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Abstract
This paper considers improved forecasting in possibly nonlinear dynamic settings, 
with high-dimension predictors (“big data” environments). To overcome the curse 
of dimensionality and manage data and model complexity, we examine shrinkage 
estimation of a back-propagation algorithm of a neural net with skip-layer connec-
tions. We expressly include both linear and nonlinear components. This is a high-
dimensional learning approach including both sparsity L

1
 and smoothness L

2
 penal-

ties, allowing high-dimensionality and nonlinearity to be accommodated in one step. 
This approach selects significant predictors as well as the topology of the neural net-
work. We estimate optimal values of shrinkage hyperparameters by incorporating a 
gradient-based optimization technique resulting in robust predictions with improved 
reproducibility. The latter has been an issue in some approaches. This is statistically 
interpretable and unravels some network structure, commonly left to a black box. 
An additional advantage is that the nonlinear part tends to get pruned if the underly-
ing process is linear. In an application to forecasting equity returns, the proposed 
approach captures nonlinear dynamics between equities to enhance forecast perfor-
mance. It offers an appreciable improvement over current univariate and multivari-
ate models by actual portfolio performance.

Keywords Nonlinear shrinkage estimation · Gradient-based hyperparameter 
optimization · High-dimensional nonlinear time Series · Neural networks
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Introduction

An important step in designing modern predictive models is to cope with high-
dimensional data, presenting large numbers of (cor)related variables and complex 
properties. “Big data” is both an increase in the number of samples collected over 
time, and an increase in the number of potential explanatory variables and predic-
tors. When dimension grows, the specificities of high-dimensional spaces and data 
must then be taken into account in the design of predictive models. While this is 
valid in general, its importance is heightened when using nonlinear tools such as 
artificial neural networks. Most nonlinear models involve more parameters than 
the dimension of the data space which may result in a lack of identifiability, lead 
to instability, and overfitting (Huber 2011; Cherkassky et  al. 1994; Moody 1991). 
Selection of significant predictors, and model complexity are the key tasks of 
designing accurate predictive models in data-rich environments.

Feature extraction and feature selection are broadly the two main approaches to 
dimensionality reduction. Extraction transforms the original features into a lower 
dimensional space preserving all its fundamentals. Feature selection methods select 
a small subset of the original features without a transformation. Extraction methods 
include principal component analysis (Pearson 1901; Eckart and Young 1936), fac-
tor analysis (Spearman 1904), canonical correlations analysis (Hotelling 1936), and 
several others.1 Feature selection is accomplished by such methods as Ridge (Hoerl 
and Kennard 1970), LASSO (Tibshirani 1996) and Elastic Net (Zou and Hastie 
2005).

In this work, our main focus is on feature selection techniques. We apply shrink-
age approaches (usually referred to as regularization in machine learning literature). 
We embed feature selection in the backpropagation algorithm as part of its over-
all operation. Accordingly, we extend our loss function to include L1 norm for the 
weights of the dense network, and L2 norm for the weights in the skip-layer. The 
dense network corresponds to a multilayer neural network, whereas the skip-layer 
denotes the direct connection from each of the input variables to each of the output 
variables, which is similar to a linear regression model.

Shrinkage is an implicitly embedded feature selection. It is an example of model 
selection since only a subset of variables contributes to the final predictor. It has 
frequently been observed that L1 shrinkage produces many zero parameters, leading 
to some features being dropped and a sparse model. Only those parameters whose 
impact on the empirical risk is considerable appear in the fitted model (Ng 2004). 
Shrinkage is a proper means of controlling complexity in the nonlinear component. 
From an optimization point of view we have a neural network learned/estimated by 

1 Cunningham and Ghahramani (2015) surveyed the literature on linear dimensionality reduction in their 
work.
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LASSO. This prevents hidden units from getting stuck near zero and/or exploding 
weights.

