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Abstract
One of C. R. Rao’s many important contributions to statistical science was his intro-
duction of the score test, based on the derivative of the log-likelihood function at 
the null hypothesis value of the parameter of interest. This article reviews methods 
for constructing score tests and score-test-based confidence intervals for analyzing 
parameters that arise in analyzing categorical data. A considerable literature indi-
cates that score tests and their inversion for constructing confidence intervals per-
form well in a variety of settings and sometimes much better than Wald-test and 
likelihood-ratio test-based methods. We also discuss extensions of score-based infer-
ence and potential future research on generalizations for longitudinal data, complex 
sampling, and high-dimensional data.

Keywords  Confidence intervals · Generalized linear models · Likelihood-ratio tests · 
Pearson chi-squared · C.R. Rao · Wald inference

Introduction

In categorical data analysis, hypothesis tests about parameters of interest are typi-
cally based on three classes of methods: The likelihood-ratio (LR) test (Wilks 1938), 
the Wald test (Wald 1943), and the score test proposed by Rao (1948). These statis-
tics can also be utilized to construct confidence intervals (CI) by inverting test statis-
tics about the parameter.
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Wald tests and CIs are typically considered the standard approach, because of 
their computational simplicity and easy availability with software. For inversion of 
the Wald test, the 95% confidence interval is obtained simply by adding to and sub-
tracting from the parameter estimate 1.96 times the estimated standard error. Thanks 
to this simplicity, early developments of methods in categorical data analysis were 
Wald-based, such as weighted least squares methods proposed by Grizzle et  al. 
(1969) and many follow-up articles by Gary Koch and his colleagues. However, the 
LR test and its inversion for confidence intervals are increasingly available in soft-
ware. Also, Rao’s score test, which is based on the derivative of the log-likelihood 
function at the null hypothesis value of the parameter of interest, is commonly used 
in some settings. In honour of Professor C. R. Rao for this special issue, our arti-
cle focuses on the score test and score-test-based confidence intervals in categorical 
data analysis. We also present recent extensions of it that utilize the breakthrough 
impact of Rao’s contribution.

We begin by summarizing the three methods. For notational simplicity, we pre-
sent them for the simple case of a single parameter � for a simple statistical model. 
Denote by �(�) the associated log-likelihood function and by �̂  the maximum likeli-
hood (ML) estimate. The score function is

Linked to it is the Fisher information, �(�) = −�
[
�2�(�)∕��2

]
 , coinciding with the 

variance of the score function u(�) , since �[u(�)] = 0.
Consider a two-sided significance test of H0 : � = �0 against Ha : � ≠ �0 . The 

squared version of the Wald test statistic is

where the standard error se(�̂) of �̂  and the Fisher information �(�̂) are evaluated at 
�̂  . The LR test statistic is

comparing the unconstrained log-likelihood function at its maximum �(�̂) with its 
value at �0 . Rao’s score test statistic is

with derivatives evaluated at �0 . Its underlying idea is that when H0 is true, the score 
function should be relatively near zero at �0 . In some literature, especially in econo-
metrics, Rao’s score test is also known as the Lagrange multiplier test, based on 
Silvey (1959).

Under H0 , all three test statistics have asymptotic chi-squared distributions and 
are asymptotically equivalent (Cox and Hinkley 1974). When H0 is false, the three 

u(�) = ��(�)∕��.

[
�̂ − �0

se(�̂)

]2

=
(
�̂ − �0

)2

�(�̂),

−2
[
�(�0) − �(�̂)

]
,

[
u(�0)

]2

�(�0)
=

[
��(�)∕��0

]2

−�
[
�2�(�)∕��2

0

] ,
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statistics have approximate non-central chi-squared distributions, with different non-
centrality parameters. A 100(1 − �) % CI can be derived by inverting the tests, con-
structing the set of �0 values such that the two-sided significance test has p-value > 
� . An advantage of Rao’s score test is that it applies even when the other two tests 
cannot be used, for instance when � falls on the boundary of the parametric space 
under H0 . A disadvantage of the Wald test is its lack of invariance, with results 
depending on the scale of measurement for � . Likewise, the Wald CI for a nonlinear 
function g(�) of � is not g(⋅) applied to the Wald CI for � . Thus, in using the Wald 
method, a wise choice of scale is needed.

In this paper, we introduce frameworks in which score test-based inference is use-
ful for categorical data analysis. “Tests for Categorical Data as Score Tests” sum-
marizes score tests, “Score-Test-Based Confidence Intervals” summarizes score-test 
based confidence intervals, and “Small-Sample Score-Test-Based Inference” consid-
ers small-sample methods. “Extensions of Score-Test-Based Inference for Categori-
cal Data” discusses further extensions such as a “pseudo-score” method that applies 
when ordinary score methods are not readily available, generalizations for high 
dimensional cases and for complex and longitudinal settings, and potential future 
research.

