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Abstract

Artificial intelligence (AI) is integral to Industry 4.0 and
the evolution of smart factories. To realize this future,
material processing industries are embarking on adopting
AI technologies into their enterprise and plants; however,
like all new technologies, there is always the potential for
misuse or the false belief that the outcomes are reliable.
The goal of this paper is to provide context for the appli-
cation of machine learning to materials processing. The
general landscapes of data science and materials pro-
cessing are presented, using the foundry and the metal
casting industry as an exemplar. The challenges that exist
with typical foundry data are that the data are unbalanced,
semi-supervised, heterogeneous, and limited in sample size.

Data science methods to address these issues are presented
and discussed. The elements of a data science project are
outlined and illustrated by a case study using sand cast
foundry data. Finally, a prospective view of the application
of data science to materials processing and the impact this
will have in the field are given.

Keywords: Industry 4.0, machine learning, smart factory,
IoT, artificial intelligence, classification models, random
forest, XGBoost, unbalanced, semi-supervised, dimension
reduction, principal component analysis, feature
importance, data standardization

Introduction

The fourth industrial revolution that ushered the Internet of

Things (IoT) and the Internet of Services (IoS) has come to

be known as Industry 4.0. At the Hannover Messe in 2011,

Germany launched a project called ‘‘Industrie 4.0’’

designed to fully digitize manufacturing. The larger vision

of Industry 4.0 is the digital transformation of manufac-

turing, leveraging advanced technologies, and innovation

accelerators in the convergence of IT (Information Tech-

nology) and OT (Operational Technology). The purpose is

to integrate connected factories within industry, decen-

tralized and self-optimizing systems, and the digital supply

chain in the information-driven cyber-physical environ-

ment of the fourth industrial revolution.1,2 The evolution

toward Industry 4.0 is given in Figure 1.

The initial goals of Industry 4.0 typically have been

automation, manufacturing process improvement, and

productivity optimization. The more advanced goals are

innovation and the transition to new business models and

revenue sources using information technologies and
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services as cornerstones. These developments will trans-

form manufacturing plants into smart factories or foun-

dries. Three keystone digital technologies will enable the

transformation to smart factories: (i) connectivity, which

implies executing industrial IoT to collect data from vari-

ous segments of the plant; (ii) intelligent automation which

includes advanced robotics, machine vision, digital twins,

and distributed control; and (iii) cloud-scale data man-

agement and analytics (AI and machine learning).3

In the metal processing field, particularly in the metal

casting industry, whether it be ferrous or non-ferrous

foundries, many data are collected at various locations

within the plant. However, these data are usually siloed

within operational departments without an intentional

strategy for data fusion and transformation into knowledge.

It is a fact that many of our plants and plant infrastructures

were built prior to the rise of data science capabilities and

tools. The time is now to make the transformation of our

plants into smart factories in the context of Industry 4.0.

In this paper, our goal is to establish some context of AI

and machine learning and how it can be appropriately

utilized in materials processing where physical laws govern

the process. We use metal casting as an example in this

work as it is a well-established industry from which we

have access to process data via the industrial membership

of the Advanced Casting Research Center at UCI. In metal

casting, the quality of the final product is influenced by

many factors: metal composition, processing conditions,

the solidification journey where transport phenomena

influence the resultant microstructure, post-processing

treatments, etc. Even with our understanding of the mate-

rials processing world, working with its manufacturing data

is not without challenges.4 Because the industry is well

established, the foundries do not produce components with

many defects. In other words, scrap rates are low, making it

difficult to utilize algorithms, based on supervised learning,
which learn from successes and failures.5 This is where

the need for using machine learning algorithms that

can treat unbalanced data arises. Moreover, real-world

manufacturing processes are complex and appropriate data

may not always be available for all parts. Accordingly, the

need for advanced unsupervised or semi-supervised

machine learning algorithms also exists.5 ‘‘The Landscape

of Machine Learning’’ section describes these types of

algorithms in detail. In this work, we want to show how

these techniques can be used to answer the questions: How
can we develop algorithms and apply AI/machine learning
to processes where one does not have many defective, or
otherwise labeled, parts to teach and learn from? It should

be noted that the fundamentals and the principles presented

here are applicable to a host of manufacturing processes.

The Landscape of Machine Learning

What is Machine Learning?