Simultaneously, we employ the L2 shrinkage on the skip-layer connections (linear 
part of the model), in order to penalize groups of parameters, and encourage the sum 
of the squares of the parameters to be small. Therefore we will not drop specific 
features from linear component, making it possible to interpret the marginal impact 
of predictors on the target variable. It is worth mentioning that the linear part of the 
model can be interpreted as a Ridge regression.

There are other benefits to shrinkage/regularization. Empirically, penalizing the 
magnitude of network parameters is also a way to reduce overfitting and to increase 
prediction accuracy (Ng 2004; Chui and Li 1992). This is especially true in the 
state-of-art models, such as deep learning models with large number of parameters. 
Our proposed algorithm combines the neural network’s advantage of describing the 
nonlinear process with the superior accuracy of feature selection that is provided by 
a penalized loss function that combines L1 and L2 norms.

There is increasing interest in merging neural networks with more traditional 
statistical techniques, like shrinkage methods. For instance, in LassoNet (Lemhadri 
et al. 2021) a neural network is combined with global feature selection. This frame-
work uses an input to output skip connection and allows a feature to have non-zero 
weight in a hidden unit only if its linear connection is active. The main drawback 
of this approach is that the model ignores the possibility of nonlinear relationships 
between features and target variables at the beginning of the process, the main rea-
son for using a nonlinear neural network. However, in the dense layer the model cap-
tures the nonlinear relationship between the remaining features and the target vari-
able. In contrast to LassoNet, in our AAShNet feature selection and sparsity have 
been tackled by the nonlinear layer allowing for all nonlinear relationships to be 
captured. There are also recent attempt to select features for neural networks using 
group lasso regularization [see: Ho and Dinh (2020)]. It is established that this fea-
ture selection method is consistent for single-output feed-forward neural networks 
with one hidden layer and hyperbolic tangent activation function.

Many studies have suggested neural networks as a promising alternative to linear 
regression models. Empirical evidence on out-of-sample forecasting performance 
is, however, mixed. It is challenging to determine linear and nonlinear components. 
Linearity tests do often suggest that real world series are rarely purely linear or 
nonlinear.

We consider the possibility that the series (yt) contain both a linear component, 
(Lt) , and a nonlinear component (Nt).

Neural network alone is not best suited to handle both linear and nonlinear compo-
nents, especially when the linear component is superior to the nonlinear component 
[see Habibnia (2016) for a detailed discussion of testing linearity and nonlinear time 
series models].

Two different approaches to model and forecast series with both linear and 
nonlinear patterns are available. The first approach is a two step methodology to 

(1)yt = Lt +Nt
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combine linear time series models and neural network models. In this approach, the 
first step residuals are obtained from the fitted linear model êt = yt − L̂t . In the sec-
ond step a nonlinear model (e.g., GARCH, neural nets) is trained on the residuals 
of the first step. In principle, this “hybrid” two step approach can provide superior 
predictions when both the linear and neural network model are well specified. In 
practice, however, two types of model specification errors are introduced without an 
ability to assess their mutual impact.

The alternative approach that we are proposing in this paper models both linear 
and nonlinear components adoptively. It is based on a neural network with skip-layer 
connections including both linear and nonlinear structures.

The rest of the paper is organized as follows. Section “The Model” provides the 
basic framework of the proposed model. In Section “Gradient-Based Hyperparam-
eter Optimization” we investigate proper estimation of shrinkage hyperparameters 
and introduce gradient-based techniques based on reverse-mode automatic differen-
tiation (RMAD) to accomplish this. Section “Case Study: Return Prediction” pre-
sents an application to US financial returns. Section “Concluding Remarks” con-
tains some concluding remarks.

