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Abstract
Factor analysis regression (FAR) of yi on xi = (x1i, x2i,… , xpi) , i = 1,2,...,n, has been 
studied only in the low-dimensional case (p < n) , using maximum likelihood (ML) 
factor extraction. The ML method breaks down in high-dimensional cases (p > n) . 
In this paper, we develop a high-dimensional version of FAR based on a computa-
tionally efficient method of factor extraction. We compare the performance of our 
high-dimensional FAR with partial least squares regression (PLSR) and principal 
component regression (PCR) under three underlying correlation structures: arbi-
trary correlation, factor model correlation structure, and when y is independent of 
x. Under each structure, we generated Monte Carlo training samples of sizes n < p 
from a multivariate normal distribution with each structure. Parameters were fixed at 
estimates obtained from analyses of real data sets. Given the independence structure, 
we observed severe over-fitting by PLSR compared to FAR and PCR. Under the two 
dependent structures, FAR had a notably better average mean square error of predic-
tion than PCR. The performance of FAR and PLSR were not notably different given 
the dependent structures. Thus, overall, FAR performed better than either PLSR or 
PCR.
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Introduction

In today’s data-rich world, analysts often are faced with high-dimensional data, 
where the number of variables is greater than the sample size n. The focus of this 
paper is high-dimension regression and prediction with p predictors, where p > n 
and special methods are required. The need to estimate such models occurs often 
in biomedical science, where high volumes of data are generated by ’omics’ and 
imaging studies. High-dimension regression problems in economics and finance 
are emerging (Kalina 2017) as data sets with large numbers of variables are 
becoming more prevalent in advertising, insurance, portfolio optimization, risk 
management, labor market dynamics, customer analytics, finance, the automo-
tive industry, and stock market dynamics (Kalina 2017; Belloni et al. 2014; Fan 
et al. 2015). Econometricians working in these areas will need to apply or adapt 
existing methods or develop new ones as the demand for high-dimension analyses 
increases. The most common solutions to high-dimensional regression problems 
involve: 

(1)	 Dimension reduction and component regression. Solutions of this type include 
Principal Components Regression (PCR) (see, for example, Rao (1996)), using 
unsupervised component selection, and Partial Least Squares regression (PLSR) 
(Wold 1966), using supervised component selection. Such methods reduce the 
dimension of the predictor space by replacing the high-dimensional vector of 
predictors, x , with k orthogonal linear combinations (called components), where 
k << n , and then use OLS to regress y on the k components.

(2)	 Sparse model estimation. These solutions include Lasso regression (Tibshirani 
1996) and related methods (e.g., Elastic Net regression (Zou and Hastie 2005)). 
Lasso-like methods shrink estimates toward zero and fix estimates of coefficients 
on “non-predictive” variables at zero. They are, therefore, ideally suited for 
fitting sparse models (models where p − k coefficients are 0, k << n ) and for 
variable selection.

(3)	 Latent variable models. Factor analysis regression (FAR) was proposed by 
Scott  (1966), based on the assumption that associations among the x and y 
variables are sometimes driven by an underlying FA structure. Given the factor 
model with k << n factors, high-dimensional regression problems are reduced 
to the low-dimensional problem of estimating the factor model and associated 
structured covariance/correlation matrix. PCR and PLSR, usually thought of 
(correctly so) as dimension reduction/component regression methods, can also 
be viewed as latent variable model-based methods. Wold, in fact, first proposed 
PLSR based on a latent variable model conceptualization (Wold 1966). (The 
method, however, amounts to a forward selection component regression model 
building procedure). Rao presented a latent variable model problem that is solved 
by PCA and offered a solution to the prediction problem using PCR (Rao 1996). 
FAR, instead, focuses on estimating the structured covariance/correlation matrix 
given the latent variable model and then estimates regression parameters from 
it.



S117

1 3

Journal of Quantitative Economics (2022) 20 (Suppl 1):S115–S132	

It seems self-evident that sparse model estimation methods, such as Lasso, are pre-
ferred when the high-dimensional regression model is sparse and that latent variable 
models are preferred when the correlations among (y, x) are driven by these observable 
variables’ common relationships with underlying latent variables. Subject area experts 
are likely to know whether sparseness or latent factor structure is the more reasonable 
assumption in any given application. The choice between these two general approaches, 
therefore, can usually be made by study investigators. Additional research, however, is 
needed for guidance on the choice between FAR, PCR, and PLSR when a latent model 
is assumed.