Machine learning is a branch of artificial intelligence (AI)

where one constructs computer algorithms intended to

mimic tasks commonly performed by humans. Algorithms

for image recognition, health analytics, natural language

processing, and self-driving vehicles are all examples of AI

that have transformed industries that affect our daily lives.6

More specifically, AI clearly has a role to play in advanced

manufacturing where there are myriad of tasks that could

be automated by algorithms such as defect detection, pro-

cess optimization, and new materials development.2

For many years, classical philosophers have attempted to

describe human thinking as a symbolic system. Babbage in

the 1830s realized that punched cards used in the Jacquard

loom could control operations.6 Alan Turing in England

(1935–1940 era) developed a machine that could compute

using a set of rules transitions/states to solve mathematical

functions.7,8 Subsequently, Turing went on to expand his

view by posing the question: ‘‘Can a machine think’’? The

term AI was formally established in 1956 at a conference at

Dartmouth College, Hanover, NH USA, by pioneers John

McCarthy and Marvin Minsky. McCarthy challenged the

community to make machines that ‘‘behave in ways that

would be called intelligent if a human were so behaving,’’

whereas Minsky focused on making machines that would

do things that ‘‘would require intelligence if done by

men.’’9

AI and machine learning are closely related to fields such

as pattern recognition (an umbrella term that covers many

different approaches), statistics and statistical learning

(where the focus tends to be on formal mathematical

relationships), and neural networks (a field which has seen

great advancements in the past few years).10 For example,

one class of approaches that was common in AI’s early

years was that of rules-based systems. In a manufacturing

plant, the convention has been that engineers develop a

knowhow enabling them to detect defects in the final

product; in turn, they pass on this knowledge to those who

Figure 1. Industrial revolutions1
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follow their footsteps. It is tempting to distill how a human

performs such tasks by enumerating a set of rules for defect

recognition. Once such a collection of rules is developed,

they can then be encoded in a computer language to allow a

machine to mimic what a human does. Unfortunately, such

rules-based systems tend to be quite fragile as the inter-

actions in the system can be subtle. As a result, rules-based

systems do not achieve human-level performance. The field

of machine learning takes a different perspective by

developing algorithms that learn by example. Rather than

constructing handcrafted rules, in machine learning, one

designs systems that can construct their own rules given a

collection of examples where the desired task is performed

correctly.

Elements of Machine Learning

Algorithms

Algorithms are the ‘‘machines’’ that can learn and generate

the rules. It is reasonable to ask whether it is easier to write

down explicit rules for a task or to create an algorithm that

can generate its own rules. Perhaps counterintuitive, the

latter is often much easier, more effective, and less error

prone. Rulemaking algorithms abound, from simple linear

regression, to the more complicated support vector

machines, to cutting edge neural networks.5,11,12 As

expected, algorithms are imperfect if the training data are

inadequate. In machine learning, and specially in semi-

supervised learning mode, one requires a large set of

training data; without this, the algorithms developed may

be unreliable.

Training Data

For algorithms to be effective, they require many examples

to learn from. The question is: Given the amount of
training data, which algorithm is the most suitable? The

choice of algorithms is dependent upon the size of training

data available. Using techniques such as cross-validation,

we can test the performance of different algorithms in

terms of generalizing on unseen test data.13 This can be

done by training the algorithms on different subsets of the

data and then testing on the rest. Choosing between algo-

rithms should be based on comparing their performance on

the test set.

Feature Engineering

Feature engineering is the process of using domain

knowledge of the data to create features that optimize

machine learning algorithms.14,15 This is where technical

prowess provided by the practitioner or the engineer plays

an important role. Feature engineering increases the pre-

dictive power of the algorithms by selecting specific fea-

tures or creating new features from the data that assist in

the learning process.

Feature engineering determines what information is given

as input to the machine learning algorithm. The danger,

however, is that one may carry this out and overengineer,

in the engineering parlance, and overfit, in the machine

learning parlance; there is a sweet spot for feature engi-

neering. An example may be useful to explain the concept.

Many parameters are collected during metal casting: alloy

composition, environmental conditions in the foundry,

superheat, temperature changes during the solidification

process, etc. It is not unusual to have 40 columns of data

for a given cast part. Feature engineering helps us address
how these parameters are communicated to the algorithm.
A close collaboration is needed in generating appropriate

training datasets and the appropriate feature engineering by

experts in both manufacturing and machine learning. To a

large extent, the authors of this paper have formed such a

team.

Data Pre-processing

Many machine learning algorithms require that their input

data be numeric. In the example above, how should the

chemical composition be represented numerically for a fair

comparison with melt temperature and foundry environ-

mental conditions? In the original training data, the amount

of Si is 0.07 weight fraction, the melt temperature is

704 �C, and the temperature of the foundry is 24 �C. Many
machine learning algorithms depend on an appropriate
definition of distance, and the rules they generate hinge on
the distances between the training examples. By setting

Si = 0.07, Tmelt = 704, and Tfloor = 24, one is implicitly

informing the algorithm that melt temperature is a more

important parameter as compared to the composition of

silicon or the temperature of the foundry. However, such

inferences may be neither intended nor correct. In order to

avoid such inferences, we pre-process the data such as

normalizing the dataset so that all the columns are on the

same scale.16 Details of how we normalize using a

Z-transform are given in ‘‘Process Cognition and Har-

nessing of Knowledge in Metal Casting’’ section of this

paper.17

Cross-Validation

One important part of machine learning that we have not

yet touched upon is the evaluation of the performance of

the algorithms we construct. Cross-validation is a tech-

nique that is used for algorithm evaluation on unseen data.