The Model

In this study, we examine a feedforward neural network with one hidden layer, 
known as a dense network. Neural network models can be seen as generalizations 
of linear models, when one allows direct connections from the input variables to the 
output layer with a linear transfer function,2 that we refer to as the skip-layer. The 
model is expressed as

where Φ describes the network by a vector function. We associate subscript i with 
the input layer, subscript j with the hidden layer, and subscript k with the output 
layer. xit = (x1t, x2t, ..., xmn) is the value of the ith input node, which can be a con-
stant input representing biases, a matrix of lagged values of yt and some exogenous 
variables. �j(.) are the activation functions used at the hidden layer. A single-hidden-
layer neural network with skip-layer connections is shown in Fig. 1. A network with 
only one hidden layer and skip-layer connections has three sets of weights: those 
for direct connections between the inputs and the output ( wik ), those connecting the 
inputs to the hidden layer ( wij ), and those connecting the output of the hidden layer 
to the final output layer(wjk).

(2)yt = Φ(x;w) =
∑
i→k

xitwik +
∑
j→k

�j

(∑
i→j

xitwij

)
wjk + �t,

2 Using linear function for the output unit activation function (in conjunction with nonlinear activations 
amongst the hidden units) allows the network to perform a powerful form of nonlinear regression. So, the 
network can predict continuous target values using a linear combination of signals that arise from one 
layer of nonlinear transformations of the input.
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First term in Eq. (2) represents a linear regression term. Understanding the theo-
retical advantage of skip connections and residual connections has recently attracted 
much attention in the realm of deep learning. Training very deep neural nets are 
generally more difficult but skip connections is widely used to alleviate numerical 
issues in deep neural nets, with additional benefits in optimization efficiency and 
statistical accuracy. The benefits of skip connections are likely due to multiple fac-
tors, including better generalization ability (or feature learning ability), better signal 
propagation and better optimization landscape. For instance, Orhan (2017) shows 
that skip connections eliminate the singularity and suggests that these direct connec-
tions improve the landscape by breaking symmetry. Skip connections have an unin-
terrupted gradient flow by creating short paths from the first layer to the last layer, 
which tackles the vanishing gradient problem. The model is easy to train because 
skip connections improve the flow of information and gradient. As a side note, skip 
connections can be used flexibly. They are not restricted to the form presented in this 
work which we only have direct connections from the input layer to the model out-
put and can be used between any pair of hidden layers similar to the residual neural 
network (ResNet) architecture and its variants [see: He et al. (2015)]. As a final note, 
it has been experimentally validated (Li et al. 2017) the loss landscape changes sig-
nificantly when introducing skip connections.

The second term in Eq. (2) denotes the dense network of the two layers, hidden and 
output, is usually referred to as a multi-layer perceptron in the literature. It has been 
shown to be able to perform well with nonlinear complex data. A greater capacity of 
the dense network, compared to the skip-layer, is realized by stacking two layers, ena-
bling it to model more complex data. A differentiable nonlinear activation function � 
is used in the hidden units. �t is a random disturbance term which captures all other 
factors influencing y than the x. A linear component term moves the model in the lin-
ear direction. This aids statistical interpretation and unravels the structure behind the 

Fig. 1  A single-hidden-layer neural network with skip-layer connections
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network, otherwise left to a black box. This simultaneous approach has the advantage, 
when we apply shrinkage techniques to estimate network parameters for an essentially 
linear process, of pruning the hidden neurons.

Estimation of network elementary parameters based on prediction error minimisa-
tion is known as training/learning. The most common cost/risk function is the mean 
squared prediction error (MSE), E =

1

n

∑n

t=1
(yt − ŷt)

2 . Given target values yt and net-
work estimated outputs ŷt error functions are obtained for each parameter set, followed 
by tuning of the parameters.

The error surface becomes increasingly complicated with the number of input vari-
ables and network parameters. It is common to employ the conventional feed-forward 
neural network, trained with the popular and revolutionary gradient-descent-type algo-
rithm known as backpropagation. The backpropagation algorithm was first introduced 
by Bryson et al. (1979) and popularized in the field of artificial neural network research 
by Werbos (1988) and Rumelhart et al. (1986). Error function’s sensitivity to network 
parameters is assessed via Gradient Descent optimization. Gradient is normally defined 
as the first order derivative of the error function with respect to each of the model 
parameters. Working out the gradients can be performed in a completely mechanical 
way known as Automatic Differentiation (Baydin et al. 2017). AD employs the Jaco-
bian matrix of gradients for each parameter wi to identify directions that decrease the 
height of the error surface (see “Appendix”). In fact backpropagation is only a specific 
case of reverse-mode AD that is applied to an objective function errors as functions of 
model parameters.

