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Abstract
Forecasts of spot or future prices for agricultural commodities make it possible to 
anticipate the favorable or above all unfavorable development of future profits from 
the exploitation of agricultural farms or agri-food enterprises. Previous research has 
shown that cyclical behavior is a dominant feature of the time series of prices of 
certain agricultural commodities, which may be affected by a seasonal component. 
Wavelet analysis makes it possible to capture this cyclicity by decomposing a time 
series into its frequency and time domains. This paper proposes a time-frequency 
decomposition based approach to choose a seasonal auto-regressive aggregate 
(SARIMA) model for forecasting the monthly prices of certain agricultural futures 
prices. The originality of the proposed approach is due to the identification of the 
optimal combination of the wavelet transformation type, the wavelet function and the 
number of decomposition levels used in the multi-resolution approach (MRA), that 
significantly increase the accuracy of the forecast. Our SARIMA hybrid approach 
contributes to take into account the cyclicity and of the seasonality when predicting 
commodity prices. As a relevant result, our study allows an economic agent, accord-
ing to his forecasting horizon, to choose according to the available data, a specific 
SARIMA process for forecasting.

Keywords Commodities · Forecast · Multi-resolution analysis · Wavelets · SARIMA

Introduction

Time series forecasting can be important for business and market decision support. 
It has been widely used, in particular for forecasting sales or for analyzing price 
variations from financial markets. Well-established forecasting methods are already 
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adopted by firms or market players, such as linear extrapolation and SARIMA. How-
ever, their performance remains limited since the time series studied are very vola-
tile with some particular stylized facts. For instance, agricultural commodity prices 
sometimes present some specific stylized facts.

International institutions such as the World Bank and the International Monetary 
Fund, individual countries as well as companies involved in importing or exporting 
activities wish to forecasts prices of agricultural commodities or metals. Moreover, 
the World Bank expects a significant recovery in industrial commodities such as 
energy and metals in 2017, due to tighter supply and increased demand. With regard 
to certain energy or agricultural commodities, under certain assumptions, market 
forecasting publications are made in "Commodity Markets Outlook". These price 
forecasts allow the economic agent to identify the confrontation between supply and 
demand on a commodity market at a given future date. Predicting agricultural prices 
is difficult because other price series such as, the price of crude oil, the price of 
shares, or the prices of other financial assets, and the series of prices of agricul-
tural commodities are influenced by several other uncertain abiotic factors (extreme 
weather variables, natural disasters, etc.) and biotic variables (pests, diseases, etc.) 
in addition to other invisible market forces and administrative measures (Wang et al. 
2019). These explanatory factors taken together add more complexity to the analysis 
of the time series of prices agricultural products, which makes them difficult, an effi-
cient forecast of agricultural prices. In recent literature (Xiong et al. 2018; Li et al. 
2021) it’s been shown that some vegetable price series are much more volatile and 
complex than the price series of other agricultural products due to their short dura-
tion and their seasonality. In addition, the perishable nature of vegetables further 
complicates obtaining effective vegetable price forecasts. The literature (Wang et al. 
2019 and some references therin) highlights the complexities of price series, with 
as a corollary the difficulty of analyzing them in order to obtain a better forecast. 
Statistical models often used for forecasting agricultural prices include models like 
ARIMA (Box et al. 2015; Jadhav et al. 2018) and its constituent models (Hayat and 
Bhatti 2013). However, the use of the previous models does not take into account the 
heterogeneity of the agents involved in these agricultural markets. In this article, we 
propose a hybrid forecasting scheme that combines the classical SARIMA method 
and the wavelet transform (SARIMA-Wavelet). We believe that the proposed hybrid 
method is highly applicable for forecasting time series with specific stylized facts in 
the firm or the markets.

Also, the actors (arbitrageurs, hedgers or speculators) in the agricultural mar-
kets, do not have the same investment horizon. Thus, we opt in our paper to find 
the optimal SARIMA model, for each class of investors in the agricultural market, 
according to its investment horizon. To do this, in addition to the analysis of the 
complete series of available data, we carry out analyzes of the sub-series obtained 
from the available series, by means of a time-frequency decomposition of the avail-
able series, via recourse to wavelet theory. Intuitively, we know that the investment 
horizon is the reverse of the frequency. Thus, a frequency band is considered to be 
a band of investment horizons. We can therefore consider on each frequency band a 
time sub-series of the initial series. Thus, on this frequency band and therefore for 
this category of investors having investment horizons associated with the frequency 
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band considered, it suffices to analyze the sub-series corresponding to this frequency 
band, to determine the optimal SARIMA process that will be used by the investors 
with a specific investment horizon. The procedure to build a SARIMA model on 
each sub-series consists of data preprocessing, model identification, parameter esti-
mation, model diagnosis and finally application. For different sub-series, the optimal 
SARIMA model and it’s parameters for the prices sub-series of both markets are 
shown.

Indeed, we define the best hybrid Wavelet-SARIMA approach for agricultural 
commodities price forecasting, which reflects quite clearly the fundamental con-
cept of analysis in signal processing, where we decompose a complex and transi-
tory signal into several sub-series. We highlight the pedagogical connection between 
the theory of wavelet transform and classical time series analysis SARIMA used in 
econometrics. A transitory signal is associated with a variable signal not periodic, 
which changes state suddenly. According to Yves Meyer1, a wavelet is “ the simplest 
transitory signal imaginable ”. M. Misiti, Y. Misiti, G. Oppenheim, J-M. Poggi, in “ 
Wavelets and its applications ” (2003), define wavelets as “ a signal processing tool 
for the analysis on several time scales, the local properties of complex signals can 
present areas of unsteadiness ”. Therefore, analysis by wavelets help in the use of a 
well localized window fully scalable and along the signal to characterize the vari-
ous components time-frequencies at any point. By the way, it is essential to use this 
method to identify the best statistical model able to describe each sub-series gener-
ated by the decomposition and give the best visibility of future values. For instance, 
the time-frequency Analysis of the Relationship Between EUA and CER Carbon 
Markets Sadefo Kamdem et al. (2016).

The wavelet transform is carried out in an amount of temporal subsets associated 
with frequency bands at the same sensitivity. In financial markets, each of the fre-
quency bands represents a category of investors. Indeed, these agents adopt, accord-
ing to the information they hold, a very heterogeneous behaviour. A combination of 
their actions produces very random changes in commodity prices. Thus, with the 
aim to support the regular decision making and monitor these markets through the 
introduction of prudent rules, the strategic conclusions of this document can help 
governments and economic authorities in the diagnosis and the detection of different 
speculative behaviour in the agricultural market.

In contrast to traditional Fourier analysis based on the frequency space, the 
wavelets analyse a signal in several horizons and frequencies by using the multi-
resolution analysis. These specificities are repeatedly solicited in many economic 
studies. For example: to identify the cyclical phenomenal changes in the market 
of stock indices, to study the co-movements and the effects of contagion between 
markets or within the same market. For that purpose, we base on the economet-
rics of stochastic processes in the time domain, but especially in that of frequen-
cies using this theory. Indeed, it is interesting to understand the gaps between 
all investor behaviours as highlighted by their investment choices. However, in 

1 Yves Meyer is a Emeritus Professor at Superior Normal School of Cachan, Member of the Academic 
of Sciences since 1993. Specialist of harmonic analysis, he discovered the orthogonal wavelets.
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economic times series with a lot of high frequencies, values are not in the same 
time interval, and thus it is not possible to apply the usual econometrics techni-
cal. Because, the applications of the appropriate methods are modelled for the 
database with the same interval, (cf. Engel and Russell, 1997– 1998). Hence we 
use the wavelet transform of random series where a signal projection is applied 
on analytical functions without any change in fundamentals properties. This 
allows us to highlight some characteristics of price and their variations: the hid-
den bumps and jumps detected during the evolution of a stock. They are usually 
caused by the impact of the few exogenous events not covered by the contract. In 
addition, there are seasonal features and extra-seasonal usually seen in a serial 
type namely the seasonal pattern that occurs permanently and regularly, the sto-
chastic trend and / or seasonal phenomena that are cyclic. Finally, the volatil-
ity involved non-stationarity, the presence of any unit roots or phenomena long 
memories, non-linearity, etc. These points are important because they empha-
size the essential information processed by wavelets.