Tests for Categorical Data as Score Tests

Many standard significance tests for categorical data can be derived as score tests 
that a parameter or a set of parameters equal 0. Methods that construct their esti-
mates of variability under a null hypothesis are often score tests or are closely 
related to score tests. A landmark example is the Pearson chi-squared test of inde-
pendence for a two-way contingency table. With cell counts {yij} for a sample of size 
n and with expected frequency estimates {�̂ij = yi+y+j∕n} based solely on the row 
and column marginal counts, the Pearson statistic is

Some details follow about other statistics for categorical data. See Agresti (2013) for 
a summary of the methods mentioned.

Smyth (2003) showed that the Pearson chi-squared statistic X2 for testing independ-
ence in a two-way contingency table is a score statistic, under the assumption that the 
cell counts are independent and Poisson distributed. For multiway contingency tables, 
Smyth proved that the score test of the hypothesis that any chosen subset of the pairs 
of faces in the table are independent yields a Pearson-type statistic. For I independent 
Binom(ni,�i) random variables {Yi} and a binary linear trend model �i = H(� + �xi) 
with a twice differentiable monotone function H, Tarone and Gart (1980) proved that 
the score statistic for testing H0 ∶ � = 0 does not depend on H. It follows that the 
Cochran-Armitage test, which is the score test of H0 ∶ � = 0 in a linear probability 
model �i = � + �x , is equivalent to the score statistic for testing H0 ∶ � = 0 in the 

X2 =
∑

i

∑

j

(
yij − �̂ij

)2

�̂ij

.
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logistic regression model. The Cochran-Mantel-Haenszel test of conditional independ-
ence in 2 × 2 × K tables that compare two groups on a binary response while adjusting 
for a categorical covariate is a score test for the logistic model assuming no interaction 
between the group variable and the categorical covariate (Birch 1964, 1965; Darroch 
1981). Day and Byar (1979) demonstrated the equivalence of Cochran-Mantel-Haen-
szel statistics and score tests for testing independence in case-control studies, inves-
tigating the risk associated with a dichotomous exposure and with individuals strati-
fied in groups. Another special case of the Cochran-Mantel-Haenszel test is a score 
test applied to binary responses of n matched pairs displayed in n partial 2 × 2 tables, 
commonly known as McNemar’s test. A generalized Cochran-Mantel-Haenszel test for 
two multicategory variables is the score test for the null hypothesis of conditional inde-
pendence in a generalized logistic model (Day and Byar 1979). For testing conditional 
independence in three-way contingency tables that relate a nominal explanatory vari-
able to an ordinal response variable while adjusting for a categorical variable, Iannario 
and Lang (2016) presented a generalization of the Cochran-Mantel-Haenszel test by 
proposing score tests based on first moments and constrained correlation.

For generalized linear models with the canonical link function, such as binomial 
logistic regression models and Poisson loglinear models, the likelihood function sim-
plifies with the data reducing to sufficient statistics. For subject i, letting yi denote the 
observed response and xij the value of the explanatory variable j for which �j is the coef-
ficient, the sufficient statistic for �j is 

∑
i xijyi . The score test statistic for H0 ∶ �j = 0 

can be expressed as a standardization of its sufficient statistic. In this case, Lovison 
(2005) gave a formula for the score statistic that resembles the Pearson statistic, being a 
quadratic form comparing fitted values for two models. Let � be the model matrix for 
the full model and let �̂0 be the diagonal matrix of estimated variances under the null 
model (e.g., with �j = 0 ), with fitted values �̂ for the full model and �̂0 for the reduced 
model. Then, the score statistic is

Lang et al. (1999) gave this formula for the loglinear case.
Another setting for the Pearson chi-squared statistic occurs in testing model good-

ness-of-fit. Let {yi} denote multinomial cell counts for a contingency table of arbitrary 
dimensions. Let {�̂i} be the ML fitted values for a particular model. For testing good-
ness-of-fit, the score test statistic is the Pearson-type statistic,

Cox and Hinkley (1974, p. 326) noted this, and Smyth (2003) extended it to a cor-
responding statistic for generalized linear models.

(�̂ − �̂0)
��(���̂0�)

−1��(�̂ − �̂0).

X2 =
∑

i

(
yi − �̂i

)2

�̂i

.
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Score‑Test‑Based Confidence Intervals

Although the score test is well established for categorical data, CIs based on the score 
function are less utilized. The best known and most utilized score CI is Wilson’s CI 
for a binomial parameter � (Wilson 1927). This CI uses the score test statistic

which has an asymptotic standard normal distribution under H0 : � = �0 . The 
100(1 − �)% CI consists of those �0 values for which the p-value > 𝛼 . For instance, 
the endpoints of the 95% CI are the roots of the quadratic equation z2

W
= (1.96)2 . By 

contrast, the Wald CI is based on the z statistic with �̂  in the denominator instead of 
�0 . It has midpoint �̂  and thus zero length whenever �̂  = 0 or 1.

