analysis

Grey-fuzzy reasoning grade (GFRG) is determined by

using MATLAB. Grey relational coefficients calculated

from surface roughness, needle penetration, linear shrink-

age and volumetric shrinkage are used as inputs for fuzzy

logic system. In this study, a triangular membership func-

tion is applied for grey relational coefficient. A systematics

grey-fuzzy logic design is shown in Figure 5. The grey

relational coefficients have divided into three subsets, i.e.

small (S), medium (M) and large (L). The output response

is divided into five fuzzy subsets, i.e. very small (VS),

small (S), medium (M), large (L) and very large (VL).

Formulation of rules was done by using Mamdani system.

Graphical demonstration of GFRG for experiment no. 1 is

shown in Figure 6. The rows denote twenty-seven rules,

and columns denote four input and one output. The position

of triangle shows the fuzzy sets for every input and output

value. The darkened area of each triangle indicates the

membership value of that fuzzy set. For experiment no. 1,

the input values of grey reasoning coefficients of surface

roughness, needle penetration, linear shrinkage and volu-

metric shrinkage are 0.333, 0.889, 0.395 and 0.348,

respectively. The value of GFRG for experiment no. 1 is

0.502 as shown in Figure 6. The value of GFRG and cor-

responding rank for all the twenty-seven investigations are

shown in Table 5.

Table 5. Data Preprocessing, Grey Relational Coefficients and GFRG

Exp. No. Data preprocessing of experimental data Grey relational coefficients GFRG Rank

SR NP LS VS LS NP LS VS

1 0.000 0.938 0.234 0.065 0.333 0.889 0.395 0.348 0.502 8

2 0.560 0.375 0.394 0.037 0.532 0.444 0.452 0.342 0.307 25

3 0.467 0.813 0.479 0.499 0.484 0.727 0.490 0.500 0.500 9

4 0.914 0.188 0.404 0.489 0.854 0.381 0.456 0.494 0.400 16

5 0.644 0.063 0.234 0.093 0.584 0.348 0.395 0.355 0.312 22

6 0.455 0.000 0.213 0.000 0.479 0.333 0.388 0.333 0.308 24

7 0.137 0.563 0.426 0.443 0.367 0.533 0.465 0.473 0.500 10

8 0.272 0.375 0.043 0.961 0.407 0.444 0.343 0.928 0.513 7

9 1.000 0.438 0.681 1.000 1.000 0.471 0.610 1.000 0.500 11

10 0.334 0.813 0.426 0.895 0.429 0.727 0.465 0.826 0.600 5

11 0.693 0.125 0.819 0.499 0.620 0.364 0.734 0.500 0.400 17

12 0.356 1.000 1.000 0.989 0.437 1.000 1.000 0.979 0.500 12

13 0.803 0.375 0.511 0.489 0.717 0.444 0.505 0.494 0.400 18

14 0.533 0.375 0.394 0.005 0.517 0.444 0.452 0.335 0.307 26

15 0.567 0.688 0.649 0.489 0.536 0.615 0.588 0.494 0.500 13

16 0.471 0.688 0.660 0.508 0.486 0.615 0.595 0.504 0.805 4

17 0.350 0.813 0.957 0.566 0.435 0.727 0.922 0.535 0.828 2

18 0.889 0.000 0.000 0.452 0.818 0.333 0.333 0.477 0.400 19

19 0.245 0.438 0.436 0.433 0.398 0.471 0.470 0.468 0.304 27

20 0.471 0.938 0.734 0.009 0.486 0.889 0.653 0.335 0.600 6

21 0.534 0.563 0.596 0.499 0.518 0.533 0.553 0.500 0.500 14

22 0.770 0.438 0.447 0.046 0.685 0.471 0.475 0.344 0.309 23

23 0.600 0.375 0.638 0.452 0.555 0.444 0.580 0.477 0.400 20

24 0.545 0.688 0.383 0.471 0.523 0.615 0.448 0.486 0.500 15

25 0.204 0.375 0.298 0.026 0.386 0.444 0.416 0.339 0.333 21

26 0.439 0.750 0.968 0.961 0.471 0.667 0.940 0.928 0.808 3

27 0.521 0.438 0.585 0.536 0.511 0.471 0.547 0.519 0.905 1
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Highest value of GFRG shows the best optimal injection

process parameters. Table 5 and Figure 7 show that

experiment no. 27 has the highest value of GFRG with best

multiple performance characteristics among all the twenty-

seven experiments. Therefore, injection temperature is 75

C̊, die temperature 45̊ C, injection flow rate 3 lbm.