Cross-validation can be thought of as testing the algorithm
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in an environment that is faithful to how it will be used
during the manufacturing process. For example, given a set

of training data (e.g., labeled X-ray images of parts), one

can train the algorithm in the task of detecting defective

parts. When the algorithm is utilized on the factory floor,

one would be interested in knowing how well it performs

on images of parts as they roll off the assembly line, when

the true label is not yet known.

There are important differences between how a machine

learning algorithm performs on its training data and how it

might perform in practice on the factory floor. For exam-

ple, consider a machine learning algorithm that merely

memorizes all the X-ray images in its training data and

whether the image corresponds to a good part. Such an

algorithm would be able to perfectly label every image in

its training set but would have no ability to correctly label

new images. In data science terms, it would not be able to

generalize from its training data to new examples, such as

the current production parts shipping from the foundry.

The machine learning terminology for such an algorithm

that performs well on training data but fails to generalize is

known as overfitting.18 Avoiding overfitting is an essential

part of machine learning and a place where the expertise of

machine learning practitioners can play a pivotal role.

Constructing a machine learning algorithm that appears to

be quite effective during training but fails in the field can

be surprisingly easy to do. However, such situations are

clearly to be avoided and require a measure of machine

learning expertise.

The Landscape of Materials Processing: Metal
Casting

Machine learning promises to have a transformative impact

on the advanced manufacturing landscape, where applica-

tions of machine learning alongside the IoT is projected to

generate $1.2 to $3.7 trillion of value globally by 2025.1 In

the metal casting industry, which is one of the core

building blocks of advanced manufacturing industries,

machine learning has only seen negligible adoption to date.

Thus, there exists a huge opportunity to utilize AI and

machine learning in the metal casting industry.19–24 The

metal casting industry is at the cusp of its data revolution.

Modern foundries have the capability to capture a vast

amount of process data on a daily basis.25 These include

molten metal preparation details, casting process data,

simulation data, part geometry data (CAD files), nonde-

structive evaluation/testing data, etc. However, these many

types of data from various sources throughout the operation

are often kept in departmental silos where their value might

have limited utility (Figure 2). Integrated data are the

prerequisite for performing machine learning, and it is a

lost opportunity for the foundry industry if no effort is

made to compile, fuse, and analyze these data to better

understand the process factors influencing the quality of the

castings.

Implementation of machine learning in the metal casting

industry requires knowledge workers who are trained in

both data science and materials science and engineering

domains.26 Unfortunately, most engineers are not trained in

data science. Efforts are underway in academia (e.g., WPI,

UCI, University at Buffalo, Northwestern U., U. of Wis-

consin, etc.) to develop curricula for engineering students

who can navigate in both domains.

At the Advanced Casting Research Center (ACRC), a

consortium consisting of 35 corporations has made a

commitment to study how machine learning and deep

learning can yield transformative improvements to metal

casting processes. The long-term goal is to develop a

framework that can be adopted by foundries to transform

their data into process cognition and knowledge. In this

project, the research team is multidisciplinary comprising

of faculty and graduate students from data science as well

as materials science and engineering. The data scientists

apply their expertise in seeking or developing the effective

and appropriate data analysis techniques. Material scien-

tists and engineers determine how to treat anomalous data

points in the raw dataset and can assess whether the pre-

dicted results and the feature importance are in line with

observations on the shop floor.

Process Cognition and Harnessing of Knowledge
in Metal Casting

In the following sections, we review some technical chal-

lenges and pitfalls in applying machine learning to

Figure 2. Data from various sources throughout the casting operation are kept in silos
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industrial foundry data and cover some potential solutions

to resolve these challenges. Subsequently, we navigate the

critical steps of machine learning as applied in a case study

to showcase the implementation of machine learning to

metal casting step by step.

Challenges of Metal Casting Datasets

Our team is in a fortunate position to have access to cast

data from the industrial partners of ACRC. All the data are

treated confidentially and are collected from three different

casting processes—die casting, permanent mold, and sand

casting. Though knowledge extracted directly from these

front-line datasets can provide meaningful guidance on

process and quality control to foundries, the process of

converting these data into knowledge is quite challenging

to our data scientists due to three notable attributes of

foundry data as discussed below.