The aim of this paper is to study the intriguing facts of combining the 
SARIMA model with wavelet transform to measure and anticipate the prices or 
returns time series. To achieve this, the descriptive analysis of Table 2 data, help 
to subtly explore the time series data of each product by studying its probability 
distribution.Some specificities detected thanks to the indicators of variability, 
asymmetry and fat tails of returns. This, to produce fair and reliable future val-
ues of monthly price indices. Three main points are given as follows:

• to test the best configuration of multi-resolution analysis by choosing one 
type of wavelet transform between (Cwt, Dwt and MoDwt), the appropriate 
wavelet function and the number of decomposition on the robustness forecast 
of hybrid model wAvelet-SARIMA

• to calibrate the wAvelet-SARIMA model such that the combination selected 
in MRA (Mallat 1989) can realize good forecasts of price indices for cereals 
and oleaginous.

• to estimate the quality of forecast by the indicators like RMSe or MAe and 
compare it to classical SARIMA models and to White noise models on the 
basis of performance on series of price indices without any wavelet decom-
position.

This is the best way to test significantly the effect of MRA configuration on eco-
nomics times series forecasting using wavelet transform. Indeed, a large number 
of forecasts is simulated for having the smallest modelling error by solid tests.

The economic aspect of this paper is to contribute to the lighting of policy-
makers and serve to aid decision-making tools of public policy or investment in 
the development control rules, sanctions and market security. These rules, once 
in place will serve as disincentives to speculative behaviour being adopted gen-
erally investors and therefore regulate and supervise the market for transactions 
of those raw materials (Fig. 1).
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Wavelet transform

The wavelet transform is a smart method capable of detecting all frequencies, and to 
consolidate those with the same sensitivity. Therefore, it separates all details or highs 
values from the trend in original times series.

The theoretical frame: Signal processing has greatly focused on the study of invar-
iant operators in time or in space that modify properties of stationary signal. This has 
led to the reign of the Fourier transform, but leaving aside the essential of the informa-
tion processing. To avoid losses, representations of time-frequency, have been devel-
oped to analyze any non-stationary process (f (t))t∈T indexed by t in any time space 
T using the transformation Wf (u, s) (W as wAvelet) configured by two variables: the 
position u and the scale s. We consider f(t) taking these values in E ∀ t ∈ T:

T =

⎧
⎪⎨⎪⎩

N, Z,R et E = R for univariate times series

N, Z,R et E = Rd (d ≥ 2) for multivariate times series

PROCESS MODELLING 

PARAMETRIC – [Explicit model]NON PARAMETRIC – [Implicit model] 

DAINTIES (1979)

BV4 (1983)

SABL (1982)Median 
mobile

X-12-ARIMA 
(1996)

X-11-ARIMA 
(1975, 1988)

Moving 
average

X-11 (1965)

LOWESS 
(1979) STL (1990)

ARIMA model

BAYSEA (1980)

DECOMP (1985)

STAMP (1987)

STRUCTURED 
model

SEAT (1996)

RANDOM model

DETERMINIST model

Local regression

Global regression Buys-Ballot (1847)

Fig. 1  Process modelling
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A time-frequency representation is a transformation associating to f(t) a real func-
tion of variables Wf (u, s) . It consist in a projection of signal on analysing functions 
�u,s:

with :

• u the parameter of position, s the parameter of scale
• f the signal to analyze , �u,s the wavelet function chosen ∈ L2(R)2 and �u,s(t) his 

conjugate. A wavelet � , defined in L2(R) presents at least the conditions below: 

The wavelets are regrouped by family. And, the most used in economics is the 
DAubeChIeS family thanks to their excellent properties. From the single function � , 
we construct by translation (u) and by dilatation/contraction (s) a wavelets family 
representing the analysing functions.

The inverse wavelet transform helps to return an exactly reconstitution of the ini-
tial signal based on their coefficients of position and scale without any loss of 
information.

The multi-resolution analysis: The fast algorithm of decomposition and reconstitu-
tion is applied to any process to view the representation of signals in different layers 
in order to have better visibility of local fluctuations at every stage of its resolu-
tion (Mallat 1989). The reconstitution is realized from the wavelets coefficients and 
scales via the inverse wavelet transform (equation 3). And, for more study, it will 
be possible to analyze and explain each frequency bands by spectral moments in 
a superior order, or doing forecast according to each sub-series generated by this 
algorithm. This type of analysis is important in financial markets, because it helps 
to decompose the evolution of their actions into several others signals. In the same 
vein, to identify potential flow accelerators per time horizon. However, it is more 

(1)Wf (u, s) =
⟨
f ,�u,s

⟩
= ∫

+∞

−∞

f (t)�u,s(t)dt

T =

⎧⎪⎨⎪⎩

∫ +∞

−∞
��(t)�dt = 0 vanishing moments

‖�‖ =

�
∫ +∞

−∞
��(t)�2dt = 1 the energy of analysing functions is constant

(2)�u,s(t) =
1√
s
�(

t − u

s
),� with s ∈ R+, u ∈ R

(3)f (t) =
1

Wf (u, s) ∫
+∞

−∞ ∫
+∞

−∞

Wf (u, s)
1√
s
�(

t − u

s
)
dtds

s2

2 L2(R) is the set of square integrable functions: ∫ +∞

−∞
|f (t)|2dt < +∞ and a Hilbert’s space for the scalar 

product 
⟨
f ,�

u,s

⟩
.
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convenient to consider that it is the heterogeneous behaviour of agents that influ-
ences significantly the volatility of price indexes.

Doing the MRA need at first to choose a type of transform to do. With the discrete 
sample times series, we both apply a discrete wavelet transform (Dwt), a maximum 
overlap discrete wavelet transform (MoDwt). The Dwt form determines a optimal 
number of wavelet coefficients and scales to decompose and reconstruct the signal. 
The MoDwt form, uses all wavelet coefficients without any rebound possible. The 
contrary is the object of continuous wavelets transform (Cwt). It is very rebound 
and difficult to compute and to compile in practice. With these agricultural prices 
indices, we apply the additive decomposition based on the MoDwt. Then, a list 
of wavelets is chosen, specially the Daubechies family. According to the signal to 
explore and it analysis, there are nowadays 25 wavelets functions with their proper-
ties. In economic and finance, the family of DAubeChIeS is currently used. At the 
end, the number of decomposition is defined by J ∀ 2J ≤ N where N represent the 
number of data or sample.