The weight adjustment is given by

where the constant � is the learning rate (step size) for updating elementary param-
eters, its value falls between zero and one. By iteratively repeating this mechanism, 
the network can be trained in a way that converges to the optima. The set of new 
elementary parameters are repeatedly presented to the network until the error value 
is minimized. Around the optimum point, all the elements of the gradient would be 
very small, leading to tiny changes in new parameters.

We add the L1 and L2 penalties in training our model to the loss function Ẽ(.) , the 
original MSE. The following optimization problem is used for training:

where the regularization term Ω(w,�) is a combination of the L1 norm and the L2 
norm of the parameter vector. � sets the impact of shrinkage on the loss, with larger 
values resulting in more penalization. Using the regularized objective causes the 
training procedure to be inclined to smaller parameter values; unless larger param-
eters considerably improve the original error value (MSE). Assuming a fixed � , to 
learn w∗ , we only need to include the derivative of Ω(w,�) in our derivatives:

(3)wnew = wold − �
�E(w)

�w

(4)w∗ = argmin
w

Ẽ(w|�,X) = argmin
w

E(w|�,X) + Ω(w,�)
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where Δ is the gradient of the regularized loss function. 𝜆 > 0 is proportional to 
complexity of the model but is not a parameter that appears in the model. It is a 
hyperparameter. In the next section, we explain the impact of hyperparameters and 
elaborate on our procedure for tuning them.

We employ L1 and L2 shrinkage on the parameters of the dense network and skip-
layer, respectively; as is depicted by following optimization problem:

which can be realized by iteratively adjusting the parameters using the updating 
rules below

where �1 and �2 are non-negative values known as shrinkage hyperparameters. L1 
sparsity norm and L2 smoothing norm are two closely related regularizers that can 
be used to impose a penalty on the complexity of the model that is to be learned. 
Shrinkage estimation of the model can be seen as an implementation of Occam’s 
razor, introducing a controllable trade-off between fitting data and model com-
plexity, enabling us to have models of less complexity with adequate generaliza-
tion capability. Regularization in neural networks limits the magnitude of network 
parameters by adding a penalty for weights to the model error function. In this study, 
L2 shrinkage penalizes parameters in skip-layer connections by adding sum of their 
squared values to the error term. L1 shrinkage penalizes parameters in the dense net-
work to encourage the topology of the learned network to be sparse. The relative 
importance of the compromise between finding small weights and minimizing the 
original risk function depends on the size of �.

To use L2 shrinkage, we add a �2w term to the gradient as the derivative of w2 is 
2w. L2 shrinkage works with all forms of learning algorithms, but does not provide 
implicit feature selection. The derivative of the absolute value of w is w/|w|, however 
L1 norm is not differentiable at zero and hence poses a problem for gradient-based 
methods.

The problem can be solved using the exact gradient, which is discontinuous at 
zero. We can also solve the problem by the smooth approximation approach which 
will allow us to use gradient descent. To smooth out the L1 norm using an approxi-
mation, we use 

√
w2 + � in place of |w| , where � is a smoothing parameter which 

(5)
{

Δ =
�E(w)

�w
+

�Ω(w,�)

�w

wnew = wold − �Δ

(6)w∗ = argmin
w

E(w|�,X) +
�2

2

∑
i→k

w2
ik

+ �1

(∑
i→j

|wij| +
∑
j→k

|wjk|
)

(7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

wnew
ik

= wold
ik

− �
�

�E(w��,X)
�wik

+ �
2
wold
ik

�

wnew
ij

= wold
ij

− �
�

�E(w��,X)
�wij

+ �
1
sgn

�
wold
ij

��

wnew
jk

= wold
jk

− �
�

�E(w��,X)
�wjk

+ �
1
sgn

�
wold
jk

��
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can also be interpreted as a sort of sparsity parameter. When � is large compared to 
w, the expression w + � is dominated by � and taking the squared root yields approx-
imately 

√
� (Lee et al. 2006).