FAR has received relatively little attention in the literature and in practice. PCR 
and PLSR are much more favored, in spite of their shortcomings. It is well known 
that PCR suffers, at least in some samples, from the fact that it is an unsupervised 
method of component selection (Hadi and Ling 1998). Thus, the resulting predic-
tors may not retain all relevant information for predicting y. PLSR was developed 
to solve this problem (Frank and Friedman 1993; Garthwaite 1994; Helland 2010; 
Wold 1966; Wold et  al. 2001) but is a forward selection method of model build-
ing and likely suffers from the well-known deficiency of forward selection methods 
when p >> n (Efron et al. 2004).

To our knowledge, all previous studies of FAR used maximum likelihood (ML) 
factor extraction, which is only possible in low-dimensional settings. PC-based fac-
tor extraction is possible with high-dimensional data but requires computation of 
eigenvalues and vectors of a p × p matrix, which can be burdensome when p is very 
large.

In this paper we present a high-dimensional version of FAR and derive a com-
putationally efficient method of factor extraction from high-dimensional data. The 
resulting high-dimensional FAR is compared to PCR and PLSR in two simulation 
studies.

Model and Coefficient Definition

The high-dimensional regression model written in terms of observations of y and x 
is:

where Y is an n × 1 vector of observations on response variable y, X is the n × p 
matrix of observations of x , � is a p × 1 vector of parameters, and E is an n × 1 vec-
tor of model errors with expectation zero and variance �2 . We assume throughout 
(without loss of generality) that the observations in Y and each column of X are 
standardized to have sample mean zero and variance one.

Define the (p + 1) × 1 vector z = (y, x)� . The associated population correlation 
matrix is denoted by:

(1)� = �� + E

(2)�z =

(

1 ��
xy

�xy �xx

)
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where �xx is the p × p population correlation matrix of x, and �xy is the p × 1 vec-
tor of population correlations between x and y. The coefficient parameter � in (1) is 
defined by

Given a sample of size n, the sample correlation matrix, denoted by �̂z , is parti-
tioned identical to �z , where �̂xy = ���∕n − 1 and �̂xx = ���∕n − 1 . If X is full 
column rank, then �̂ols = �̂−1

xx
�̂xy is the best linear unbiased estimate (BLUE) of � . 

With high-dimensional data ( p > n ), X is not full rank and the BLUE doesn’t exist.

Principal Components Regression

PCA dimension reduction amounts to projecting the columns of X onto a reduced 
dimension subspace of the column space of X that is spanned by the observation vec-
tors of, say, k uncorrelated linear combinations of the covariates x , called Principal 
Components (PCs) (Jolliffe 2005; Zhang et al. 2003; Friedman et al. 2009). In PCR 
the predictor variable space is reduced from p to k dimensions by replacing x in the 
regression model with the first k < p PCs. The PCR estimate of � is calculated from the 
retained components’ coefficient vectors and the estimated coefficient vector from the 
regression of Y on the k retained components.

The first PC is defined as c1 = xw1 , where w
�
1
w1 = 1 and 

w1 = argmax
w
�
w=1(w

��̂xxw ). The remaining p − 1 PCs are then defined as

l = 1, 2,… , r − 1 , r = 2, 3,… , p . This produces components c = (c1, c2,… , cp) that 
are uncorrelated, with Var(c1) ≤ Var(c2) ≤ Var(c3) ≤ ⋯ ≤ Var(cp) . The wr vectors, 
r = 1, 2,… , p are computed as the p orthonormal eigenvectors of �̂xx associated 
with the largest to smallest eigenvalues, respectively. Varances of the PCs are the 
associated eigenvalues. Dimension reduction from the p dimensional space spanned 
by the columns of � to a k < p dimensional space is achieved by retaining only the 
first k PCs. An n × p matrix of observed values of the full set of PCs is calculated as 
C = (�1,�2) = �(�1,�2) , where �1 and �2 are the p × k and p × (p − k) matri-
ces formed from the first k and last p − k eigenvectors. A PCR is then completed by 
choosing k, regressing y on the retained PCs, writing �1�̂

pcr as XW1�̂
pcr , and calcu-

lating estimates of � as �̂pcr = �1�̂
pcr.

Because � is an orthonormal matrix, the observation equations of the model fit in 
the regression step of PCR, as derived from (1), are

where �pcr=�′
1
� and E

∗ = X�2�
�
2
� + E . The PCR estimate of �pcr is 

�̂
pcr

=
(

��
1
�1

)−1
��

1
� , which is biased when the first term of E∗ is not 0 . When � 

(3)� = �−1
xx
�xy.