The equation 4 is the result of the algorithm of decomposition-reconstitution at dif-
ferent scale j and calibrated on the MRA configuration. It separates the initial time 
series in a smooth series AJ into many other detail series 

{
Dj ∀j = 1… J

}
 . The 

smooth image represents the general shape of signal in the half of its resolution. 
The details are all the high frequencies when we move from resolution j to j + 1 
( [2j − 2j+1[ ). During this period, the approximation is bigger. It grows bigger and 
bigger until all information is lost. But, by adding each detail Dj to AJ , the preci-
sion is increasingly brought in order to rebuild the original series. The table below 
defines N / J / Dj / AJ / [2j − 2j+1].

Numerical data

Graphical representation

The Figs. 2 and 3 below represent respectively the changes of price indices of high 
agricultural products I ′

t
 and their returns �I �

t
=

I
�

t
−I

�

t−1

I
�

t−1

 between dates t − 1 and t. It is 
about wheat, corn, sorghum, rice and oleaginous like soy, olive, palm and colza. 
Each chronicle has got 444 observations defined from January 1980 to December 
20163. To reduce the flexibility for modelling, a logarithmic transformation is 
applied on initial data I �

t
= log(It) . Theoretically, the normalisation depend on the 

distribution of frequency values. The usual methodology developed by Box and Cox 
(1964) can help to give a better transformation by choosing the best � parameter:

(4)f (t) =

J∑
j=1

DJ,t + AJ,t

3 The data time series are available on https:// www. quandl. com.

https://www.quandl.com
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Before the year 2000, changes seem to have sometimes the same behaviour. But, 
in 2007 and 2008, the price indices increase significantly. Indeed, strong spikes 
and troughs appeared in these years. According to an OCDE’s report (2008) on 
the causes and consequences of agricultural commodities prices, these gaps are 
explained by a lot of combined factors. We notice the result of stationary production 
or inferior to the trend, a high increase of the demand and the investments on the 
derived agricultural product market. The exogenous factors are so complex. They 
are the periods of drought which affect the major grain areas, the weakness of the 
reserve of cereals and oleaginous, the development of use of agricultural commodi-
ties for biofuel production, the fast increase of crud oil prices. Finally, there is the 
continued devaluation of uS dollar, currency in which are generally expressed indic-
ative prices of raw materials. All the changes intervened in a unstable context in 
the world economy, particularly the financial crisis of 2007/2008. This crisis effect 
on the speculative behaviour of producers or financial agents. Moreover, the rate of 
increase represented in parallel give more visibility on the flexibility of price indi-
ces. Because, a surge is often offset by a smaller increase in the following month, 
hence the appearance of those many “ peaks and troughs ”.

In the Figs. 2 and 3 it is complex to identify clearly at first, a seasonal and a trend 
in any data series. As an alternative, we aggregate annually (Fig. 11 in Appendix) 
and monthly (Fig.  12 in Appendix) in order to highlight these general character-
istics or other cyclical effects. On these graphics, there are “ peaks and troughs ” 
particularly with corn data in different periods. For the soy and the sorghum, “ peaks 
” are in November and December and the “ troughs ” from June to August. The 
corn increase more and more until it “ peaks ” (June), then decreases to its poor 
levels in September to leave relatively well until the end of the year. The rice has 
the same changes but at different extremes: peaks ” on April and “ troughs ” on the 
last trimester. The series of soy and olive changes almost together but with a notice-
able difference in the second half. So, their maximum are achieved respectively in 
November and August. As to palm and colza series, we notice the same trajectory: 
a strong start and a fall from May and June. But we detect no seasonality. However, 
at the annual average prices, a periodic behaviour and a trend seems to be emerging 
over time (Table 1).

Descriptive statistics

The Table 2 present a descriptive statistics summary on data. It highlights some styl-
ized facts of these data. According to the coefficients of variation ( �

mean
 ), we can see 

a high variability in the price times series.

I
�

t
=

⎧
⎪⎨⎪⎩

I
�

t −1

�
if � ≠ 0

log(It) if � = 0
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High volatility reflects a lot of information hidden: the high irregularity of price 
indices, their non stationary, an unstable market, the impacts of exogenous factors or 
random phenomena. They are impossible to explore by a simple econometric model. 
The skewness �1∕2

1
=

�3

�
3∕2

2

 and kurtosis �2 =
�4

�2
2

 coefficients are indicators of asym-

metry and fat tails of price returns. So, if they follow a normal distribution then 
�
1∕2

1
= 0 and �2 = 34, but that is not the case. Indeed, the positive skewness demon-

strates an asymmetric distribution to the right due to the impact of extremes values. 
The kurtosis are bigger than 3 ( 𝛽2 > 3 ), so more concentrated in opposite to the nor-
mal distribution.

Processing and data analysis

We try to find the best SARIMA model for explaining the increase rates of agri-
cultural price indices and make forecast. So, the data are decomposed in two peri-
ods: from January 1980 to December 2016 (37 years / 444 observations) and the 
2017 period. The first part is a framework of calibration of econometric models. 

Table 1  MRA in different level 
of scale

Observation N Level J Sub-series 
D1,… ,D

J
 , A

J

Resolution

[100–127] 6 D1 [2–4[
D2 [4–8[
⋮ ⋮

D6 [64–128[
A6 [64–128[

[128–255] 7 D1 [2–4[
D2 [4–8[
⋮ ⋮

D7 [128–256[
A7 [128–256[

[256–511] 8 D1 [2–4[
D2 [4–8[
⋮ ⋮

D8 [256–512[
A8 [256–512[

[512–1023] 9 D1 [2–4[
D2 [4–8[
⋮ ⋮

D9 [512–1024[
A9 [512–1024[

4 symmetric distribution and a flattened like Gauss’s.
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Fig. 2  Indices and returns cereals prices
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Fig. 3  Indices and returns oils prices
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We built the SARIMA model by studying the fundamental characteristics (sea-
sonality, stationary, cyclical phenomenal, unit root, trend). Indeed, we propose a 
model, estimate the parameters, test its suitability and analyse the residuals. Sev-
eral models can intervene or agree. But thanks to the selection criterion AIC or 
bIC and especially with sparingly, simple models are preferred. Then, the model 
chosen is used to re-estimate the 2017 values. The indicators below are used to 
measure the accuracy of the forecast:

• mean absolute error MAE =
1

n

∑n

1
��xt − x̂t

��
• root mean error RMSE =

�
1

n

∑n

1

�
xt − x̂t

�2

Diagnostics: Based on the returns data series �I ′
t
 , we find the number of lags that 

are able to denoise the residuals. Indeed, we start with a general modelling with a 
linear trend (tRenD) and respectively with a drift (DRIft) and none (none) model. 
On each case, we apply the unit root test for stationarity according to Dickey-
Fuller (1979). But, Given the annual seasonality observed in the qualitative anal-
ysis (Fig.  11 in Appendix) and empirical (Table  4), we choose a lag 11. After 

Table 2  Basics descriptive statistics for times series data

Mean Median Std. dev Coef. var Kurtosis Skewness Normality (%)

Wheat 178.95 159.25 65.57 0.37 4.38 1.42 < 5
Corn 137.40 115.35 56.96 0.41 5.20 1.64 < 5
Sorghum 132.74 111.64 53.22 0.40 4.20 1.42 < 5
Rice 334.81 292.00 134.68 0.40 5.66 1.42 < 5
Soy 639.30 563.00 268.17 0.42 3.97 1.25 < 5
Olive 3349.92 3164.79 1124.33 0.34 2.61 0.60 < 5
Palm 493.09 439.74 224.66 0.46 3.83 1.11 < 5
Colza 666.33 590.66 290.51 0.44 4.15 1.24 < 5

Table 3  Stationary

P
value

 (%) Dickey-Fuller P
value

 (%) Philips-Perron P
value

 (%) Kpss

Wheat < 5 Reject < 5 Reject < 5 Accept
Corn < 5 Reject < 5 Reject < 5 Accept
Sorghum < 5 Reject < 5 Reject < 5 Accept
Rice < 5 Reject < 5 Reject < 5 Accept
Soy < 5 reject < 5 Reject < 5 Accept
Olive < 5 Reject < 5 Reject < 5 Accept
Palm < 5 Reject < 5 Reject < 5 Accept
Colza < 5 Reject < 5 Reject < 5 Accept
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estimation, the maximum lag is 0 instead of 11. In addition, we use other tests of 
Philips-Perron (1987) and Kpss (1992) in Table 3.