Gradient‑Based Hyperparameter Optimization

The major drawback of shrinkage is that it introduces additional hyperparameters. 
In practice we have two set of parameters: model elementary parameters (network 
weights and biases), and learning algorithm hyperparameters (magnitude of L1 and 
L2 penalties, and learning rate). We would ideally like to determine these hyper-
parameters to get optimal generalization.3 As opposed to elementary parameters, 
these hyperparamters cannot be directly trained by the data. Whereas the elemen-
tary parameters specify how to transform the input data into the desired output, the 
hyperparameters define how our model and algorithm are actually structured.

The performance and robustness of neural networks relies to a large extent on 
hyperparameters. Tuning these hyperparameters not only makes the investigation of 
methods difficult, but also hinders reproducibility (Bergstra et al. 2011). Transparent 
tuning of hyperparameters can be part of an Hyperparameter Optimization (HPO), 
as an outer loop in training procedures.

The de-facto naïve approach of searching through combinations of potential 
values of hypergradients and choosing the one that performed the best (a.k.a. grid 
search) is very time-consuming and becomes quickly infeasible as the dimension of 
hyperparameter space grows. In many practical applications manually searching the 
space of hyperparameter settings is tedious and tends to lead to unsatisfactory out-
comes. Bergstra and Bengio (2012) show empirically and theoretically that random 
search more efficient than grid search. Statistical techniques such as cross-validation 
(Wahba 1990; Larson 1931), bootstrapping (Efron and Tibshirani 1994), and Bayes-
ian methods (MacKay 1992) can also assist in determining hyperparameters.

HPO must be guided by some performance metric, typically measured by cross-
validation (CV) on the training set, or evaluation on a held-out validation set. The 
rationale behind CV is to split the data into the training samples used for learning 
the algorithm, and the validation samples (one or several folds) for estimating the 
risk of each algorithm and for evaluation of its performance. CV consists of averag-
ing several hold-out estimators (folds) of the risk corresponding to different splits of 
the data, and selecting the algorithm with the smallest estimated risk. Within each 
fold, hyperparameters are fixed and we only estimate model elementary parameters. 
The validation samples play the role of new unseen data as long as the data are i.i.d.4 
For a general description of the CV see Geisser (1975), Chen and Hagan (1999), and 
Arlot and Celisse (2010) for a comprehensive review on cross-validation procedures 
and their applications in different algorithms and frameworks. Several studies such 

3 Generalization means building a model on one set of training data and hope that it makes effective pre-
dictions on a different set of test data.
4 This assumption can be relaxed. see: Chu and Marron (1991).
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as Rivals and Personnaz (1999) show cases in which CV performance is less than 
satisfactory.

Recently, automated approaches for estimation of hyperparameters have 
been proposed which can provide substantial improvements and transparency. 
Although one may also “hyperparameterize” certain discrete choices in design of 
the model (e.g. number of hidden units), we focus only on the continuous hyper-
parameters in this work. There are a number of gradient-free automated optimiza-
tion methods (Hutter et al. 2011; Bergstra et al. 2011, 2013; Snoek et al. 2012), 
all of which rely on multiple complete training runs with varied fixed hyperpa-
rameters. Hyperparameters are chosen to optimize the validation loss after com-
plete training of the model parameters.

Gradient-based HPO approaches, proposed by Larsen et  al. (1996) and 
Andersen et al. (1997), emerged in the 1990s.

We can distinguish two main approaches of gradient-based optimization: 
Implicit differentiation and iterative differentiation.