In other settings, score CIs are less commonly known and used. Studies often aim 
to compare two groups (e.g. different treatments) on a binary response (success, fail-
ure), and we focus on that case. A 2 × 2 contingency table, with observed frequen-
cies {y11, y12, y21, y22} , shows the results, with rows for the groups and columns for 
response categories. Let n1 = y11 + y12 , n2 = y21 + y22 , denote the sample sizes of 
the two groups. For a subject in row i, i = 1, 2 , let �i denote the binomial probability 
that the response is category 1 (success). For relevant parameters such as the differ-
ence of probabilities, the ratio of probabilities, and the odds ratio, Agresti (2011) 
summarized score-test based CIs. We next summarize them.

Consider a score CI for the difference, � = �1 − �2 . For H0 : �1 − �2 = �0 , 
let �̂1 and �̂2 be the unrestricted ML estimates, which are the sample proportions 
�̂i = yi1∕ni , i = 1, 2 , and let �̂1(�0) and �̂2(�0) be the ML estimates subject to the con-
straint �1 − �2 = �0 . Mee (1984) obtained an asymptotic score CI by inverting the 
test statistic that is the square of

The restricted ML estimates �̂i(�0) , i = 1, 2 , have closed form, but the computation 
of the set of �0 that fall in the CI requires an iterative algorithm. When �0 = 0 , z2

diff
 

is the Pearson chi-squared statistic for testing independence. Therefore, when zero 
is included in this 100(1 − �)% score CI, the Pearson test has p-value > 𝛼 . Miettinen 
and Nurminen (1985) proposed to multiply zdiff by 

(
1 − (n1 + n2)

−1
)1∕2 to improve 

performance with small samples. Newcombe (1998a) proposed another score-test 
based CI for �1 − �2 . This interval combines Wilson’s individual score CIs for the 
two proportions. See also Fagerland et  al. (2017, Sec. 4.5.4) for details. In large 
samples, Newcombe’s interval tends to be close to Mee’s asymptotic score interval, 
and both have higher actual coverage probabilities than the Wald interval (which 
inverts the z statistic with unrestricted ML estimates in the standard error), particu-
larly in unbalanced samples ( n1 ≠ n2 ). Fagerland et al. (2015) recommended New-
combe’s hybrid score intervals as the best when sample sizes are moderate or large. 
The Newcombe CI and the Miettinen-Nurminen CI perform similarly, with coverage 

zW =
�̂ − �0√

�0(1 − �0)∕n
,

zdiff =
(�̂1 − �̂2) − �0√

[�̂1(�0)(1 − �̂1(�0))∕n1] + [�̂2(�0)(1 − �̂2(�0))∕n2]
.
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probabilities close to the nominal level, but the Newcombe CI performs better when 
proportions are close to the boundaries.

Sometimes it is more informative to consider the ratio, � = �1∕�2 , instead of the 
difference � = �1 − �2 , especially when both �1 and �2 are near 0. This ratio, some-
times referred to as the relative risk, is estimated by

Koopman (1984) proposed an asymptotic score CI for the relative risk. Under 
H0 ∶ �1∕�2 = �0 , that is H0 ∶ �1 = �0�2 , the chi-squared statistic is

where �̂i(�0) , i = 1, 2 , denote the ML estimates of �1 and �2 under H0 , which are

and �̂2(�0) = �̂1(�0)∕�0 . The endpoints are the two solutions to uRR = �2
1,1−�

 , equat-
ing uRR to the 1 − � quantile of the chi-squared distribution with one degree of free-
dom. The CI limits are zero or infinity when a cell count is 0. Miettinen and Nur-
minen (1985) proposed another asymptotic score CI for � , by inverting under H0,

where

Also, Zou and Donner (2008) proposed a hybrid score CI combining the Wilson’s 
score CIs of each parameter �1 and �2 and exploiting the logarithm of a ratio equaling 
the difference of the logarithms. See also Sec. 4.7.5 of Fagerland et al. (2017). Fager-
land et al. (2015) recommended Koopman’s asymptotic CI for small, moderate and 
large sample size. According to a comparative study by Price and Bonett (2008), this 
CI performs very well, with coverage probabilities always close to the nominal level, 
and from this point of view, it is clearly superior to other non-score-based intervals.