The Data are Unbalanced

In machine learning, the algorithm is designed to construct

its own rules given a collection of examples. The aim is to

develop a machine learning model that can predict the

quality of cast components. The algorithm is trained by

providing it with a large set of processing data, with each

or some of the parts being labeled. The algorithm can

construct its own set of rules for distinguishing between the

labels. Based upon these examples, the algorithm applies

the rules to make predictions on parts whose label is

unknown. Ideally, the algorithm would learn from an

approximately equal number of examples representing

each label, however, in reality, the labels are unbalanced.

The lifeblood of successful foundries is large-scale pro-

duction of defect-free products. Accordingly, only a small

percentage of defective products are available to train the

machine learning algorithm. For example, in metal casting,

the defect rate of a mature product can be as low as 2–5%,

which introduces significant challenges in developing and

testing a robust predictive solution. Moreover, the gener-

ation of the quality data could be further complicated by

the fact that it is too expensive to perform quality inspec-

tion for all of the products. As a result, while it is possible

and straightforward to measure the processing data (the

inputs to the machine learning model) of each casting, to

generate the quality data (the response variable of the

model) can be quite difficult. In sum, metal casting is an

unbalanced, semi-supervised learning problem which is

challenging for even state-of-the-art machine learning

algorithms.

One of the main tasks in developing the machine learning

model is to work meaningfully with unbalanced raw

datasets supplied by foundries. As shown in Figure 3a, in a

dataset containing 500 castings, only 6% of the total pro-

duction is categorized as Class 3 and is considered defec-

tive. The population of good quality parts (Class 1 and

Class 2) is much larger than that of the defective parts.

Several algorithms were explored for data balancing. These

algorithms can learn from the structure of the minority

class in the original dataset and construct their own rules

for generating new datapoints, or oversample. For illus-

tration, an example of data balancing is shown in Figure 3.

Employing such an algorithm can make the population of

all three classes nearly equal.

Figure 3a, b shows the original and the oversampled data,

respectively. The oversampling is done using a popular

data balancing approach known as Synthetic Minority

Oversampling Technique (SMOTE).27 This approach is

used when the number of samples in one class is signifi-

cantly higher than the samples in the other classes, as is

typical in manufacturing datasets. As the name suggests,

this technique generates synthetic samples of the minority

class by interpolating between two instances of the

minority class. The oversampling is done until a point that

the proportion of the minority class matches that of the

majority class, and we have a balanced dataset for training.

There are also variations of the SMOTE approach that can

Figure 3. (a) Original and (b) oversampled casting data of each class
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be used; for example, Borderline-SMOTE is widely used

which focuses on the minority class samples that are at the

border of the majority and the minority class, since these

samples are more prone to misclassification errors as

compared to those that are away from the border.28

The Data are Sporadically Labeled

For example, a classic problem in machine learning would

be detecting defects in X-ray images of manufactured parts.

The algorithm is trained by providing it with a large set of

images of parts, with each image being labeled by whether

the quality of this particular part is acceptable. From a

given set of labeled images, the algorithm learns and

constructs its own set of rules for distinguishing between

acceptable and non-acceptable parts and subsequently

applies these rules to make predictions on unlabeled ima-

ges. Labeled data mean that processing and quality data of

the parts manufactured are known. In the machine learning

literature, such methods are called supervised machine

learning, where supervision arises from the availability of

labeled training data. As shown in Table 1, for each indi-

vidual sample, in the training dataset both the input vari-

able (X) and its corresponding output variable (Y) are

known. The algorithm can construct rules (e.g., Y = f (x;h))

to perform tasks such as predicting the quality of new parts.

When labeled training data are not available, the machine

learning problem becomes more difficult, and such algo-

rithms are referred to as unsupervised machine learning.

Whereas in semi-supervised machine learning only a

fraction of the training data is labeled, both labeled and the

unlabeled training data are used to develop the appropriate

algorithm.

Most Metal Casting Data are Not ‘‘Big Data’’

In our dataset, each individual row represents one cast

component. The various columns in each row contain the

recorded parameters when the cast component was pro-

duced. Unlike datasets generated from social media activ-

ities, the scale of metal casting dataset is quite small.

Although more sensors can be installed to capture addi-

tional processing data during casting (to add more col-

umns), the total number of rows in the dataset is still

limited by the volume or production capability of the

foundry. For instance, we have collected data from three

casting manufactures over the past two years, depending

upon the casting method and the size of the casting com-

ponent, the total number of one part produced in one year

varies from 300 to 7000 parts per year. Even if the foundry

can save and extract 10 years of historical data, there

would only be about 70,000 rows in this dataset, which is

well short of being considered appropriate in the realm of

‘‘Big Data.’’