Implicit differentiation, first proposed by Larsen et  al. (1996), computes the 
derivative of the cost Lvalid with respect to � based on the observation that, under 
some regularity conditions, the implicit function theorem can be applied in 
order to calculate the gradients of the loss function. In particular, the cost func-
tion is assumed to smooth and converge to local minima. The inner optimization 
w(�) ∈ argminwLtrain can be characterized by the implicit equation ∇wLtrain = 0 . 
Bengio (2000) derived the gradients for unconstrained cost function and applied 
the algorithm to L2 shrinkage for linear regression. The method has also been 
used to find kernel parameters of Support Vector Machines (Keerthi et al. 2007). 
Pedregosa (2016) proposes HOAG which uses inexact gradients, allowing the 
gradient with respect to hyperparameters to be computed approximately.

In iterative differentiation, first proposed by Domke (2012), Larsen et  al. 
(2012), the gradient for hyperparameters are calculated by differentiating each 
iteration of the inner optimization loop and using the chain rule to aggregate the 
results. However, the problem with this reverse-mode approach is that one must 
retain the entire history of elementary parameter updates, making a naïve imple-
mentation impractical due to memory constraints. Reverse-mode differentiation 
requires intermediate variables to be maintained in the memory for the reverse 
pass and evaluation of validation loss needs hundreds or thousands of inner 
optimization iterations. Maclaurin et  al. (2015), Franceschi et  al. (2017) later 
extended this for setting of stochastic gradient descent via reverse mode auto-
matic differentiation of validation loss. The burden of storing the entire training 
trajectory w1,… ,wT is avoided by an algorithm that exactly reverses SGD with 
momentum to compute gradients with respect to all training parameters, only 
using a relatively small memory footprint, making a solution feasible for large-
scale big data machine learning problems.

We defined the updating rule for elementary parameters as wt+1 = wt − �∇Ltrain 
where Ltrain = Ẽ(wt|�,Xtrain) is the regularized loss value on train data. To cal-
culate hypergradients we rely on the unregularized loss function, that is 
Lvalid = E(wt|�,Xvalid) , as the actual generalization performance of the model, on 
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unseen data points, does not directly depend on regularizers; otherwise the model 
with no regularization would be always selected:

There are cases where SGD can become very slow. The method of momentum is 
designed to accelerate learning, especially in the face of high curvature, small but 
consistent gradients, or noisy gradients (Goodfellow et  al. 2016). We modify our 
training (Algorithm 1) to include a velocity variable v storing the momentum by cal-
culating exponentially decaying moving average of past gradients. 

Algorithm 1 Stochastic gradient descent with momentum
1: input: initial w1, decays γ, learning rates η, loss Ltrain

2: initialize v1 = 0
3: for t = 1 to T do
4: gt = ∇wLtrain

5: vt+1 = γtvt − (1− γt)gt

6: wt+1 = wt + ηtvt

7: end for
8: output trained parameters wT

where �t is the momentum decay rate. The training procedure starts with elemen-
tary parameters velocity v1 = 0 and w1 and ends with vT and wT = wT−1 + �T−1vT−1 . 
Algorithm 2 is then used to calculate the gradients of validation loss with regard to 
the hyperparameters.

Algorithm 2 Reverse-mode differentiation of SGD
1: input: wT , vT , γ, η, train loss Ltrain, validation loss Lvalid

2: initialize dv = 0, dλ = 0, dηt = 0, dγ = 0
3: initialize dw = ∇wLvalid

4: for t = T counting down to 1 do
5: dηt = dwTvt

6: wt−1 = wt − ηtvt

7: gt = ∇wL(wt,λ, t)
8: vt−1 = [vt + (1− γt)gt]/γt
9: dv = dv + ηtdw
10: dγt = dvT(vt + gt)
11: dw = dw − (1− γt)dv∇w∇wLtrain

12: dλ = dλ− (1− γt)dv∇λ∇wLtrain

13: dv = γtdv
14: end for
15: output gradient of Lvalid w.r.t λ

The velocity vt is needed to reverse the path, otherwise without momentum, gt 
and �t alone would not be able to recover wt−1 . Notice that the loss of information 

(8)
�∗ = argmin�Lvalid

s.t. w(�) ∈ argminwLtrain
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caused by finite precision arithmetic in computers leads to failure of this algo-
rithm. For this reason, we need to store the bits lost in vt when multiplied by �t.