The pvalues of three models are all inferior to 5% (Table 3). It means there is sta-
tionarity in returns data series. It is slightly visible on Fig. 2 and 3 in “Numerical 
data”) even if there are some spikes and troughs. Indeed, the calculations of returns 
removes any trend in these series to focus mainly on seasonal effects and the rest 
we hope to be white noise or modelling a stationary process. So, it is not neces-
sary to make them stationary. In addition, the graphics of lags (Fig. 4) present no 
linear relationship. It opposes the returns series by themselves shifted some lag 
( ∀ h = 1… 12 ). If the point clouds along the right equation y = x , then there is a 
strong autocorrelation else a dispersion around the means. No graphics supports the 
presence of trend.

The empirical test has been implemented to determine the number of differentia-
tion required for having stationarity. There are for example the test of Ocsb: (Osborn 
et al. (1988) and that of Hyndman and Khandakar (2008). The result “ 1 ” means 
that there exists a seasonal unit root contrary to “ 0 ” (Table 4). Moreover, the meth-
odology highlights the auto.arima function in R and by using their package forecast 
helps us to verify the seasonality. It is inspired by precursors like Hannan and Ris-
sanen (1982), Liu (1989), Gomez and Maravall (1998), Melard and Pasteels (2000). 
It starts from the general model (Arima(p, d, q)(P, D, Q)s to recover the degree of 
differentiation (the parameter I of ARIMA) providing seasonality.

The seasonal adjustment of returns times series �I ′
t
 is done thanks to a linear filter 

F at lag 12 like: F = 1 − B12 . We obtain a new time series St = �I
�

t
(1 − B12).

Framework of calibration: ARIMA is a generalization of an Auto-Regressive Inte-
grated Moving Average model that represents an important example of the Box and 

Fig. 4  Lagplot of returns times series
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Jenkins (1976) approach. In particular, the SARIMA model contains a seasonal compo-
nent and it is the famous linear model for time-series analysis and forecasting. With its 
success, it occupies an essential place in academic research and in fields such as eco-
nomics, finance and agro-industry. A time series Xt ∀ t = 1, 2,… , k is generated by a 
Sarima(p, d, q)(P,D,Q)s process if:

where N is the number of observations; p, d, q, P, D and Q are positives integers; B 
is the lag operator; s is the seasonal period length.

• d reflects the initial differentiation obtained with the calculation of increases in rates 
in the times series between the dates t − 1 and t by �I �

t
=

I
�

t
−I

�

t−1

I
�

t−1

 . It means the num-
ber of regular differences is ( d <= 2 ) (Shumway and Stoffer 2006): so d = 1.

• s represents the annual seasonal adjustment observed and determined above respec-
tively at Fig. 12 in Appendix: so we have s = 12 and D = 1 . D is the number of 
seasonal differences. If there is seasonality effect, D = 1 in the most cases. Else, if 
there is no seasonality effect, D = 0.

• �t is the estimated residual at time t that is identically and independently distributed 
as a normal random variable with an average value equal to zero �� = 0 and a vari-
ance ��.

• The orders p and P are the parameters of the regulars seasonal and autoregressive 
operator ( AR and SAR). They are determined by using the partial auto-correlo-
gramme function fAp.

• The orders q and Q are those of the regulars seasonal and moving average functions 
(MA and SMA), they are determined by using the simple auto-correlogram function 
fAC.

(5)�p(B)Φp(B
s)(1 − B)d(1 − Bs)DXt = �q(B)ΘQ(B

s)�t

Sarima

⎧⎪⎨⎪⎩

�(B) = 1 − �1B − �2B
2 −…− �pB

p is the Ar(p)

Φ(Bs) = 1 − Φ1B
s − Φ2B

2s −…−ΦpB
ps is the Sar(p)

�(B) = 1 − �1B − �2B
2 −…− �pB

q is the Ma(q)

Θ(Bs) = 1 − Θ1B
s − Θ2B

2s −…−ΘpB
ps is the Sma(Q)

Table 4  Seasonality Monthly 
seasonal

Test Annual 
seasonal

Test

Wheat 0 Reject 1 Accept
Corn 0 Reject 1 Accept
Sorghum 0 Reject 1 Accept
Rice 0 Reject 1 Accept
Soy 0 Reject 1 Accept
Olive 0 Reject 1 Accept
Palm 0 Reject 1 Accept
Colza 0 Reject 1 Accept
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Autoarima model

At first, we use the AutoARIMA model developed and implemented by Hyndman 
et al. (2008) before using the equation 5. It built a better model with the best AIC or 
bIC criterion. The terms of errors �i are estimated by the residuals ri = y − ŷ . We 
suppose they are a white noise signal following a normal distribution N(0, �2) . So: 
E(�i) = 0 ∀ i and V(�i) = �2 ∀ i ). The variance of the residuals from the model is not 
homogeneous, but depend on the position of observation i. Thus, we check for sta-
tionary behaviour by plotting the residuals ri on times t. The independence between 
�i is managed by ̂cov(ri,rj)√

s2(ri)
√

s2(rj)
= 0 for any point (i,  j). For verification, the Durbin-

Watson or Ljung-Box test is use.
The graphics of validation model5 help to test the efficiency of each model via 

its residuals. The residuals graphics ri in term of times is generally the first diagnos-
tic. Indeed, thanks to its logical order in having data, these representations support 
the missing or not of serial positive correlations between �i . The auto-correlations 
functions and its probabilities of Ljung-Box test support that the residuals are all 
auto-correlated. Indeed, on the graphics, some points are out of the reject area of 
missing auto-correlation of �i . The double differentiation at the orders 1 and 12 on 
original data series probably did not completely rule out the dependence between 
observations. An empirical test confirm the presence of auto-correlations between 
the ri according to their weak Pvalue ( Pvalue < 0, 05 ). But, a focus on the simple auto-
correlation, show the lags superiors to 12 are slightly higher and thus reveal a slight 
long-term dependency.

Seasonal Arima model

The White noise model is the simplest modelling because, it takes no auto-regres-
sive and no moving average component.

The first autocorrelation coefficients are higher and always support a short-term 
dependency. Following the modelling, we add in the moving average and auto-
regressive components respectively on the SMA et SAR parts from the white noise 
model. This methodology built the best SARIMA model. At first, we start by SMA a 
model like Sarima(0, 1, q)(0, 1,Q)12 . The orders q and Q are determined by using 
the simple autocorrelation function fAC on stationary time series. For the order q, 
we look for the last lag which leaves the band at the same time inferior to 12. For 
the order Q, the selection is done on all the lag multiples to 12 which also leave the 
same band. So after analysis, we are: 

q orders:  qWheat = 10 , qCorn = 2 , qSorghum = 10 , qRice = 8 , qSoy = 10 , qOlive = 3 , 
qPalm = 11 and qColza = 10.