Along with the oversampling techniques such as SMOTE,

we can also use generative adversarial networks (GANs), a

class of artificial intelligence algorithms, to generate rows

of new data by learning the structure of the original data

and generating new samples that follow the same distri-

bution.29,30 The original application of this technique was

to generate photographs with many realistic characteristics

that were superficially authentic to human observers.

Applying GANs to generate more datapoints in metal

casting datasets has shown promise. Mixing synthetic and

real data is one way to overcome the drawback of having a

small-sized dataset. Synthetic data can be used to increase

the volume of the data in case of small size datasets such as

Table 1. Classes of Machine Learning Tasks and Techniques

Supervised Unsupervised Semi-
supervised

X Y X Y X Y

Training data

Sample 1 4 4 Sample 1 4 7 Sample 1 4 4

Sample 2 4 4 Sample 2 4 7 Sample 2 4 7

Sample 3 4 4 Sample 3 4 7 Sample 3 4 7

Sample 4 4 4 Sample 4 4 7 Sample 4 4 4

Sample 5 4 4 Sample 5 4 7 Sample 5 4 7

Sample 6 4 Sample 6 4 7 Sample 6 4 4

Y = f(x; h) Pattern of the data Y = f(x; h)

Predictions

Sample 7 4 4 Sample 7 4 Sample 7 4 4

Sample 8 4 4 Sample 8 4 Sample 8 4 4

Sample 9 4 4 Sample 9 4 Sample 9 4 4
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these, and the real data are used so that it is faithful to the

original dataset.

Case Study of Machine Learning in Metal
Casting

The following paragraphs provide detail for training and

evaluating machine learning algorithms on production

foundry data. Analysis begins with an investigation of the

training data. The output for prediction is a binary pass or

fail rating of the porosity classification. SMOTE is applied

to overcome the class imbalance between pass and fail

samples, and the newly balanced training data are stan-

dardized. Several machine learning algorithms are trained

on datasets with and without dimension reduction. Algo-

rithm performance is evaluated with a metric of minimiz-

ing false negative classifications on the testing dataset.

The results shown below are generated using the scikit-

learn v0.24,31,32 matplotlib v2.0.2,33 and pandas v1.0.434,35

libraries within the Python36,37 programming language.

Training Data

Table 2 shows a snapshot of a portion of the dataset col-

lected from a sand cast foundry. This dataset has 510 rows

and 28 columns; each individual row represents a cast

component. The various columns in each row give the

processing parameters captured: component ID, metal

chemistry, casting processing details, and quality data (X-

ray inspection results). All the cast components were

inspected, and the quality results were labeled with varying

levels depending upon the appearance of porosity. Class 1

indicates that the casting was porosity free, Class 2 indi-

cates fine porosity, and Class 3 indicates large porosity

voids. A dummy variable was used to divide quality data

into a binary quality condition as given in Eqn. 1.

Y ¼
Pass : if the quality level of the part is Class 1 or Class 2

Fail : if the quality level of the part is Class 3

�

Eqn: 1

Data Standardization

Since the physical meaning and the scale of all processing

parameters incorporated into a given dataset vary signifi-

cantly, the raw data in each column that represents a par-

ticular class need to be standardized to ensure the data are

unitless and are of comparable scale. Once all processing

parameters are incorporated into a given dataset, the data in

each column are standardized using a statistical method,

called the Z-transform,17,38 which converts the values in

each column using the following equation:

Zi;j ¼
Xi;j � lj

rj
Eqn: 2

where

• Zi;j is the Z-transformed value of the parameter in

one data cell

• Xi;j is the original value of the parameter in the

data cell

• lj is the mean of the original values of the

parameter in the data column

• rj is the standard deviation of the original values

of the parameter in the data column

Table 3 shows a snapshot of the dataset after normalizing

using a Z-transform. Compared with the original dataset

shown in Table 2, the values in each cell of the transformed

dataset are on the same scale regardless of the physical

Table 2. A Snapshot Showing Portion of One Dataset Containing 510 Rows and 28 Columns

PourID Temp_Floor RH_Floor Gr_Floor LadleTemp LadleDensityPP

6750 79 60 88.77 1320 2.639

6756 73 50 60.50 1333 2.644

6758 78 51 72.85 1330 2.637

6766 75 56 72.43 1332 2.638

6768 70 57 62.30 1333 2.635

6770 71 57 64.44 1330 2.636

6773 76 54 72.20 1327 2.635

6835 62 40 33.42 1332 2.641

6837 73 30 36.56 1338 2.644

6839 68 22 22.59 1340 2.642

6841 68 22 22.59 1338 2.639

6844 65 19 17.39 1335 2.644

6849 71 40 45.40 1330 2.640
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meaning and the scale of these processing parameters. The

data are now unitless.