Given this powerful gradient-based mechanism for finding hyperparameters, 
a natural extension to our model is to introduce a hyperparameter � denoting 
the contribution of skip-layer and dense-network in producing predictions with 
higher generalization. That is to say, our model can be reformulated as:

where � assumes a value between zero and one. Appreciating that the skip-layer and 
the dense network have unbalanced effects on the outcome, one can see how this 
may result in faster convergence of training procedure. More importantly, � can be 
interpreted as the activation of skip-layer and dense network and can point to linear-
ity or nonlinearity components.

There is some similarity to averaging estimators. In lower dimensions, a nonpar-
ametric model may replace the Neural component. See, for example, Wooldridge 
(1992), Rahman et al. (1997), Fan and Ullah (1999), Kotlyarova and Zinde-Walsh 
(2006) and Hansen (2007). Fan and Ullah (1999) considers a combined estimator 
of the regression mean in the i.i.d framework. Their combined estimator is a lin-
ear combination of a parametric estimator and a nonparametric estimator with the 
weights automatically determined by data. They established favorable convergence 
properties for their estimator under different asymptotic conditions on the global 
discrepancy between the parametric model and the true regression function. Mostly, 
the use of combined estimators in the literature is restricted to convex combinations 
where a convex combination of a parametric and a non-parametric regression esti-
mator is employed to offer robustness to misspecification of the regression functions. 
Here we do not impose such restrictions and shrinkage estimation of the coefficients 
is allowing for the best bias-variance trade-off point for the learning algorithm. Semi 
nonparametric methods (series models) lie in between our method and the just men-
tioned nonparametric methods, but with greater ability to handle larger dimensions 
as in our setting.

Case Study: Return Prediction

Research into modelling and forecasting financial returns has a long history. Sev-
eral models are described in Tsay (2005) and Campbell et al. (1996) that attempt to 
explain return time series using linear combinations of one or more financial mar-
ket factors. The most widely studied single factor model is the capital asset pricing 
model (CAPM) of Sharpe (1964) and Lintner (1965) that relates the expected return 
of equities to the expected rate of return on a market index (such as the Standard and 
Poor’s 500 Index). The empirical performance of CAPM is poor as it cannot explain 
the behaviour of asset returns, see Fama and French (2004). This failure is perhaps 
due to the absence of multiple factors. Arbitrage pricing theory (APT) is a general 
model proposed by Ross (1976) to account for these deficiencies. APT presents a 

(9)yt = Φ(x;w) = �
∑
i→k

xitwik + (1 − �)
∑
j→k

�j

(∑
i→j

xitwij

)
wjk + �t,
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linear approximate model of expected asset returns based on an unknown number 
of macroeconomic “factors” or market indices. The relationship between the factors 
and historical returns is routinely determined linearly.

Return time series present characteristics such as comovement, nonlinearity, 
non-Gausianity (skewness and heavy tails), volatility clustering and leverage effect. 
This makes the modelling task very challenging, see Hsieh (1991), Bollerslev et al. 
(1994), Brooks (1996), Cont (2001).

The data are daily returns of m = 418 equities on the S&P 500 index from 
03.01.2006 through 28.09.2018, for a total of 3208 observations. The initial sam-
ple 03.01.2006–28.09.2017 is used for estimation (training), with T = 2957 in-sam-
ple size. The holdout sample period 01.10.2017–28.09.2018 (251 observations) is 
employed to examine the models’ out-of-sample forecasting performance. 1-step 
(here one day) ahead forecasts of targets ( ̂yit+1|t ) are based on a rolling estimation 
window. Parameter estimates are updated every five steps.