5 graphics of standardised residual, graphic of simple and partial autocorrelation function and graphic of 
Ljung-Box test.
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Q orders:  QWheat = 1 , QCorn = 2 , QSorghum = 1 , QRice = 2 , QSoy = 1 , QOlive = 1 , 
QPalm = 2 and QColza = 1.

Now, the modelling is about SAR model like Sarima(p, 1, 0)(P, 1, 0)12 . From the 
White noise model, we complete by adding the news components on the seasonal 
and auto-regressive part. Based on the partial autocorrelation function of station-
ary time series, we applied the rule above to choose the orders p and P. 

p orders:  pWheat = 10 , pCorn = 1 , pSorghum = 11 , pRice = 9 , pSoy = 11 , pOlive = 10 , 
pPalm = 11 and pColza = 11.

P orders:  PWheat = 2 , PCorn = 2 , PSorghum = 2 , PRice = 2 , PSoy = 2 , POlive = 2 , 
PPalm = 2 and PColza = 2.

In this part, we combine the MA and SARI components calculated above in 
order to find a better SARIMA model like Sarima(p, 1, q)(P, 1,Q)12 for all agri-
cultural data. In the precede modelling, there could be some complexity because 
of their very high orders p, P, q and Q, even if their AIC criterion have improved 
significantly compared to previous models. By parsimony, we have shown and 
set to 0 insignificant coefficient to simplify. We calculated the pvalue of estimated 
parameters and analyze the models and remove those whose probabilities are 
superior than 0.05. This process is thus repeated until we obtain the best models 
where all coefficients are significantly non-zero.

On the graphics of Ljung-Box (Figs. 13 and 14 in Appendix) some points are 
out of the band to reject with autocorrelation missing. In contrast, the graphics 
of simple autocorrelation function show almost no significant lag. The residu-
als ri are stationary. Besides, on the representations of standardized residuals, the 
graphics reflect an average behaviour of the evolution of the mean and variance 
over time.

These models are more precise for econometric analysis and they take into 
account the singular and regular parts of St . Furthermore, they represent the best 
AIC, MAE and RMSE for forecast and oppose to the hybrid wAvelet-SARIMA 
model.

Hybrid forecasting based on wavelet transform and Sarima

The processing wAvelet-SARIMA model requires at first, an optimal MRA set-
ting. Then, we define a type of transform, the wavelet function and the number of 
decomposition to use on those data series.
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The data analysis are applied on each sub-series in order to identify the best model 
able to describe the speculative behaviour adopted by people in order to monetize its 
kitty. At the end, the global forecast is obtained by adding the forecast of new sub-
series. The application of this hybrid methodology is used only in two data series: 
wheat and soy data series. We hope that it can improve the accuracy in the forecast 
better than the SARIMA model (Tables 5, 6, 7, 8, 9).

Configuration of multiresolution analysis

The wheat data sub-series and it variation represented in Figs. 5 and 6 are the result 
of the multi-resolution analysis. These data sub-series are separated into a first com-
ponent smooth (the general appearance) and a set of details base on their resolution 
[2j;2j+1[ . Each frequency band is specific because it describe the change of wheat’s 

Mra =

⎧
⎪⎨⎪⎩

Dwt ∕ Wavelet ∕ J

Modwt ∕ Wavelet ∕ J

Cwt ∕ Wavelet ∕ J

Table 5  Times series analysis with Autoarima model

Model Aic Kpss Test Ljung Test Rmse Mae

Wheat Sarima(0,0,1)(0,1,0)[12] 4165.49 0.10 0.00 30.02 20.96
Corn Sarima(1,0,0)(0,1,0)[12] 3483.11 0.10 0.00 13.66 8.86
Sorghum Sarima(1,0,0)(0,1,0)[12] 3394.98 0.10 0.00 12.34 8.37
Rice Sarima(5,0,3)(0,1,0)[12] 4192.58 0.10 0.25 30.41 17.53
Soy Sarima(0,0,1)(0,1,0)[12] 5266.27 0.10 0.00 108.12 76.13
Olive Sarima(0,0,2)(0,1,0)[12] 6268.66 0.10 0.00 345.22 244.14
Palm Sarima(0,0,1)(0,1,0)[12] 5178.87 0.10 0.00 97.26 70.88
Colza Sarima(2,0,5)(0,1,0)[12] 4830.2 0.10 0.85 64.25 45.96

Table 6  Times series analysis with White noise model

Model Aic Kpss Test Ljung Test Rmse Mae

Wheat Sarima(0,1,0)(0,1,0)[12] 3748.58 0.10 0.00 18.87 11.90
Corn Sarima(0,1,0)(0,1,0)[12] 3484.02 0.10 0.00 13.87 8.87
Sorghum Sarima(0,1,0)(0,1,0)[12] 3396.60 0.10 0.00 12.53 8.33
Rice Sarima(0,1,0)(0,1,0)[12] 4377.23 0.10 0.00 39.19 20.62
Soy Sarima(0,1,0)(0,1,0)[12] 4725.05 0.10 0.00 58.73 40.48
Olive Sarima(0,1,0)(0,1,0)[12] 5953.86 0.10 0.00 245.14 161.69
Palm Sarima(0,1,0)(0,1,0)[12] 4704.01 0.10 0.00 57.31 40.51
Colza Sarima(0,1,0)(0,1,0)[12] 4881.21 0.10 0.00 70.43 47.30
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price indices in any horizon. So, there are the high, middle and low frequencies. In the 
agricultural market, each class of agents or producers acts according to their invest-
ment horizons. The same multi-resolution analysis is done with soy data series and his 
variation (cf. Figs. 15 and 16 in Appendix). In both case, working with the variation 
data series by using this kind of resolution is more interesting in multi-scale analysis. 

Table 7  Times series analysis with Sma model

Model Aic Kpss Test Ljung Test Rmse Mae

Wheat Sarima(0,1,10)(0,1,1)[12] 3416.86 0.10 0.94 11.88 7.90
Corn Sarima(0,1,2)(0,1,2)[12] 3184.07 0.10 0.91 9.20 5.89
Sorghum Sarima(0,1,10)(0,1,1)[12] 3135.20 0.10 0.94 8.57 5.58
Rice Sarima(0,1,8)(0,1,2)[12] 4022.45 0.10 0.95 24.12 13.52
Soy Sarima(0,1,10)(0,1,1)[12] 4384.58 0.10 0.99 36.63 25.16
Olive Sarima(0,1,3)(0,1,1)[12] 5708.92 0.10 0.98 178.51 114.76
Palm Sarima(0,1,11)(0,1,2)[12] 4348.91 0.10 0.96 34.94 23.19
Colza Sarima(0,1,10)(0,1,1)[12] 4591.01 0.10 0.99 46.58 31.52

Table 8  Times series analysis with Sma model

Model Aic Kpss Test Ljung Test Rmse Mae

Wheat Sarima(10,1,0)(2,1,0)[12] 3512.90 0.10 0.95 13.82 9.33
Corn Sarima(1,1,0)(2,1,0)[12] 3281.31 0.10 0.74 10.78 6.89
Sorghum Sarima(8,1,0)(2,1,0)[12] 3192.92 0.10 0.95 13.82 6.34
Rice Sarima(4,1,0)(2,1,0)[12] 4115.71 0.10 0.99 28.32 16.87
Soy Sarima(4,1,0)(2,1,0)[12] 4478.13 0.10 0.92 43.12 30.13
Olive Sarima(4,1,0)(2,1,0)[12] 5752.73 0.10 0.88 188.91 126.75
Palm Sarima(8,1,0)(2,1,0)[12] 4498.02 0.10 0.97 43.98 31.28
Colza Sarima(8,1,0)(2,1,0)[12] 4749.66 0.10 0.95 58.97 41.66