Dimension Reduction

All datasets collected from foundries are comprised of

many columns regardless of the type of casting process. If

the whole dataset were to be plotted on a scatter plot, this

plot would need to have as many axes as the data have

columns. However, the human perceptual system is

designed to process three dimensions. As a result, foundry

engineers will often have difficulty producing meaningful

visual representations of their data. Fortunately, repre-

senting high-dimensional data in a low-dimensional space

is a well-studied problem. In particular, principal compo-

nent analysis (PCA) is a classic dimension reduction

technique allowing us to blend a large set of correlated

variables in the original dataset into a smaller number of

newly created representative variables.39–41 This is a

powerful tool explored in our study to compress the

dimensionality of the original dataset and allow visual-

ization of the complicated dataset on a two- or three-di-

mensional plot whose axes correspond to the newly created

principal components. We can then use these principal

components as the predictors in the machine learning

model in place of the original larger set of variables. We

evaluated this technique against the original high-dimen-

sional data and found that the dimension reduction via PCA

was not necessary in this case study. However, PCA is an

important method employed in many machine learning

projects, so we offer the following detailed description.

Compared with the original dataset which contained 28

columns, the dataset is now represented with three newly

created columns, PC1, PC2, and PC3; therefore, the

complicated dataset can be visualized with the three-di-

mensional plot shown in Figure 4b. The PCA plot is a

scatter plot; in other words, PC1 is not a function of PC2 or

PC3. These three components were used to display the

dataset into several groupings of points. Each point in

Figure 4 represents a cast component, and the position of

the point is determined by all the input variables describing

how the casting was manufactured. The output variable of

the casting, in this case, the quality of the part (Class 1, 2,

or 3), is marked by color.

The formation of clusters is most likely accounted for by the

variations in production conditions. We investigated cast-

ings in the small cluster and found that they were manu-

factured in the last quarter of 2016. The cluster separation,

most likely, is related to the seasonal changes when these

parts were manufactured. This type of variation can more

easily be detected once the data are visualized on a plot.

The singular value decomposition, or SVD, is a computa-

tional method often employed to calculate principal com-

ponents for a dataset. Using SVD to perform PCA is

efficient and numerically robust.41 The singular value plot

of the dataset is shown in Figure 5. The x-axis of this plot

represents the first six principal components, and the y-axis

shows the singular values of these components. The sin-

gular values of these principal components are plotted in

the order from largest to smallest. The statistical interpre-

tation of singular values is in the form of variance in the

data explained by the various components. It can be

interpreted that if a component has a high singular value, it

represents a high percentage of variance in the dataset.

As shown in Figure 5, the first principal component (PC1)

and the second principal component (PC2), respectively,

represent about 27% and 18% of the variance of the

Table 3. A Snapshot Showing Portion of the Dataset After Applying Z-Transform

PourID Temp_Floor RH_floor Gr_floor LadleTemp LadleDensityPP

6750 1.34 1.48 2.03 - 1.69 - 0.48

6756 0.43 0.85 0.78 0.20 0.58

6758 1.19 0.91 1.33 - 0.23 - 0.90

6766 0.73 1.23 1.31 0.06 - 0.69

6768 –0.03 1.29 0.86 0.20 - 1.32

6770 0.12 1.29 0.95 - 0.23 - 1.11

6773 0.88 1.10 1.30 - 0.67 - 1.32

6835 - 1.26 0.21 - 0.42 0.06 - 0.05

6837 0.43 - 0.43 - 0.28 0.93 0.58

6839 - 0.34 - 0.94 - 0.90 1.22 0.16

6841 - 0.34 - 0.94 - 0.90 0.93 - 0.48

6844 - 0.80 - 1.13 - 1.13 0.49 0.58

6849 0.12 0.21 0.11 - 0.23 - 0.26
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dataset. Since the first two principal components represent

less than 50% of the original data, it is necessary to

introduce more principal components to better capture the

essence of the original dataset.

Machine Learning Classifiers for Quality Prediction

The main objective of the data analysis work is to develop

a machine learning-based model to be used for part quality

prediction. The performance of the models developed is

evaluated by cross-validation. The complete dataset was

divided into two sets of data, one for training the algo-

rithms and the other set for testing the performance of the

algorithms. The testing dataset is about 10% the size of the

original dataset. Since the quality of each casting in the test

set is known, and the quality result is simplified into two

possible classifications, ‘‘pass’’ or ‘‘fail,’’ the performance

of the model is measured via four numbers obtained from

applying the algorithm to the testing dataset. These num-

bers are called True Positives (TP), False Positives (FP),

True Negatives (TN), and False Negatives (FN). They can

be presented using a two by two matrix called a confusion
matrix. In our study, since the ‘‘fail’’ class is more critical

to the foundry operation, we call the ‘‘fail’’ class Positives

(P) and the ‘‘pass’’ class Negatives (N). The confusion

matrix we used to present the output of cross-validation in

our study is shown in Table 4. If the model mistakenly

predicted a bad part as a good part, it created a False

Negative case. A model with good performance should

give very few False Negatives, because the cost of this

error would be high for the foundry.