The odds ratio is a parameter of special interest for categorical data, because it is 
linked to the coefficient of an explanatory variable in logistic regression via expo-
nentiation. In a 2 × 2 table with two independent binomials, the odds ratio is

�̂ =
�̂1

�̂2
=

y11∕n1

y21∕n2
.

uRR =

(
y11 − n1�̂1(�0)

)2

n1�̂1(�0)
(
1 − �̂1(�0)

) +

(
y21 − n2�̂2(�0)

)2

n2�̂2(�0)
(
1 − �̂2(�0)

) ,

�̂1(�0) =
�0

(
n1 + y21

)
+ y11 + n2

2(n1 + n2)
+

−

√(
�0

(
n1 + y21

)
+ y11 + n2

)2

− 4�0 (n1 + n2)
(
y11 + y21

)

2(n1 + n2)

,

zMN =
1

s

(
�̂1 − �0�̂2

)√
1 −

1

n1 + n2
,

s =

√
�̂1(�0)

(
1 − �̂1(�0)

)

n1
+

�2
0
�̂2(�0)

(
1 − �̂2(�0)

)

n2
.
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estimated by (y11y22)∕(y12y21) . To construct a score-test-based CI for � , for a given 
�0 , let {�̂ij(�0)} be the unique values that have the same row and column margins as 
{yij} and such that

The set of �0 satisfying

forms a 100(1 − �)% conditional score CI for the odds ratio (Cornfield 1956) that 
also applies for a multinomial sample over the four cells.

The research literature suggests that asymptotic score tests and corresponding CIs 
perform well, usually much better than Wald CIs. Even with small samples, score CIs 
perform surprisingly well and often out-perform likelihood-ratio-test-based inference. 
This behavior may be a consequence of the score statistic in canonical models being 
the standardization of a sufficient statistic that uses standard errors computed under 
H0 . For evaluations based on simulations, see Fagerland et al. (2015) and Fagerland 
et  al. (2017). In addition, for comparisons specific to CIs for binomial proportions, 
see Newcombe (1998b) and Agresti and Coull (1998). See Miettinen and Nurminen 
(1985), Newcombe (1998a), and Agresti and Min (2005a) for comparison of CIs for 
the difference of proportions and the relative risk, Tango (1998) and Agresti and Min 
(2005b) for inference about the difference of proportions for dependent samples, Miet-
tinen and Nurminen (1985) and Agresti and Min (2005a) for CIs for the odds ratio, 
Agresti and Klingenberg (2005) for multivariate comparisons of proportions, Agresti 
et al. (2008) for simultaneous CIs comparing several binomial proportions, Ryu and 
Agresti (2008) for effect measures comparing two groups on an ordinal scale, Lang 
(2008) for logistic regression parameters and generic measures of association, and 
Tang (2020) for score CIs for stratified comparisons of binomial proportions.

Statistical software provides functions for computing score CIs. The Appendix 
lists some useful R (R Core Team 2022) functions.

Small‑Sample Score‑Test‑Based Inference

Asymptotic tests based on large-sample approximations may perform poorly for 
small n, although research suggests that score tests often perform well even in quite 
small samples. One can instead perform tests and construct CIs by applying relevant 
small-sample distributions, such as the binomial. For instance, consider inference 
for a coefficient �j in a logistic regression model

� =
�1∕(1 − �1)

�2∕(1 − �2)
,

�̂11(�0)�̂22(�0)

�̂12(�0)�̂21(�0)
= �0.

X2 =
∑

ij

(yij − �̂ij(�0))
2∕�̂ij(�0) ≤ �2

1,1−�
,

logit
[
P(Yi = 1)

]
= �0 + �1xi1 +⋯ + �kxik,
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for binary response Yi . With xi0 = 1 for the intercept, the score statistic for �j is based 
on the sufficient statistic Tj =

∑
i xijyi . Starting with the binomial likelihood for inde-

pendent observations, one can base a test on the conditional distribution of Tj after 
eliminating the other nuisance parameters by conditioning on their sufficient statis-
tics. For example, with the equal-tail method, bounds (�1L, �1U) of a 100(1 − �)% CI 
for �1 are obtained by solving the two equations

For details, see Mehta and Patel (1995). Software is available for doing this, such as 
LogXact (Cytel 2005).

Discreteness implies that a significance test cannot have a fixed size � , at all pos-
sible null values for a parameter. In rejecting the null hypothesis whenever the p-value 
≤ � , the actual size has � as an upper bound. Hence, actual confidence levels for small-
sample interval estimation inverting such tests do not exactly equal the nominal values. 
Inferences are conservative, in the sense that coverage probabilities are bounded below 
by the nominal level and CIs are wider than ideal. The actual coverage probability var-
ies for different parameter values and is unknown.

Agresti (2003) shows some remedies to alleviate the conservatism. One approach 
that is feasible when the parameter space is small uses an unconditional approach to 
eliminate nuisance parameters, because the conditional approach exacerbates the dis-
creteness. For H0 : � = �0 with nuisance parameter � , let p(�0;�) be the p-value for a 
given value of � . The unconditional p-value is sup�p(�0;�) and the 100(1 − �)% CI 
consists of �0 for which sup𝜓p(𝛽0;𝜓) > 𝛼 . Chan and Zhang (1999) proposed an exact 
unconditional interval for �1 − �2 by inverting two one-sided exact score tests of size at 
most �∕2 each. Agresti and Min (2001) inverted a single two-sided exact unconditional 
score test, which results in a narrower interval, available in StatXact software (Cytel 
2005). Agresti and Min (2002) found that the unconditional exact approach with two-
sided score statistic also works well for the odds ratio. See Fagerland et al. (2017) for 
Chan-Zhang and Agresti-Min forms of CIs for �1 − �2 (pp. 118–119), the relative risk 
(pp. 139–141), and the odds ratio (pp. 159–160). Coe and Tamhane (1993) proposed 
an alternative unconditional approach for �1 − �2 and �1∕�2 that is more complex but 
performs well. Santner et al. (2007) reviewed several such methods.