(4)
wr = argmax

w
�
w = 1

w
��̂xxwl = 0

(w��̂xxw)

(5)� = �1�
pcr + E

∗,
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is in the column space of �1 , the first term is 0 , the PCR estimator is the BLUE of 
�pcr , and �̂pcr = �1�̂

pcr is the optimal estimator of � subject to the restriction that � 
is in the column space of �1 . A second condition under which �̂pcr is BLUE is that 
the rank of X is k. In this case, the eigenvalues associated with the eigenvectors in 
�2 are all 0 and the first term in E∗ vanishes. When neither of these conditions hold, 
the PCR estimator of � is biased and loses the BLUE optimality properties. Intui-
tively speaking, bias and MSE increase as � moves away from the column space of 
�1 and as one or more of the last p − k eigenvalues increase from 0, respectively.

The predicted value of a new y, denoted by yn+1 , given a new x, denoted by xn+1 , 
is calculated as

where �1 is the diagonal matrix with the k eigenvalues associated with �1 on the 
diagonal.

Ideally, one would build the prediction equation from selected components that 
retain a highest percentage of variance possible in k dimensions, as do the first k 
PCs, but that also retain most of the information in the data about the association 
of x with y. PCR fails the latter, because it selects components of x ignoring their 
correlations with y. That is, PCR employs an unsupervised selection of components. 
This is the major drawback of PCR (Hadi and Ling 1998).

It should be noted that there are versions of PCR that involve either supervised 
selection of variables before the PCA step of PCR (Bair et al. 2006) or supervised 
cross validation determination of the number of components to keep in the regres-
sion step (James et al. 2013). The former mitigates the major drawback of PCR but 
does not eliminate it, unless the selection of components is also supervised. The 
later eliminates the concern but may result in an over specification of the PCR 
model. For example, suppose that a low variance component (say the 5th) is highly 
predictive. Then cross-validation component selection would include component 5, 
along with components 1-4 in the final model which may not be predictive. Inclu-
sion of non-predictive components would introduce inefficiencies. So, the elimina-
tion of the major drawback of unsupervised PCR may help, but another drawback 
(inefficiency) replaces it.

PLS Regression

PLS regression was introduced by Wold (1966) as a solution to the major limitation of 
PCR mentioned above. The intention of PLSR is to form orthogonal component obser-
vation vectors (Cr) that capture most of the information in the predictor variable data, X, 
that is useful in predicting values of y (Frank and Friedman 1993; Garthwaite 1994; Hel-
land 2010; Wold 1966; Wold et al. 2001). Component scores are determined sequentially 
through an iterative process that involves stepwise forward selection of components that 
represent factors in a k-dimensional factor model, 1 ≤ k < rank(�) , for (y,x)′.

Starting with standardized columns of X and Y, given k, Wold et al. (1983, 2001) 
summarized his PLS1 algorithm for univariate y as a stepwise estimation of param-
eters in the following multivariate regression model data equations:

(6)ŷn+1 = xn+1�̂
pcr = xn+1�1�

−1
1
��

1
���,
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where �r , r = 1, 2,… , k , are normalized component score vectors to be determined, 
�(k+1)
y

 is a n × 1 vector of residuals, and �(k+1)
x

 is a n × p matrix of residuals. These 
equations are sample analogs of the bilinear factor model with values of latent fac-
tors ( fr, r = 1, 2,… , k ) replaced by corresponding component scores. The � coef-
ficients in (7) are the loadings in the bilinear factor model. We wish to estimate both 
factor scores and loadings. which is accomplished by the following PLS1 algorithm 
involving 4 steps in each of k iterations, indexed by r, starting with �(0)

y
= Y and 

�(0)
x

= X : 

Step 1:	� Find the vector wr that maximizes the squared correlation of �r = �(r−1)
x

w 
with �(r−1)

y
 over all unit length w vectors of dimension p that are orthogonal 

to the wt , t = 1, 2,… , r − 1 , from previous iterations. This wr is described 
by Frank and Friedman (1993) as 

 where t = 1, 2,… , r − 1 , and �̂(r−1)
xx

= �(r−1)�

x
�(r−1)
x

∕n − 1 and 
�̂(r−1)

xy
= �(r−1)�

x
�(r−1)
y

∕n − 1 are the sample partial covariance matrices of X and of X 
with Y, respectively, controlling for c1, c2,… , cr−2 , and cr−1 . For computations, note 
that wr is the eigenvector of �̂(r−1)

xy
�̂(r−1)�

xy
 corresponding to the largest eigenvalue.