Several algorithms were evaluated to predict part quality,

and the confusion matrices of these algorithms are shown

in Table 5.5 We use the SMOTE technique for oversam-

pling and increasing the number of minority class samples

in the dataset. We then use the oversampled data for

training the classification algorithms such as random for-

est,42 logistic regression,43 and support vector classifier

(SVC).11 Specifically, logistic regression is a machine

learning algorithm that is used for performing classification

tasks based on the logistic function using probabilities. For

example, anything above a probability threshold of 0.5 is

predicted as one class and anything below 0.5 is predicted

as another. Random forest is a decision tree44-based

machine learning algorithm that is widely used in a number

of classification as well as regression applications. Random

Figure 4. (a) Two-dimensional PCA plot with color-coded quality feature of the original dataset. (b) Three-
dimensional PCA plot with color-coded quality feature of the original dataset

Figure 5. Singular value decomposition plot of the
dataset
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forest makes the prediction using the average of the pre-

dictions of the trees that build the forest in case of

regression tasks and using the majority vote of the trees for

label prediction in case of a classification task. SVC is a

machine learning algorithm that is defined by a hyperplane

that separates the classes in a dataset. It uses a labeled set

of data as the training set and then categorizes new data on

the correct side of the optimal separating hyperplane.

Ensemble learning combines the predictions obtained using

all the classifiers mentioned above and then makes a pre-

diction based on the majority vote for a certain class for

every sample in the test dataset. Combining SMOTE with

SVC performed best as seen in Table 5. No False Negatives

were assigned by this model with only two False Positives.

Employing this method in a production environment allows

for targeted selection of production parts for detailed

quality inspection. Instead of a random sampling of parts,

the system can select suspect parts identified by a validated

model.

Important Features Influencing Part Quality

In addition to making a quality prediction, another appli-

cation of machine learning is the identification of critical

features which are predicted to have the greatest influence

on the quality of the product.45 Some algorithms, for

instance, random forest and other ensemble methods, can

rank the various features (variables) in the dataset in terms

of their importance to the predicted quality. Foundry

engineers can benefit from this function to identify

parameters to monitor and control product quality.

For this case study, Figure 6 shows the rankings of feature

importance relevant to the quality calculated by two

machine learning algorithms, namely the XGBoost46 and

random forest. Like random forest, XGBoost is a decision

tree-based algorithm that is used for classification and

regression problems. These algorithms are used for finding

the most important features in a dataset in terms of the

label predictions for many applications. The two algo-

rithms differ in the way that most important features are

selected. XGBoost uses a criterion known as F-score to

decide which features are the most important in terms of

the label prediction. F-score for a feature is defined as the

number of times that a feature in the dataset is used for

prediction. Higher F-scores represent the most important

features. Similarly, for random forest, permutation impor-

tance is used as the criterion for selecting the top features

in the dataset. Permutation importance permutes, or ran-

domly shuffles, the values of every feature in the dataset by

taking one column at a time and checking by how much the

predictions change. Moreover, if after permuting the values

of a column in the dataset, the predictions change signifi-

cantly, then that column is deemed as important in terms of

the predictions. We check the feature importance using two

different algorithms to compare and see if they agree with

each other. Figure 6 shows the top four features found by

using these two techniques and it can be seen that at least

three of the top features found by these algorithms are

common. The random forest determined environmental

conditions such as the grains of moisture content in the air

on the foundry floor (Gr_Floor), relative humidity

(RH_Floor), and ambient temperature (Temp_Floor) in

addition to the metal temperature in the ladle (LadleTemp)

to be important factors in predicting casting quality.

XGBoost replaces ambient temperature with the density of

the metal inside the riser, or feeder. We validated these

predictions using domain expertise of foundry engineers,

and these were indeed the top features related to part

quality according to domain experts. This is where machine

learning can be exploited to target important inputs for

better control over the casting process. Further, techniques

such as feature importance can be used to drive designs of

experiment, identify issues more quickly through targeted

monitoring, and improve the overall cognition of the

process.