Agresti and Gottard (2007) showed that an alternative way to reduce conservative-
ness with discrete data is to base tests and CIs on the mid-P-value (Lancaster 1961). 
For testing H0 ∶ � = �0 versus Ha ∶ 𝛽 > 𝛽0 based on a discrete test statistic T such as a 
score statistic, the mid-P-value is

Under H0 , the ordinary p-value is stochastically larger than uniform(0,1) in distribu-
tion (which is the exact distribution in the continuous case), but the mid-P-value is 
not and it has the same mean and a slightly smaller variance than a uniform random 
variable. The sum of right-tail and left-tail p-values equals 1 + P(T = tobs ∣ H0) for 

P(T1 ≥ t1,obs|t0, t2,… , tk) = �∕2,

P(T1 ≤ t1,obs|t0, t2,… , tk) = �∕2.

P(T > tobs ∣ H0) +
1

2
P(T = tobs ∣ H0).
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the ordinary p-value but equals 1 for the mid-P-value. Using the small-sample distri-
bution, a 100(1 − � )% mid-P-value CI ( �L , �U ) for � is determined by

Its coverage probability is not guaranteed to be ≥ ( 1 − � ), but it is usually close to 
that value. Numerical evaluations, such as in Agresti and Gottard (2007), suggest 
that it tends to be a bit conservative in an average sense.

Several examples in Fagerland et  al. (2017) show the good performance of 
mid-P-based inference, compared with commonly used methods. An example is 
the Cochran-Armitage mid-P score test and related CIs for trend in logit mod-
els for I × 2 contingency tables with ordered rows and possibly small samples 
(Fagerland et  al. 2017, Table 5.12, p. 221). Other mid-P versions of score-type 
tests include a mid-P version of the Pearson chi-square test statistic for independ-
ence in unordered I × J tables, and the McNemar mid-P test. This latter test does 
not violate the nominal level in all of the 10000 scenarios evaluated by Fagerland 
et al. (2013).

An alternative small-sample approach uses asymptotic statistics but employs 
a continuity correction, to better align standard normal tail probabilities with the 
binomial tail probabilities used to construct exact intervals and exact tests. How-
ever, because such exact tests are conservative, doing this provides some pro-
tection from the actual coverage probability being too low but sacrifices perfor-
mance in terms of length, with the average coverage probability being too high.

Extensions of Score‑Test‑Based Inference for Categorical Data

This section describes some extensions of score-test-based inference and poten-
tial future research about such methods.

Pseudo‑Score Inference with the Pearson Chi‑Squared Statistic

Consider a multinomial model for cell counts {yi} and its ML fitted values {�̂i} . Con-
sider a simpler, null model obtained from the full model by imposing a constraint on 
a model parameter, say � = �0 , with ML fitted values {�̂i0} . The LR statistic

can be used to compare the models and to construct the profile likelihood 
100(1 − �)% CI for � , which is the set of {�0} such that G2 ≤ �2

1,1−�
 . To provide a 

score-type CI, Agresti and Ryu (2010) proposed instead inverting a Pearson-type 
statistic proposed by Rao (1961),

P𝛽U
(T < tobs) + (1∕2) × P𝛽U

(T = tobs) = 𝛼∕2,

P𝛽L
(T > tobs) + (1∕2) × P𝛽L

(T = tobs) = 𝛼∕2.

G2 = 2
∑

i

�̂i log(�̂i∕�̂i0),
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This statistic is a quadratic approximation for G2 and is equivalent to the Pearson 
statistic for goodness-of-fit testing when the full model is the saturated one. Haber-
man (1977) showed that under H0 ∶ � = �0 , X2 has the same limiting distribution 
as G2 for large, sparse tables. This includes the case in which the number of cells in 
the table grows with the sample size, such as occurs with a continuous explanatory 
variable.