Step 2:	� Calculate �r = �(r−1)
x

wr , the rth component’ scores.

Step 3:	� Regress E(r−1)
x

 on �r and E(r−1)
y

 on �r to get estimates of the loadings of x 
on �r (i.e., �(r)�

x
 ) and of y on �r (i.e. �(r)

y
 ), respectively. The estimates are 

calculated as �̂(r)�

x
= w

�
r
�(r−1)�

x
�(r−1)
x

 and 𝛽(r)
y

= w
�
r
�(r−1)�

x
�(r−1)
y

 , respectively.

Step 4:	� Calculate the residuals from the regression of X on �(r) and the residuals 
from the regression of Y on C(r) , where C(r) = (C1,C2,… ,Cr) . This gives 
E(r)
x

= (X − C(r)�̂
(r)

x
) and E(r)

y
= (Y − C(r)�̂

(r)

y
) , where �̂

(r)

x
 is the row by row 

concatenation of the loading estimates �̂(t)�

x
 , t = 1, 2,… , r , and �̂(r)

y
= (𝛽(1)

y
 , 

𝛽(2)
y

 , … , 𝛽(r)
y
)� calculated in Step 3.

Steps 1-4 are repeated k times to build the k dimensional factor model analog 
(7). At each iteration of steps, a new term is added to Model (7). Thus, PLSR 
involves stepwise forward model building. The prediction equation for yn+1 as a 

(7)
� =�1�

(1)
y

+⋯ + �k�
(k)
y

+ �(k+1)
y

� =�1�
(1)�

x
+⋯ + �k�

(k)�

x
+ �(k+1)

x
,

(8)

wr = argmax

w
�
w = 1

w
��̂(r−1)

xx
w = 1

w
��̂(r−1)

xx
wt = 0

(

w
��̂(r−1)

xy
�̂(r−1)�

xy
w

)

,
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function of an observed xn+1 is ŷn+1 = C
(k)

n+1
�̂
(k)

y
= xn+1�̂

pls . It has been shown that 
�̂pls can be written as

where W(k) is the concatenation of the vectors wt , t = 1, 2,… , k (see Wold et  al. 
2009).

In practice, the dimension of the actual underlying factor model is not known 
and one must rely on the data to choose k. In Sect. 3.7, we discuss how to estimate k 
using a K-fold cross-validation (CV(K)) approach. See, also, Wold et al. (2001).

Because PLSR builds a prediction equation through forward selection of components, 
we hypothesize that it suffers from the same potentially severe over-fitting as forward 
selection regression when p >> n (Efron et al. 2004). This criticism applies to forward 
selection model building in any context, be it usual regression, PCR or PLSR.

The problem is illustrated intuitively as follows in the context of PLSR. Suppose 
that n = 100 and p = 120 and that the population correlation between y and all lin-
ear combinations of x’s are zero. Some sample correlations calculated from the full 
calibration data set, nevertheless, will be large simply by chance. Suppose that CV(5) 
cross-validation is used to determine the number of components to include in the 
model. It is likely that some of the holdout samples of 20 observations and their corre-
sponding retained samples of 80 are both representative of the full calibration sample. 
In these representative pairs the high correlation components are likely to be highly 
correlated in both the holdout and retained samples. They will, therefore, reduce the 
PRESS in the holdout sample and overall when added to the model. They will be 
added due to their chance correlation with y. The chance of such superfluous com-
ponents entering the model increases as p increases relative to n. Since a new valida-
tion sample is likely to “misrepresent” the population by chance in different ways, the 
highly correlated (with y) components will be mostly different, and the model built 
from the calibration may result in poor predictions in the validation sample.

Factor Analysis Regression

Factor Analysis

Given a sample of n observations from a vector of observable random varia-
blesz = (z1, z2,… , zp+1)

� , the common factor model (CFM) for z is written in matrix 
form as:

where f is the vector (f1, f2,… , fk)
� of latent variables called common factors, � is 

a (p + 1) × 1 vector of unique factors (i.e., Uj is related to zj but independent of the 
other observable variables), and � is the k × (p + 1) matrix of coefficient parameters 
to be estimated. The usual model assumptions are: 

(9)�̂pls = �(k)(�̂
(k)

x
�(k))−1�̂

(k)

y
,

(10)z = ��
f + �,
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(1)	 E( f ) = 0k , E(U)=0p+1
(2)	 Cov( f ) = Ik
(3)	 Cov(U) = � a (p + 1) × (p + 1) diagonal matrix and
(4)	 f  and U are independent.

The assumption of zero means for all variables in the model is made without loss of 
generality.