Table 4. Confusion Matrix to Visualize Model Performance

Predicted # of good part Predicted # of bad part

Actual # of good part True negative False positive

Actual # of bad part False negative True positive

Table 5. Several Algorithms and Their Confusion Matrix
for Performance Evaluation

SMOTE ? algorithm Confusion matrix

Random forest42 22 5
6 14

� �

Logistic regression43
22 5
9 11

� �

Ensemble learning
23 4
8 12

� �

SVC11 (best performance)
23 2
0 19

� �
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Prospective View of Machine Learning
for Manufacturing

The abilities to gather data, mine it for knowledge, and

apply the insights that we gain are transforming almost

everything that we do as a society and manufacturing is no

exception. On the other hand, modern automated factors

are well-springs of data where more information can be

measured about manufacturing processes than ever

dreamed before. These two ideas make the manufacturing

industry ripe for a data revolution in which quality can be

improved, production can be accelerated, and waste can be

minimized, if only the right collaborations between data

scientists, material engineers, and the industrial sector can

be achieved.

Modern machine learning, and deep learning in particular,

provides tantalizing opportunities for progress, but the very

power and generality of such data science methods bring

along an important measure of responsibility. If used

wisely, then such techniques allow for unprecedented

improvements in the full flowering of Industry 4.0. If used

unwisely, then the unbalanced, semi-supervised, and par-

tially observed data that naturally arise in manufacturing

problems, if not treated correctly from a data science and

statistical perspective, can lead us astray. Perhaps as put

best by the National Research Council of the National

Academies47:

Overlooking this foundation may yield results that are

not useful at best, or harmful at worst. In any dis-

cussion of massive data and inference, it is essential

to be aware that it is quite possible to turn data into

something resembling knowledge when actually it is

not. Moreover, it can be quite difficult to know that

this has happened.

However, through the opportunity that we have had

working with so many industrial partners of the ACRC,

who have generously worked with us and shared their data,

we have at least helped begin a conversation on how best to

use data science, machine learning, and deep learning in

manufacturing problems. We see tremendous opportunities

in improving the quality of cast components via the

enabling tools we are developing, and there is also an

implicit opportunity for major advances in planning for

manufacturing and supply chain management. We are at

the beginning of a revolution.

Concluding Comments

Almost over six decades ago, C. P. Snow wrote a critical

essay titled ‘‘The Two Cultures’’48 that not only pointed out

the gap between the sciences and the arts, but also the

opportunities if we could cross the bridge between the two

cultures. If he were alive today, C.P. Snow may have

written about the ‘‘Three Cultures’’—the Arts, Sciences,

and Engineering/Manufacturing. The authors of this paper

are a good example of individuals from ‘‘three cultures’’

who have worked together and learned much from each

other. However, to do so required emotional as well as time

commitments and investments. The dividends those

investments have paid for the authors have been invaluable

and impactful. In a similar way, the execution of the Fourth

Industrial Revolution will require a cultural diffusion and

much discourse between data scientists and manufacturing

engineers. There is no question that future of work will be

transformed in the twenty-first century, as well as the future

of the worker. But as has been stated before, the future is

for us to make.
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45. A. Altmann, L. Toloşi, O. Sander, T. Lengauer,

Permutation importance: a corrected feature impor-

tance measure. Bioinformatics 26(10), 1340–1347

(2010). https://doi.org/10.1093/bioinformatics/btq134

46. T. Chen, C. Guestrin, XGBoost: a scalable tree

boosting system. in Proc. 22nd ACM SIGKDD Int.
Conf. Knowl. Discov. Data Min., pp. 785–794, Aug.

2016, https://doi.org/10.1145/2939672.2939785.

47. National Research Council, Frontiers in Massive Data
Analysis (National Academies Press, Washington,

D.C., 2013)

48. C.P. Snow, The Two Cultures (Cambridge University

Press, London, 1959)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

410 International Journal of Metalcasting/Volume 15, Issue 2, 2021

https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1109/MSP.2017.2765202
http://arxiv.org/abs/1701.00160
https://doi.org/10.1016/j.patcog.2011.04.006
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
http://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
http://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.1007/BF02288367
https://doi.org/10.1002/wics.101
https://doi.org/10.1002/wics.101
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.1093/bioinformatics/btq134
https://doi.org/10.1145/2939672.2939785

	Machine Learning Pathway for Harnessing Knowledge and Data in Material Processing
	Abstract
	Introduction
	The Landscape of Machine Learning
	What is Machine Learning?
	Elements of Machine Learning
	Algorithms
	Training Data
	Feature Engineering
	Data Pre-processing
	Cross-Validation


	The Landscape of Materials Processing: Metal Casting
	Process Cognition and Harnessing of Knowledge in Metal Casting
	Challenges of Metal Casting Datasets
	The Data are Unbalanced
	The Data are Sporadically Labeled
	Most Metal Casting Data are Not ‘‘Big Data’’

	Case Study of Machine Learning in Metal Casting
	Training Data
	Data Standardization
	Dimension Reduction
	Machine Learning Classifiers for Quality Prediction
	Important Features Influencing Part Quality


	Prospective View of Machine Learning for Manufacturing
	Concluding Comments
	Acknowledgements
	References