Agresti and Ryu (2010) proposed the asymptotic 100(1 − �)% CI for a generic 
parameter � as the set of �0 values such that X2 ≤ �2

1,1−�
 . This is a pseudo-score CI, 

as X2 is the score test statistic only if the full model is saturated. Agresti and Ryu 
(2010) noted that the pseudo-score CI is available even when the score CI itself is 
not easily obtainable. In addition, the pseudo-score method generalizes to sampling 
schemes more complex than simple multinomial sampling and to discrete distribu-
tions other than the multinomial, such as Poisson regression models. For generalized 
linear models with canonical link function and independent observations {yi} from a 
specified discrete distribution, Lovison (2005) showed that the bounds obtained by 
inverting the generalized Pearson-type statistic (see “Tests for Categorical Data as 
Score Tests”) are bounded above by the Pearson statistic. Consequently, the asymp-
totic p-values for the ordinary score test are at least as large as those for the pseudo-
score test, and CIs based on inverting the score test contain CIs based on invert-
ing the pseudo-score test. Nonetheless, the pseudo-score method is useful when 
ordinary score methods are not practical, such as in more complex cases or when 
the link function is not canonical. In these situations, the pseudo-score CIs can be 
implemented with the same difficulty level as profile likelihood confidence intervals. 
Through simulations, Agresti and Ryu (2010) found that the pseudo score method 
has similar behavior as the profile likelihood interval and sometimes with even a bit 
better performance with small samples. Also, as discussed in the next subsection, 
extensions of the pseudo-score method may apply to settings in which profile likeli-
hood methods are not available.

The pseudo-score method generalizes to parameters of generalized linear models 
for discrete data, for instance in Poisson and negative binomial regression. Suppose 
{Yi, i = 1,… , n} are independent observations assumed to have a specified discrete 
distribution. Let v(𝜇̂i0) denote the estimated variance of Yi assuming the null distri-
bution for Yi and let �̂0 be the diagonal matrix containing such values. A Pearson-
type statistic for comparing models in the generalized linear model setting (Lovison 
2005) has the form

This statistic also applies to a quasi-likelihood setting, in which one needs only to 
specify the expected values under the assumed models and the variance function (or 
more generally a matrix of covariance functions), without specifying a particular 
distribution (Lovison 2005).

X2 =
∑

i

(�̂i − �̂i0)
2

�̂i0

.

X2 =
∑

i

(𝜇̂i − 𝜇̂i0)
2

v(𝜇̂i0)
= (�̂ − �̂0)

��̂−1
0
(�̂ − �̂0).
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Other Extensions of Score‑Test‑Based Inference

For longitudinal data and many other forms of clustered data, score tests are not 
readily available for popular models. A prime example is the set of models for 
which the likelihood function is not an explicit function of the model parameters, 
such as marginal models for longitudinal data. A popular approach for marginal 
modeling uses the method of generalized estimating equations (GEE). Because of 
the lack of a likelihood function with this method, Wald methods are commonly 
employed, together with a sandwich estimator of the covariance matrix of model 
parameter estimators. Boos (1992) and Rotnitzky and Jewell (1990) presented 
score-type tests for this setting.

In future research, the pseudo-score inference presented in “Pseudo-Score 
Inference with the Pearson Chi-Squared Statistic” may also extend to marginal 
modeling of clustered categorical responses. For binary data, let yit denote obser-
vation t in cluster i, for t = 1,… , Ti and i = 1,… , n . Let �i = ( yi1,… , yiTi )

� and 
let �i = �(�i) = (�i1,… ,�iTi

)� . Let �i denote the Ti × Ti covariance matrix of �i . 
For a particular marginal model, let �̂i denote an estimate of �i , such as the ML 
estimate under the naive assumption that the 

∑
i Ti observations are independent. 

Let �̂i0 denote the corresponding estimate under the constraint that a particular 
parameter � takes value �0 . Let �̂i0 denote an estimate of the covariance matrix 
of �i under this null model. The main diagonal elements of �̂i0 are �̂it0(1 − �̂it0) , 
t = 1,… , Ti . Separate estimation is needed for the null covariances, which are not 
part of the marginal model. Now, consider the statistic

With categorical explanatory variables, X2 applies to two sets of fitted marginal 
proportions for the contingency table obtained by cross classifying the multivari-
ate binary response with the various combinations of explanatory variable values. 
The set of �0 values for which X2 ≤ �2

1,1−�
 is a CI for � . Unlike the GEE approach, 

this method does not require using the sandwich estimator, which can be unreliable 
unless the number of clusters is large. Even with consistent estimation of �i0 , how-
ever, the limiting null distribution of X2 need not be exactly chi-squared because 
the fitted values result from inefficient estimates. It is of interest to analyze whether 
the chi-squared distribution tends to provide a good approximation. Extensions are 
possible for correlated discrete cases other than correlated categorical responses. As 
pointed out by Lovison (2005), unlike likelihood ratio test-type statistics, a Pearson-
type statistic can be defined for any quasi-likelihood model, needing only to specify 
expected values under the model and variance-covariance functions.