Table 9  Times series analysis with Sma model

Model Aic Kpss Test Ljung Test Rmse Mae

Wheat Sarima(0,1,2)(2,1,1)[12] 3420.10 0.10 0.97 12.05 7.76
Corn Sarima(0,1,2)(0,1,2)[12] 3185.07 0.10 0.91 9.20 5.89
Sorghum Sarima(1,1,4)(0,1,2)[12] 3149.94 0.10 0.99 8.82 5.73
Rice Sarima(2,1,4)(0,1,2)[12] 4026.89 0.10 0.96 24.39 13.47
Soy Sarima(2,1,1)(0,1,2)[12] 4381.21 0.10 0.99 36.95 25.27
Olive Sarima(1,1,2)(2,1,1)[12] 5712.48 0.10 0.99 178.42 114.70
Palm Sarima(2,1,1)(0,1,1)[12] 4369.32 0.10 0.87 36.58 25.60
Colza Sarima(2,1,1)(0,1,2)[12] 4590.84 0.10 1.00 47.17 31.66
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For this way, we analyse to find the best modelling for any agricultural commodities. 
The Table 10 uses the same indicators like in Table 2. It specifies information by time 
horizon. The differences between the measurements indicate that the first frequency 
bands have more memory than the others. In addition, they decrease when the space-
time become larger. The kurtosis being slightly superior than 3 supports the presence of 
a low leptokurticity compared to normal Gauss distribution. The skewness are positives 
or negatives according to sub-series. The KPSS’s test determine the missing of unit 
root in bands of wheat and soy data series. The probabilities of this test are inferior than 
5% in D(7), D(8) and A(8) band. But, for the other sub-series: D(1), D(2), D(3), D(4), 
D(5) and D(6), the Pvalue = 10% . It means that there is no unit root. So they are station-
ary in opposite to those with a low frequency unless we use a double differentiation in 
modelling.

Table 10  Basic descriptives statistics for times sub-series

D1 D2 D3 D4 D5 D6 D7 D8 A8

Wheat
 Kurtosis 8.71 7.95 4.18 8.10 5.31 2.60 2.00 1.81 1.50
 Skewness 0.10 0.13 0.09 0.84 0.13 0.29 0.27 0.64 0.02
 Shapiro Test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 Kpss Test 0.10 0.10 0.10 0.10 0.10 0.10 0.01 0.01 0.01
 Nb.diffs 0 0 0 0 0 0 2 2 2

 LogWheat
 Kurtosis 3.56 4.55 2.83 3.57 3.47 1.75 1.76 2.11 1.49
 Skewness 0.03 0.04 0.07 0.17 -0.23 -0.10 -0.44 -0.39 -0.02
 Shapiro Test 0.12 0.00 0.66 0.00 0.00 0.00 0.00 0.00 0.00
 Kpss Test 0.10 0.10 0.10 0.10 0.10 0.10 0.02 0.01 0.01
 Nb.diffs 0 0 0 0 0 0 2 2 2

 Soy
 Kurtosis 10.03 5.79 10.74 13.41 4.15 2.27 2.22 1.76 1.50
 Skewness 0.17 0.40 -0.11 1.30 0.16 0.25 0.40 0.59 0.01
 Shapiro Test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 Kpss Test 0.10 0.10 0.10 0.10 0.10 0.10 0.01 0.01 0.01
 Nb.diffs 0 0 0 0 0 0 0 2 2

 LogSoy
 Kurtosis 4.33 5.46 4.13 6.15 2.69 2.65 2.03 2.06 1.51
 Skewness 0.04 0.11 -0.14 -0.30 0.04 -0.23 -0.04 0.15 0.01
 Shapiro Test 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
 Kpss Test 0.10 0.10 0.10 0.10 0.10 0.10 0.06 0.01 0.01

Nb.diffs 0 0 0 2 2
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Fig. 5  MRA on Wheat times series
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Fig. 6  MRA on LogWheat times series
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Framework of calibration and validation

Each sub-series is modelled by using directly information obtained with the simple 
and partial autocorrelation function (Fac and Fap). But before modelling, an empiri-
cal test for unit root on the bands denote the low probabilities test ( ≤ 0;05 ) for D7, 
D8 and A8, so no stationary and we must make them stationary. They must be neu-
tralized by a filter F = (1 − B)2 . In contrast, the bands D1 to D6 are stationary. Reg-
ular process requiring the knowledge of an infinite number of parameters to specify 
them fully. We choose the SARIMA process which represent a huge class of station-
ary processes and needs some parameters. The Fac’s and Fap’s graphics are used to 
define the orders q, Q, p, P.

Simple and Partial autocorrelation function: The Fac’s Figs.  7a and b for 
wheat and 9a and b for soy are many lags out of the critical area and they are differ-
ent. If one considers the high frequencies of the signals D1,…D6 , we identify the 
orders q and Q in modelling. For the bands D7, D8 and A8, a differentiation is nec-
essary. Indeed, some bands of each data prices highlight all characteristics omitted 
and allow the detection of high values, seasonal, cyclical and trend effect. The Fap’s 
Figs. 8a and b for wheat and 10a and b for soy, are important lags depending on the 
time horizon. The orders p and P of auto-regressive and their seasonal version parts 
are important in high frequencies and decrease at low frequencies. When, they are 
no information in D7, D8 and A8, the move is similar to an auto-regressive process 
at order 1 (Ar(1)).

Diagnostic and validation: The normality test have probabilities inferior to 0.05. 
So the normal of residuals hypothesis is to reject. The stationarity test and the miss-
ing of auto-correlation between the terms of errors. We use the test of KPSS and 
Ljung-Box. The Pvalue are higher than 0.05 on all frequencies. The residuals are 
therefore stationary and no auto-correlated. The Table 11 represented all informa-
tions detected in the residuals diagnostic and the quality of forecast.

Discussions and conclusion

According to the difference modelling, the complete Seasonal ARIMA model 
Sarima(p, d, q)(P,D,Q)12 is better in the forecast of agricultural data series. Thus, 
it’ll be used for forecasting the futures values. However, the tool of multi-resolution 
analysis of wavelet theory is more specific because it carries a segmented analysis of 
chronic resting on exploration temp and scale. t identifies that these time series are 
further broken down into components although the trend and seasonality. Moreover, 
the same results prove that the wAvelet-SARIMA model give the better accuracy with 
the root mean square error RMSE both its calibration as its validation. The decom-
position of these series in itself is already a first resolution of the complexity hidden 
information. Thanks to the strength of wavelets, the modelling improved greatly the 
usual models. This precision and technical ability provided by this model combina-
tions Wavelet − Sarima ∕ Wavelet − Arima are demonstrated by Conejo et al. (2005) 
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Fig. 7  Wavelet Simple autocorrelation function - LogWheat
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Fig. 8  Wavelet Partial autocorrelation function - LogWheat



25

1 3

Journal of Quantitative Economics (2023) 21:1–40 

Fig. 9  Wavelet Simple autocorrelation function - LogSoy
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Fig. 10  Wavelet Partial autocorrelation function - LogSoy
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for the study of electricity prices, by  Rivas et al. (2013) in the detection of cyclical 
behaviour of metal indices prices. But the gain in this quest for precision with this 
methodology is to achieve the best configuration that is in the multiple resolution 
analysis. The hardest part was choosing the wavelet name. So why, in the multi-
resolution analysis, we choose other wavelet function in another wavelet family.