In general, the parameters in � are called factor pattern coefficients. When the 
observable variables are standardized, however, special interpretations are possible 
(e.g., the (i, j)th entry in � is the population correlation between zi and fj ) and they are 
given the name of factor loadings.

Note that there is an indeterminacy in Model (10). That is, there are multiple sets of 
parameters, � , and underlying factor vectors, f  , that produce the same �′

f  . � and f  can 
only be identified up to an orthonormal rotation. The indeterminency can be removed 
by applying a rotation of particular interest. For example, one may want to rotate toward 
a simple model that leads to easily named factors.

Bilinear Common Factor Model

In the context of regression analysis, we define z = (y, x)� . Then, the CFM in equation 
(10) can be partitioned as

A partitioned form of the CFM in (10) is called a Bilinear Common Factor Model 
(BCFM).

Model (11) is the basis for FAR estimation of � in Model (1) and for building a high-
dimensional prediction equation.

Covariance Matrix

The covariance matrix of z under model (10) with standardized z and Assumptions 1-4 
above is the correlation matrix

The diagonal elements of �′� and � are called communalities and unique factor var-
iances, respectively. The i th communality, h2

i
 say, is the proportion of the variance 

of zi that is explained by its relationship with the latent factors f and the i th unique 
variance, �i say, is the proportion left unexplained.

Now partition � and � in (12) such that � = (�y,�x) and � = diagonal(�y,�x) 
where �x is p × p diagonal matrix. Then, for z = (y, x)� , we have

(11)
y =��

y
f + Uy

x
� =��

x
f + �x.

(12)�z = ��� +�.
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We see from (3) and (13) that

if the bilinear factor model holds. An estimate obtained by substituting FA esti-
mates of the parameters in (11) into (14) is a FAR estimate. FAR estimates will 
vary depending on the factor extraction method used. We chose PC factor extrac-
tion, because it is amenable to a computationally efficient modification that is help-
ful (sometimes necessary) in high-dimensional settings.

Principal Component Factor Extraction

Given a calibration sample, let Z = (Y,X) denote the n × (p + 1) matrix of standard-
ized observed values of the random vector z. Then, by the spectral decomposition 
theorem,

where the orthogonal columns of � and diagonal matrix � are the eigenvectors and 
associated eigenvalues of �̂z , respectively. First, choose the number of factors, k < 
rank(X). (We used CV for this in Sect. 3.7) Then, partition W into matrices of order 
(p + 1) × k and (p + 1) × (p + 1 − k) and � correspondingly; i.e.,

The principal component factor extraction method yields

(See Johnson and Wichern 2007, page 387; and Rao (1996), Equation 3.5, which is 
standardized here) F̂ is the n × k matrix of standardized PC scores. Communality 
estimates are calculated as ĥ2

j
=
∑k

r=1
𝜆̂2
rj
 and unique varance estimates as 

𝜓̂j = 1 − ĥ2
j
 , j = 1, 2,… , p + 1 . ĥ2

j
 is interpreted as the proportion of sample vari-

ance of zj explained by the k common factors and �j as the proportion unexplained.
Several comments are in order before leaving this section:
Comment 1. The PC estimates in (17) are optimal under the restricted version 

of Model (10), with restrictions �1 = �2 = ⋯ = �p+1 , in the sense that �̂
′
 and 

f̂ 1, f̂ 2,… , f̂ n , the rows of F̂ transposed, together are a solution that minimizes

(13)�z =

(

��
y
�y + �y ��

y
�x

��
x
�y ��

x
�x +�x

)

(14)� = (��
x
�x +�x)

−1��
x
�y,

(15)�̂z =
(

1

n − 1

)

��� = ����
,

(16)
� =[�1 ∶ �2]

� =Block diagonal[�1,�2]

(17)�̂ = �̂
1

2

1
��

1
, and �̂ = ��1�̂

−
1

2

1
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in that case. (See Equation 3.5 and surrounding discussion in Rao (1996)).
Comment 2. Although the PC estimates estimate “a” factor model, they do not 

estimate “the” factor model of interest (10).
Comment 3. In practice, PC extraction often estimates population parameters that 

are “close” to the parameters in Model (10) (Schneeweiss and Mathes 1995). Sch-
neeweiss and Mathes (1995) derived the conditions under which this occurs. The 
conditions are likely to be satisfied when a large number of variables are included, 
all with something in common with at least some of the other variables, and the 
number of factors is correctly identified. (k must be large enough so that unique fac-
tor variances are small but small enough to exclude factors that explain little of the 
total variance in observed variables). So, one can reasonably expect PC extraction 
to provide nearly valid estimates of Model (10) in carefully designed high-dimen-
sional studies with a good method for selecting the number of factors (e.g., the CV 
method).