Many research studies, especially those using surveys, obtain data with a com-
plex sampling scheme. For example, most surveys do not use simple random 
sampling but instead a multi-stage sample that employs stratification and cluster-
ing. One can then replace V̂0 in the Pearson-type statistic just mentioned by an 
appropriately inflated or non-diagonal estimate of the covariance matrix. For such 

X2 =
∑

i

(�̂i − �̂i0)
��̂−1

i0
(�̂i − �̂i0).
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complex sampling designs, profile likelihood CIs are not available and need to be 
replaced by quasi-likelihood adaptations.

In one approach of this type, Rao and Scott (1981) proposed an extension of the 
Pearson chi-squared statistic for testing independence in a two-way contingency 
table when the data result from a complex survey design and the observations can-
not be treated as realizations of iid random variables. In particular, they provide a 
correction of V̂0 for stratified random sampling and two-stage sampling. However, 
their test statistic requires that none of the observed cell counts equals zero. To solve 
this limitation, Lipsitz et  al. (2015) proposed Wald and score statistics for testing 
independence based on weighted least squares estimating equations.

Another possible extension of score-based inference concerns constrained statis-
tical inference. Constrained statistical inference problems arise in categorical data 
analysis when there are inequality constraints on parameters, such as functions of 
conditional probabilities in a I × J table. They are used to specify hypotheses of sto-
chastic dominance, monotone dependence and positive association in contingency 
tables (Agresti and Coull 1998; Dardanoni and Forcina 1998; Bartolucci et al. 2007, 
among others). To test them, the literature on constrained inference for categorical 
data (see Colombi and Forcina 2016, and the references therein quoted) concen-
trated on the LR statistic and its asymptotic chi-bar-squared distribution, a weighted 
sum of chi-squared variables whose weights can be calculated exactly or sufficiently 
precisely via simulation (see R package ic-infer by Grömping 2010, and hmmm 
by Colombi et al. 2014).

Silvapulle and Sen (2005) presented an extensive review on testing under inequal-
ity restrictions, and described two possible ways (global and local) to extend score 
statistics for inequality constrained testing problems, giving proofs of the asymptotic 
equivalence, under some conditions, of these score-type and LR statistics. However, 
the LR seems more used in constrained inference, possibly because of analytical and 
computational advantages (e.g. Molenberghs and Verbeke 2007). A research chal-
lenge could be in the direction of investigating, also through simulations, where 
score-type testing is convenient.

Inference in High‑Dimensional Settings

In high-dimensional settings, the number of parameters can be very large, some-
times even exceeding the sample size. Then, a fundamental issue is to derive the the-
oretical properties of regularized estimators such as those using a lasso-type (Tib-
shirani 1996) penalty term. While several properties on regularized point estimators 
have been assessed, methods to adequately quantify estimate uncertainty and derive 
confidence intervals is an important topic under investigation, usually referred as 
post selection inference or selective inference. Classical inferential theory is not 
valid. Even if interest focuses only on few parameters with the others considered a 
nuisance, the score function is seriously affected by the dimension of the nuisance 
parameter. Recent developments explore how extensions of Rao’s score test function 
can be utilized both for hypothesis testing and confidence intervals in high-dimen-
sional generalized linear models.
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A key contribution is due to Ning et  al. (2017). For a subset of parameters of 
interest, they proposed a new device, called a decorrelated score function, that can 
be used with high dimensional logistic and Poisson regression models, among oth-
ers. To illustrate, suppose the assumed model is characterized by a set of parameters 
� that can be partitioned as � = (�, �) , where � is a finite-dimensional parameter of 
interest and � is a high-dimensional nuisance parameter. Ning et al. (2017) applied 
a decorrelation operation to the score function, obtaining a score function for � that 
is uncorrelated with the nuisance score function. The decorrelated score test can 
be viewed as an extension of Rao’s score test, and it is equivalent to this in a low-
dimensional setting. For instance, consider a logistic regression model with covari-
ates Q = (z, x)� ∈ ℝ

p , where z is the variable of interest with coefficient � and x are 
other covariates, with coefficients � , assumed as sparse. Then, the log-likelihood 
function is

Ning et al. (2017) showed that when � has high dimension, Rao’s score test statis-
tic with maximum likelihood and regularized estimator fails its asymptotic optimal 
properties. In particular, the score functions no longer have a simple limiting distri-
bution. The decorrelated score function of � is defined as

where u�(�, �) = ��(�, �)∕�� is the score function with respect to � , and 
w = �(�, �) �(�)−1 . The resulting function S(�, �) is uncorrelated with the score func-
tion for the nuisance parameters u�(�, �).

The score test for � requires an estimate for both � and w to compute the test sta-
tistic Ŝ(�, �̂) to be evaluated under H0 ∶ � = �0 . Ning et al. (2017) proposed an algo-
rithm for such computation and showed that it applies to several models, to several 
regularized estimators, and also for a multi-dimensional parameter of interest. Under 
H0 , the test statistic

with �̂S a consistent estimator of the variance of the decorrelated score function has, 
asymptotically, a standard normal distribution, under mild assumptions. In compari-
son with Wald-type tests for high dimensional settings, such as the desparsifying 
method (Van de Geer et  al. 2014), the decorrelated score test was shown through 
simulation to be slightly more powerful. The decorrelated score function can also 
generate valid confidence intervals for the parameters of interest (Shi et al. 2020).