ANOVA

ANOVA is applied to determine the best role of each input

process parameters on the multiple output characteristics.

Figure 8 shows the GFRG vs. injection process parameters.

Therefore, based on response graph as shown in Fig. 8 and

Table 6, A2, B3, C3 and D1, i.e. injection temperature

70 �C, die temperature 45 �C, injection flow rate 3 lbm and

holding time 5 sec, are the best optimal injection process

parameters.

The difference between higher and lower value of GFRG

grade indicated the influence of that parameter on the

multiple output characteristics. Higher the difference of

maximum and minimum fuzzy reasoning grade shows

higher the influence of that parameter on the output char-

acteristics among all the parameters. Table 6 shows that die

temperature has the most significant influence on the output

performance parameters.

Fisher’s F test indicates that which input process parameter

has the most significant effect on output characteristics.

Usually, higher value of F ratio shows that the change of

that input process parameter makes the most significant

change on the output performance. Table 7 shows that the

impact of die temperature disturbing SR, NP, LS and VS

significantly followed by injection temperature, holding

time and flow rate, respectively.

Therefore, optimal injection process parameters are A2, B3,

C3 and D1, and die temperature is the most influencing

process parameter among all the injection process param-

eters. These results proved that grey-fuzzy approach

applied successfully to decide the optimal injection process

parameters with multiple output performance and with

limited number of experiments in the IC.

Conclusion

In this investigation, an investment casting wax blend has

been developed into a pattern wax by adding different

varieties of waxes, namely paraffin wax, microcrystalline

wax, beeswax, polyethylene wax and carnauba wax. L27

orthogonal array design is used to prepare wax blend pat-

terns. Injection temperature, injection flow rate, die tem-

perature and holding time were used as input process

parameters, and surface roughness, needle penetration,

linear shrinkage and volumetric shrinkage were used as

Figure 5. Schematic fuzzy logic plot for input and output values.
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output performance characteristics. Further, the optimiza-

tion of injection process parameters was done by using

grey-fuzzy logic. The following conclusions are made from

the study.

• The wax blend first was selected as the best wax

blend among all the blends, containing 40%

paraffin wax, 30% microcrystalline wax, 20%

beeswax, 10% polyethylene wax and 0% carnauba

wax. Thus, blend 1 was further used to optimize

the process parameters through Taguchi method.

• It can also be concluded that blended wax pattern

has higher quality as compared to the single wax

pattern.

• Grey-fuzzy logic showed that injection tempera-

ture 70 �C, die temperature 45 �C, injection flow

Figure 6. Fuzzy logic rule viewer.
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rate 3 lbm and holding time 5 sec are the best

optimal combination of input parameters.

• ANOVA statistics exposed that die temperature is

the most influencing parameter in effecting the

output performance characteristics.

• Hence, it is concluded that the optimized process

parameters significantly improved the properties

of blend wax pattern.

Figure 8. Response graph for every level of input process parameters.

Table 6. Response Table for GFRG

Level IT DT IFR HT

1 0.4269 0.4681 0.4614 0.5403

2 0.5267 0.3818 0.4972 0.4690

3 0.5177 0.6213 0.5126 0.4619

D(max-min) 0.0998 0.2396 0.0511 0.0784

Rank 2 1 4 3

Table 7. Analysis of Variance for GFRG

Source of variance DOF Seq SS Adj SS Adj MS F P

IT 2 0.05483 0.05483 0.027416 2.75 0.142

DT 2 0.26495 0.26495 0.132476 13.27 0.006

IFR 2 0.01238 0.01238 0.006191 0.62 0.569

HT 2 0.03388 0.03388 0.016939 1.70 0.261

Error 18 0.05992 0.05992 0.009987

Total 26 0.77668

International Journal of Metalcasting/Volume 16, Issue 2, 2022 971



REFERENCES

1. S. Pattnaik, D.B. Karunakar, P.K. Jha, Developments

in investment casting process—a review. J Mater

Process Technol 212(11), 2332–2348 (2012)
2. R.G. Craig, J.D. Eick, F.A. Peyton, Properties of

natural waxes used in dentistry. J Dent Res 44(6),
1308–1316 (1965)

3. A. Borcherding, T. Luck. Application of plant proteins

as thermoplastics. In Plant Proteins from European

Crops, Springer, Berlin, 313–318 (1998). https://doi.

org/10.1007/978-3-662-03720-1_52
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