These families differ on four main criteria. The length of the support or the com-
pact nature of their support. They have the faculty to represent effectively signals 
that possess disruptions, discontinuities or abrupt escalations. These characteristics 
are essential precisely in the share prices of raw materials. In addition, there’s the 
symmetry of forms of wavelets and their number of vanishing moments. Because, 
the more null moments in the wavelet function the more the transition between the 
space is smooth. Finally, there is the regularity. It is strongly related to the number 
of null moments (Tables 12, 13). The Daubechies wavelets are the most completely 
family. But, the choice of the function depend on the characteristics of times series 
analysed (Gencay et al., 2001).

This study demonstrates that the combination between the wavelet transform 
and the seasonal auto-regressive and moving average is of technical interest in the 
forecast of data series with seasonal components. The commodity price indices like 
cereals and oleaginous product help to prove how to obtain the best accuracy in 

Table 11  Diagnostic of residuals on originals data series models

Model Aic Kpss Test Ljung-Box Test Rmse Mae

Wheat D(1) Sarima(3,0,2)(0,0,0)[0] 1718.02 0.10 0.94 1.62 1.05
D(2) Sarima(3,0,2)(0,0,0)[0] 1298.81 0.10 0.09 1.01 0.66
D(3) Sarima(3,0,1)(0,0,0)[0] 685.98 0.10 0.88 0.51 0.32
D(4) Sarima(4,0,1)(0,1,0)[12] − 772.18 0.10 0.96 0.10 0.07
D(5) Sarima(5,0,0)(0,0,1)[0] − 2184.58 0.10 0.67 0.02 0.01
D(6) Sarima(1,0,3)(0,0,1)[0] − 337.96 0.10 0.00 0.16 0.13
D(7) Sarima(2,2,0)(0,0,0)[0] − 5644.71 0.10 0.00 0.00 0.00
D(8) Sarima(1,2,0)(0,0,0)[0] − 5987.96 0.10 0.00 0.00 0.00
A(8) Sarima(2,1,3)(0,0,0)[0] − 6534.76 0.10 0.00 0.00 0.00

Soy D(1) Sarima(3,0,2)(0,0,0)[0] 2760.75 0.10 0.51 5.27 3.50
D(2) Sarima(5,0,4)(0,0,0)[0] 1741.47 0.10 0.25 1.61 1.10
D(3) Sarima(5,0,2)(0,0,0)[0] 1552.64 0.10 0.65 1.33 0.92
D(4) Sarima(3,0,2)(0,1,0)[12] 200.55 0.10 0.27 0.29 0.21
D(5) Sarima(4,0,2)(0,0,1)[0] − 1351.19 0.10 0.97 0.05 0.04
D(6) Sarima(1,0,3)(0,0,1)[0] -1556.37 0.10 0.00 0.04 0.03
D(7) Sarima(3,2,0)(0,0,0)[0] − 4662.31 0.10 0.00 0.00 0.00
D(8) Sarima(1,2,0)(0,0,0)[0] − 4786.38 0.10 0.01 0.00 0.00
A(8) Sarima(2,2,3)(0,0,0)[0] − 6734.74 0.10 0.00 0.00 0.00



28 Journal of Quantitative Economics (2023) 21:1–40

1 3

forecast. But, it is necessary to have the optimal setting in multi-resolution analy-
sis. In this configuration the main parameter is the choice of wavelet function. By 
referring to the previous research done in economic and financial data series, the 
Daubechies’s wavelet is the most used. So, the same support has been used in these 
multi-scales applications with agricultural commodities. But, according to the type 
of data analysis and the object of the study, this resolution can be made by using 
another type of wavelet.

Table 12  Diagnostic of residuals on transforms data series models

Model Aic Kpss Test Ljung-Box Test Rmse Mae

LogWheat D(1) Sarima(0,0,3)(0,0,0)[0] 1801.94 0.10 0.56 1.79 1.12
D(2) Sarima(5,0,5)(0,0,0)[0] − 5488.33 0.10 0.08 0.00 0.00
D(3) Sarima(5,0,5)(0,0,0)[0] − 6014.32 0.10 0.66 0.00 0.00
D(4) Sarima(3,0,0)(0,1,0)[12] − 6522.19 0.10 0.97 0.00 0.00
D(5) Sarima(5,0,0)(0,0,0)[0] − 8508.98 0.10 0.93 0.00 0.00
D(6) Sarima(1,0,3)(0,0,1)[0] − 10375.2 0.10 0.53 0.00 0.00
D(7) Sarima(2,2,0)(0,0,0)[0] − 11974.3 0.10 0.16 0.00 0.00
D(8) Sarima(1,2,0)(0,0,0)[0] − 13612.6 0.10 0.31 0.00 0.00
A(8) Sarima(2,1,3)(0,0,0)[0] − 10544.5 0.10 0.00 0.00 0.00

LogSoy D(1) Sarima(3,0,2)(0,0,0)[0] − 4572.48 0.10 0.04 0.00 0.00
D(2) Sarima(5,0,4)(0,0,0)[0] − 5990.13 0.10 0.21 0.00 0.00
D(3) Sarima(5,0,2)(0,0,0)[0] − 5828.33 0.10 0.07 0.00 0.00
D(4) Sarima(3,0,2)(0,1,0)[12] − 7246.70 0.10 0.69 0.00 0.00
D(5) Sarima(4,0,2)(0,0,1)[0] − 8740.81 0.10 0.35 0.00 0.00
D(6) Sarima(1,0,3)(0,0,1)[0] − 9529.07 0.10 0.00 0.00 0.00
D(7) Sarima(3,2,0)(0,0,0)[0] − 12094.69 0.10 0.39 0.00 0.00
D(8) Sarima(1,2,0)(0,0,0)[0] − 13826.1 0.10 0.01 0.00 0.00
A(8) Sarima(2,2,3)(0,0,0)[0] − -15754.0 0.10 0.99 0.00 0.00

Table 13  Forecast and 
Comparison

Wavelet-Sarima Sarima

Wavelet Rmse Mae Rmse Mae

Wheat Modwt-d4 0.80 0.34 12.05 7.76
LogWheat Modwt-d4 0.00 0.00
Soy Modwt-d4 3.60 1.56 36.95 25.27
LogSoy Modwt-d4 0.00 0.00
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Appendix

See Figs. 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.
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Fig. 11  Annual average data series
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Fig. 12  Monthly average indices prices
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Fig. 13  Residuals diagnostics by Seasonal Arima model for cereals data series
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Fig. 14  Residuals diagnostics by Seasonal Arima model for oleaginous data series
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Fig. 15  MRA on Soy times series
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Fig. 16  MRA on LogSoy times series
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Fig. 17  Wavelet Simple autocorrelation function - Wheat
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Fig. 18  Wavelet Partial autocorrelation function - Wheat
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Fig. 19  Wavelet Simple autocorrelation function - Soy
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Fig. 20  Wavelet Partial autocorrelation function - Soy



39

1 3

Journal of Quantitative Economics (2023) 21:1–40 

References

Abry, P. 1997. Ondelettes et turbulences Nouveaux essais , arts et sciences, Diderot.
Box, G.E., and D. R. Cox. (1964). An Analysis of Transformations. Journal of the Royal Statistical Soci-

ety. Series B(Methodological), 26: 211–252
Box, G.E., and G.M. Jenkins.  (1976) Time series analysis forecasting and control. Rev. 
Box, G.E., G.M. Jenkins, G.C. Reinsel, and G.M. Ljung. 2015. Time series analysis: Forecasting and 

control. London: John Wiley Sons.
Chao, S., and Y.C. He. 2015. SVM-ARIMA agricultural product price forecasting model based on wave-

let decomposition. Statistics and Decision 13: 92–95.
Choudhary, K., G.K. Jha, R.R. Kumar, and D.C. Mishra. 2019. Agricultural commodity price analysis 

using ensemble empirical mode decomposition: A case study of daily potato price series. Indian 
Journal of Agricultural Sciences 89 (5): 882–886.