High-dimensional data typically are sparse data, which can cause problems such 
as infinite estimates in models for categorical data because of complete separation 
or quasi-complete separation. Generally, with sparse data or infinite maximum like-
lihood estimates, it is popular to use Firth’s penalized-likelihood approach (Firth 
1993). Siino et al. (2018) have developed the penalized score statistic test for logistic 

�(�, �) =
1

n

n∑

i=1

{
yi
(
�zi + ��xi

)
+ log

[
1 + exp

(
�zi + ��xi

)]}
.

S(�, �) = u�(�, �) − w� u�(�, �),

zDS =
√
n Ŝ(�0, �̂) ∕

�
�̂S,
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regression in the presence of sparse data by modifying the classical score function 
to partly remove the bias of the ML estimates due to sparseness. In particular, for 
logistic regression parameters, the authors showed through simulations that the 
score-based CIs with Firth’s penalization perform better than some competitors such 
as Wald and likelihood ratio statistics in terms of coverage level and average width, 
even with small samples, strong sparsity, and sampling zeros, and also for any num-
ber of covariates in the model.

Appendix: Score‑Based Tests and Confidence Intervals in R

The Wald test and CIs and likelihood-ratio-test-based profile likelihood CIs are eas-
ily accessible with statistical software, while score test and CIs are less commonly 
used and not generally available as default in the statistical software packages. How-
ever, functions implementing score-type inference for parameters in basic settings 
can be easily written by users, and such functions are increasingly available also in 
some computationally demanding contexts. In the following, we list some R func-
tions {packages} to calculate score-type tests and CIs, for the parameters of inter-
est in the categorical data analysis, in basic and more advanced methodological 
approaches. The list is not exhaustive.

Functions in the R Package propCIs

•	 diffscoreci
	   Score CI for difference of proportions with independent samples
•	 riskscoreci
	   Score CI for the relative risk in a 2 × 2 table
•	 orscoreci
	   Score CI for an odds ratio in a 2 × 2 table
•	 scoreci.mp
	   Score confidence interval (Tango 1998) for a difference of proportions with 

matched-pairs data
•	 scoreci
	   Wilson’s confidence interval (Wilson 1927) for a single proportion
•	 midPci
	   mid-P confidence interval adaptation of the Clopper-Pearson exact interval

Functions in Other R Packages

•	 binom.conf.int {epitools}
	   Calculates Wilson confidence intervals for binomial parameters
•	 binconf {Hmisc}
	   CI for proportion with “wilson" option for score CI
•	 score.stat {VGAM}
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	   Generic function that computes Rao’s score test statistics evaluated at the 
null values.

•	 scoretest {StepReg}
	   This function can compute score test statistic and p-value for a linear model 

when one adds an explanatory variable
•	 score_test {tram}
	   p-values and confidence intervals for parameters in linear transformation 

models (Hothorn et al. 2018) obtained by the score test principle
•	 summarylr {glmglrt}
	   summarylr is an improved summary function for standard glm (stats pack-

age) adding LRT or Rao score p-values
•	 HypoTest {CompRandFld}
	   The function performs statistical hypothesis tests for nested models based 

on composite likelihood versions of: Wald-type, score-type and Wilks-type 
(LR) statistics

•	 sig {LogisticDx}
	   Significance tests (LR, Score, Wald) for a binary regression model fit with 

glm
•	 confint2 {glmtoolbox}
	   CIs based on Wald, likelihood-ratio, Rao’s score tests for a generalized lin-

ear model
•	 anova2 {glmtoolbox}
	   Can compare nested generalized linear models using Wald, score, and LR 

tests
•	 glm.scoretest {statmod}
	   Computes score test statistic for adding covariate to a generalized linear 

model
•	 confint_contrast {glmglrt}
	   Can compute contrasts of fixed-effects in many models. The default imple-

mentation computes Wald’s confidence intervals with any model. It has special-
ized use for GLMs with Wald’s, LRT and score CIs and may be used with other 
models.

•	 binom.midp {binomSamSize}
	   Calculate mid-p confidence interval for binomial proportion
•	 exact.test {exact}
	   Unconditional exact tests for 2 × 2 tables with independent samples
•	 binomDiffCI {MKinfer}
	   Confidence intervals for difference of two binomial proportions
•	 scoreci {ratesci}
	   Score confidence intervals for comparisons of independent binomial rates
•	 pairbinci {ratesci}
	   Confidence intervals for comparisons of paired binomial rates
•	 bgtCI {binGroup}
	   Confidence intervals for a proportion in binomial group testing
•	 binomTest {conf}
	   Confidence intervals for binomial proportions
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