Comment 4. The MLE method of factor extraction cannot be used in high-
dimensional cases and principal axis factor analysis cannot be applied with the 
most commonly chosen option for prior communalities (i.e., SMC). While other 
choices of priors are workable, repeated computation of the eigenvalues and vec-
tors of (p + 1) × (p + 1) matrices when p is very large may be burdensome. We can 
reduce the computational burden significantly with PC extraction, as shown in the 
next section.

Comment 5. As already mentioned, PCR employs only �̂xx , ignoring �̂xy . PLS 
solves that problem but utilizes a forward variable (i.e., component) selection pro-
cess that is expected to over-fit the sample. We hypothesize that FAR shares nei-
ther of these deficiencies and, therefore, will outperform both PCR and PLSR in our 
Monte Carlo studies

High‑Dimensional Factor Extraction

For very large values of p >> n , it is computationally expensive to obtain factor 
model parameter estimates, which requires computation of the eigenvalues and 
eigenvectors of the (p + 1) × (p + 1) matrix �̂z . Instead, we achieve PC extraction 
from the eigenvalues and eigenvectors of the n × n Gram matrix, ��′.

Let �1 denote the n × k matrix of the first k orthonormal eigenvectors of ��′ and 
let � denote the diagonal matrix of associated ordered eigenvalues. That is, 

���G1 = G1�1 . It follows that 1∕(n − 1)Z��

(

��G1�
−

1

2

1

)

= 1∕(n − 1) 
(

��G1�
−

1

2

1

)

�1 and, thus, that �∗
1
=

(

��G1�
−

1

2

1

)

 is a p × k matrix of the first k 

eigenvectors of �̂z with associated eigenvalues �1

n−1
 . Furthermore, �∗�

1
�∗

1
=I. 

(18)
n
∑

i=1

(zi − ��
f i)

�(zi − ��
f i)
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Therefore, by the uniqueness of orthonormal eigenvectors and associated eigenval-
ues, we have

By substituting (19) into (17) we obtain the more computationally efficient estimates

Estimates of � and h2
i
 follow, as calculated above.

Estimation of the High‑Dimensional Regression Model and Prediction

Our primary goals are to estimate � in (1) and to build a prediction equation in high-
dimensional settings, assuming the low- dimensional factor model (10), or equiva-
lently (11), holds. Factor analyzing �̂z = (

1

n−1
)��� , using computationally efficient 

high-dimensional factor extraction, yields the estimates in (20) and (21). Substitut-
ing these and the associated �̂x into (14), we obtain the FAR estimate of �,

If �̂x is nonsingular (i.e., �̂ j > 0, ∀j = 1,2,...,p), then we can write (�̂�

x
�̂x + �̂x)

−1 as

(See Theorem 18.2.8 in Harville (1998)). Hence, the inverse in (22) can be com-
puted by inverting only a p × p diagonal matrix and a k × k matrix. The FAR estima-
tor of � in computationally efficient form is

which is used to form a prediction equation for new values of the response variable, 
y, as a function of the associated new value of x . That is,

(19)
�1 =���1�1

−
1

2

�1 =
�1

n − 1
,

(20)�̂ =
��

1
�

√

n − 1

(21)�̂ =����1�
−1
1

√

n − 1.

(22)�̂FA = (�̂
�

x
�̂x + �̂x)

−1�̂
�

x
�̂y.

�̂
−1

x
− �̂

−1

x
�̂
�

x
(�k + �̂x�̂

−1

x
�̂
�

x
)−1�̂x�̂

−1

x

(23)�̂FA = (�̂
−1

x
− �̂

−1

x
�̂
�

x
(�k + �̂x�̂

−1

x
�̂
�

x
)−1�̂x�̂

−1

x
)�̂

�

x
�̂y,

(24)�̂FA
(n+1)

= x(n+1)�̂
FA.
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Choosing the Number of Factors

All regression methods described above were applied for a given k. Choosing k is 
an important but difficult problem. We prefer the K-fold cross-validation method 
(CV(K)) described by Wold (1978). We present details of its application here in the 
context of FAR, with K chosen to be 5.

We applied CV(5) for each possible value of k up to q,

where kkr is the number of factors chosen by the Kaiser criterion (i.e., retain factors 
with eigenvalues greater than 1.0). Our rationale for limiting k as in (25) was based 
on preliminary studies that showed the Kaiser criterion tended to over-estimate the 
true k and the rule of thumb that we need at least 5 observations for each factor.