Cleveland, R.B., W.S. Cleveland, J.E. McRae, and I. Terpenning. 1990. STL: A seasonal trend decompo-
sition procedure based on loss. Journal of Official Statistics 6 (1): 3–73.

Conejo, A.J., J. Contreras, R. Espínola, et al. (2005). Forecasting electricity prices for a day-ahead pool-
based electric energy market. International journal of forecasting 21(3):435–462

Daubechies, I. 1992. Ten lectures on wavelets. SIAM.
Dickey, D.A.., W.A. Fuller. (1979). Distribution of the Estimators for Autoregressive Time Series with a 

Unit Root. Journal of the American Statistical Association 74: 427–431.
Gomez, V., and A. Maravall. (1998). Seasonal adjustment and signal extraction in economic time series. 

Documentos de trabajo / Banco de España 9809, 21-abr-1998, ISBN: 847793598X
Gencay, R., F. Selçuk, and B. Whitcher. 2001. An introduction to wavelets and other filtering methods in 

finance and economics. San Diego: Academic Press.
Gencay, R., F. Selçuk, and B. Whitcher. 2005. Multiscale systematic risk. Journal of International Money 

and Finance 24 (1): 55–70.
Ghysels, E. 1998. On stable factor structures in the pricing of risk: Do time-varying betas help or hurt? 

Journal of Finance 53 (2): 549–573.
Hannan, E.J., J. Rissanen. (1982). Recursive estimation of mixed autoregressive-moving average order. 

Biometrika 69(1):81–94
Hayat, A., and M.I. Bhatti. 2013. Masking of volatility by seasonal adjustment methods. Economic Mod-

elling 33: 676–688. https:// doi. org/ 10. 1016/j. econm od. 2013. 05. 016.
Hyndman, R. J.,  and Y.  Khandakar. (2008). Automatic Time Series Forecasting: The forecast Package 

for R. Journal of Statistical Software 27(3):1–22
Hyndman, R., A. Koehler, K. Ord, et al. (2008). Forecasting with exponential smoothing: the state space 

approach. Springer Science & Business Media. 
Jadhav, V., B.V.C. Reddy, and G.M. Gaddi. 2018. Application of ARIMA model for forecasting agricul-

tural prices. Journal of Agriculture Science and Technology A 19 (5): 981–992.
Kwiatkowski, D., P. C. B. Phillips, P. Schmidt and Y. Shin. (1994). Testing the Null Hypothesis ofSta-

tionarity against the Alternative of a Unit Root. Journal of Econometrics. Vol. 54, pp. 159-178. 2. 
Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press. 

Levhari, D., and H. Levy. 1977. The capital asset pricing model and the investment horizon. The Review 
of Economics and Statistics 59 (1): 92–104.

Li, B., J. Ding, Z. Yin, K. Li, X. Zhao, and L. Zhang. 2021. Optimized neural network combined model 
based on the induced ordered weighted averaging operator for vegetable price forecasting. Expert 
Systems with Applications 168: 114–232. https:// doi. org/ 10. 1016/j. eswa. 2020. 114232.

Liu, C.-Y. and Z.-Y. Zheng.  (1989). Stabilization Coefficient of Random Variable. Biom. J. 31: 431–441.
Mallat, Stéphane. 1989. A theory for multiresolution signal decomposition: The wavelet representation. 

IEEE Transactions on Pattern Analysis and Machine Intelligence 11 (7): 674–693.
Melard, G., and J.M., Pasteels. (2000). Automatic ARIMA modeling including interventions, using time 

series expert software. International Journal of Forecasting 16(4): 497–508
Misiti, M., Y. Misiti, G. Oppenheim, and J. M. Poggi. (2003). Les ondelettes et leurs applications. Her-

mès science publications.
OCDE. (2008). Rapport annuel de l’OCDE 2008, Éditions OCDE, Paris. https:// doi. org/ 10. 1787/ 

annrep- 2008- fr
Osborn D.R., A.P.L. Chui, P.J.P. Smith, C.R. Birchenhall. (1988). Seasonality and the order of integration 

for consumption. Oxford Bulletin of Economics and Statistics 50(4): 361–77

https://doi.org/10.1016/j.econmod.2013.05.016
https://doi.org/10.1016/j.eswa.2020.114232
https://doi.org/10.1787/annrep-2008-fr
https://doi.org/10.1787/annrep-2008-fr


40 Journal of Quantitative Economics (2023) 21:1–40

1 3

Philips, P.C.B., P. Perron. (1987). Testing for a Unit Root in Time Series Regression. Biometrika 
75:335–346.

Rivas, M. et al. (2013). Linking the energy system and ecosystem services in real landscapes. Biomass 
and Bioenergy 55:17–26

Sadefo Kamdem, J., A. Nsouadi, and M. Terraza. 2016. Time-frequency analysis of the relationship 
between EUA and CER carbon markets. Environmental Modeling and Assessment 21: 279–289.

Shumway, R.H., D.S. Stoffer. (2006). Time series regression and exploratory data analysis. Time Series 
Analysis and Its Applications: With R Examples 48–83

Unser, M. 1996. Wavelet in medecine and biology. London: CRC Press.
Vannucci, M., and F. Corradi. 1999. Covariance structure of wavelet coefficients: Theory and models in a 

Bayesian perspective. Journal of Royal Statistical Society B 4: 971–986.
Wang, J., Z. Wang, X. Li, and H. Zhou. 2019. Artificial bee colony-based combination approach to fore-

casting agricultural commodity prices. International Journal of Forecasting. https:// doi. org/ 10. 
1016/j. ijfor ecast. 2019. 08. 006.

Xiong, T., C. Li, and Y. Bao. 2018. Seasonal forecasting of agricultural commodity price using a hybrid 
STL and ELM method: Evidence from the vegetable market in China. Neurocomputing 275: 2831–
2844. https:// doi. org/ 10. 1016/j. neucom. 2017. 11. 053.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

https://doi.org/10.1016/j.ijforecast.2019.08.006
https://doi.org/10.1016/j.ijforecast.2019.08.006
https://doi.org/10.1016/j.neucom.2017.11.053

	Multiscale Agricultural Commodities Forecasting Using Wavelet-SARIMA Process
	Abstract
	Introduction
	Wavelet transform
	Numerical data
	Graphical representation
	Descriptive statistics

	Processing and data analysis
	Autoarima model
	Seasonal Arima model

	Hybrid forecasting based on wavelet transform and Sarima
	Configuration of multiresolution analysis
	Framework of calibration and validation

	Discussions and conclusion
	References