We split the calibration sample into five groups, as dictated by our choice of the 
CV(5) method. One group was omitted and the dataset of the other four groups com-
bined was analyzed to compute �̂FA in Eq. (22), or in more computationally efficient 
form in (23). This was repeated with each of the other groups omitted and predicted 
values of y were calculated from (24) in each of the held out validation samples. The 
5 prediction error sum of squares (PRESS) were then pooled to obtain an overall 
PRESS statistic. This was done for each r = 1, 2,… , q and k was chosen to be the r 
with the minimum MSEP=PRESS/(n − r − 1).

Monte Carlo Simulation

Simulation studies were performed to investigate the relative performance of FAR, 
PCR, and PLS regression/prediction. Calibration and validation samples were gen-
erated. For each calibration sample, the above methods to retain the number of fac-
tors, estimate the coefficients, and build a prediction equation from PCR, FAR and 
PLSR were applied. The results were applied to predict values of y in each valida-
tion sample.

Data Structures

Two Monte Carlo (MC) studies were performed (MC study-1 and MC study-2) 
with study parameters taken to be the estimated parameters from two real datasets. 
In each of these studies, data were generated under three underlying correlation 
structures:

•	 Arbitrary correlation structure—The �z for each study was taken to be that esti-
mated from the real sample.

•	 Factor model structure—Factor analysis was applied to each study’s data to esti-
mate the loading matrix � and � in (12). Then data were generated from a distri-

(25)q = min
(

kkr,
n

5

)

,
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bution with covariance matrix �̂z = �̂
�
�̂ + �̂ with parameters estimated from the 

data.
•	 Independence structure—y was generated independent of x ; i.e., �z=

(

1 �′

� �xx

)

 , 

where �xx is an arbitrary symmetric positive definite by p × p sample correlation 
matrix from the real data.

Design of Monte Carlo Studies

MC Study‑1

The parameters for this study were estimated from kidney disease registry data 
where a complete set of 26 lab scores were observed at least once on each of 57 
patients. For each lab test j, j = 1, 2,… , 26, the data record of each patient, x∗

ij
 , 

i = 1, 2,… , 57 , was transformed to scores, xij , measuring the patient’s deviation 
from normal, based on a range of values in a normal population. Then, standardized 
deviation scores were taken as the predictor variables, x , and standardized average 
monthly cost of medical services over the previous 13 months was the response vari-
able, y. R-square from the regression analysis of Y on X was 0.60 with p value of 
0.06 (and p value = 0.001 for the model derived from backward selection). As dis-
cussed above, Rz were specified to satisfy the restrictions of each underlying correla-
tion structure. For the factor model structure, the number of factors was chosen 
( k = 8 ), using Kaiser criterion. Using these parameters, 500 MC calibration samples 
of each size n = 10 , 15, 20, 25, and 30 were generated from a MVN(0, �z ) distribu-
tion. For each calibration sample, a validation sample of size 400 was independently 
generated from the same distribution.

MC Study‑2

In this MC study, we generated 500 MC calibration samples of size n = 10, 20, 
30, 40, 50, 60 and 70 and a 400 observation validation sample for each calibration 
sample for each correlation structure. All observations were drawn from a MVN(0, 
�z ) distribution. The correlation matrix parameters were estimated from microarray 
gene expression observations from 65 probe-set measures on 120 twelve-week-old 
male F2 rats (Stone et al. 2006) to identify genes whose mutations are associated 
with Bardet-Biedl syndrome (BBS, one of the rare genetic disorders collectively 
called ciliopathies). For this MC sampling, we added 54 randomly selected probe-
sets to the 10 probesets for known BBS genes in Stone et  al. (2006) and chose a 
newly discovered ciliopathy gene TOPORS (probe id X1392610_at) as a response 
variable to see whether TOPORS is associated with the known BBS genes. The 
R-square from the standardized regression analysis of Y on X was 0.9012 with p 
value < 0.0001. Using the Kaiser criterion, k = 11 factors were selected for the 
factor model structure. The factor analysis results were used to form a structured 
correlation matrix in the form of (13). For the independence case the off-diagonal 
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elements of the first row and first column of the sample correlation matrix were set 
to zeros.

Criteria of Evaluation

Initially, the CV(5) methods were used separately to choose the number of factors, k, 
in the FAR, the number of components in the PCR, and the number of scores in the 
PLSR from the calibration datasets.

After selecting k, using CV(5), each calibration sample was reanalyzed by FAR, 
PCR and PLSR, respectively and a prediction equation obtained for each method. 
The y value in each observation in each corresponding validation sample was pre-
dicted by each method. The performance metric used to compare methods was the 
MSE of prediction averaged across the 500 MC calibration samples by sample size, 
n,

In samples generated from the independence structure (i.e. �xy = � ), we calculated 
the average R-square from the regression of y on x across calibration samples, i.e.,

(26)MSE(Ŷv) =
1

500

500
∑

m=1

(�v,m − �̂v,m)
�(�v,m − �̂v,m)

400 − k − 1
.

Fig. 1   Estimated R-square averaged across MC calibration samples when x and y are independent. FA 
regression(solid red curve), PLS regression(dashed green curve), and PCR (dotted blue curve)

Fig. 2   MSE of Prediction averaged across the 500 MC validation samples. a Arbitrary correlation struc-
ture; b factor model structure; c x and y are independent. FA regression (solid curve), PLS regression 
(dashed curve), and PCR (dotted curve)

▸
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to compare FAR to PCR and PLSR. This would reveal over-fitting if it occurred.

Results

Results of our comparison of the three methods given independence of y and x are 
shown in Figure 1 below.

One would expect the curves shown to be close to zero in this setting. The curve 
for PLSR, however, are much greater than zero for all calibration sample sizes in 
both MC studies. This, we believe, is the result of PLSR over-fitting due to being 
a forward selection methodology. PCR and FAR show a much less severe bias in 
R-square estimates from the calibration sample. In essence, PLSR can lead us to 
believe the existence of a relationship between y and x when there is none.

The MSE of prediction averaged over the 500 MC validation samples under arbi-
trary, factor model, and independence structures is summarized by study in Figure 2 
for the three underlying structures.

The over-fit PLSR prediction equation leads to poor predictions and high aver-
age prediction MSE, under the independence structure, as seen in Figure  2c. 
Under factor model and arbitrary correlation structures, we observed comparable 
performance by FAR and PLSR in both studies. PCR was not a viable competitor 
in Study-1 but performed as well as FAR and PLSR in Study-2. The poor per-
formance by PCR in Study-1 was expected, potentially, and was likely due to the 
fact that it employs an unsupervised selection of components. The PCR results in 
Study-2 are attributed to the characteristics of the data, which happened to have 
expression profiles of some of the covariates (i.e. the BBS gene expressions) that 
are highly variable as well as highly correlated with the expression profile of the 
response variable, TOPORS.

Our MC study results can be roughly summarized as follows: FAR never per-
formed notably worse than PLSR and performed much better when y and x were 
independent. Similarly, FAR never performed notably worse than PCR and per-
formed better, overall, when y and x were related.

Conclusion

FAR outperformed both PLSR and PCR in our MC studies. It did so in a predict-
able fashion given the weaknesses of PLSR and PCR, known a priori. Because 
PLSR performs a forward selection of components, it was expected to over-fit the 
data by including components that are only predictive in the calibration sample. 
This is a problem that is most obviously manifest when there is no relationship 
between y and x. Because PCR selects components in an unsupervised fashion, 
it was expected that it might leave low variance components that were predictive 

(27)R2 =
1

500

500
∑

m=1

corr2(�m, �̂m)



S131

1 3

Journal of Quantitative Economics (2022) 20 (Suppl 1):S115–S132	

of y out of the prediction equation and therefore suffer bias in some studies. Such 
was the case, apparently, in MC Study-2.

Because of these complementary deficiencies, neither PLSR nor PCR should 
be uniformly preferred over the other. PLSR performed better when there was a 
relationship between y and x, but PCR performed better when there was not.

Ridge regression (RR) (Hoerl and Kennard 1970) is not considered in this arti-
cle. It is left to future research to compare Lasso, FAR, and RR when underlying 
conditions are such that neither Lasso nor FAR are clearly preferred. RR is not 
expected to out-perform Lasso when the model is sparse nor to out-perform FAR 
when there is an underlying factor model correlation structure, conditions that 
often can be reasonably judged by investigators.

Supervised PCR methods were also not included in our Monte Carlo compari-
sons. The partially supervised method (Bair et al. 2006) without supervised selec-
tion of components, suffers potential bias due to non-inclusion of low variance 
but predictive components. When the selection of components is supervised as in 
James et al. (2013), there is potential for the inclusion of extraneous components 
in the final model and, hence, inefficient prediction. Theoretically, therefore, FAR 
is expected to out-perform both unsupervised and supervised versions of PCR.
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