We believe accounting for comovements between financial returns is important in 
forecasting returns. Consequently, the lags of other equities are included as predic-
tors for any return series. We examine the nonlinear high-dimensional forecasting 
model described in the prior sections (AAShNet model) as well as several compet-
ing models and benchmarks.

We compare our proposed model with a benchmark, the sample mean of yt over 
the in-sample window, as the 1-step ahead forecast. This corresponds to assuming 
the log daily price follows a random walk (RW) with drift. It is almost equivalent to 
the “zero forecast” when the in-sample window is large enough. Furthermore, a buy-
and-hold (B&H) strategy in the market portfolio (S&P 500 Index) has been consid-
ered as another benchmark. To understand whether allowing nonlinearity improves 
portfolio performance we examine the AAShNet algorithm (with Ridge and Lasso) 
optimized by cross-validation.

Since predictability of financial returns has major consequences for financial 
decision making, the model with minimal forecast error is deemed optimal. How-
ever, the model with minimum forecast error does not necessarily guarantee profit 
maximization, the primary objective of financial decision makers. Armstrong and 
Collopy (1992), Pesaran and Timmermann (1995, 2000), Granger and Pesaran 
(2000) and Engle and Colacito (2006) argue that a forecast evaluation criterion 
should be related to decision making and judge predictability of financial returns 
in terms of portfolio simulation. More specifically, a trading (portfolio) simulation 
approach assumes that all competing models are applied with stock market virtual 
investment decisions, and out-of-sample portfolio performances are used to evaluate 
the predictability of alternative models.

Consequently, this paper examines both statistical and portfolio performance 
measures (the out-of-sample RMSE and the portfolio performance during the out-
of-sample period). Figure 2 illustrates portfolio excess returns for the out-of-sample 
period for the proposed model (ASShNet) against competing approaches. We ran-
domly selected 50 stocks out of 418 stocks to construct the portfolio. However, the 
forecast of each selected stock is based on the lags of all 418 equities.
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Consider a passive, equally weighted (1/M) portfolios with short selling. This 
portfolio is known to be a very stringent benchmark that many optimization mod-
els fail to outperform [see DeMiguel et  al. (2009)]. We compute the portfolio’s 
out-of-sample excess returns and volatility as well as the Sharpe ratio. Sharpe 
ratio measures risk-adjusted returns, a portfolio with a greater Sharpe ratio 
offers greater returns for the same risk. If a portfolio with lower Sharpe ratio has 
returned better over a time period than another portfolio with a higher ratio, the 
risk of losing by investing in the former fund will be higher.

The proposed penalized neural net behaves noticeably better in this empirical 
analysis. Table 1 provides evidence for out-of-sample forecasting ability of this 
model vis-à-vis competing approaches in terms of the Sharp ratio. AAShNet also 
offers an appreciable improvement over linear shrinkage models and benchmarks 
based on RMSE and actual portfolio performance. In the Ridge and Lasso regres-
sions, the best model is selected by cross-validation. We perform generalized 
cross-validation, which is an efficient leave-one-out cross-validation.

AAShNet produces higher returns (10.24%) at the end of the out-of-sample 
period, with a Sharpe ratio of (1.143) that is superior to alternative models. This 
indicates that significantly improved forecast is obtained by modelling nonlinear 

Fig. 2  Comparison of AAShNet, and the competing models based on the portfolio excess returns in the 
out-of-sample period

Table 1  Average RMSEs and 
performance of investment 
portfolios for competing 
forecasting models

Portfolio Return (%) Sharp ratio Ave(RMSE)

AAShNet 10.2 1.143 0.01558
B&H 9.55% 0.767 –
RW 8.17 0.770 0.01564
Ridge 5.45 0.561 0.01613
Lasso 6.87 0.741 0.01590
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dynamics among variables. One should note that Random Walk with drift and 
AR(1) are special cases of shrinkage models and AAShNet when there is no 
dependence on other equities.

Concluding Remarks

Forecasting with many predictors has received a good deal of attention in recent 
years. Shrinkage methods are one of the most common approaches for forecasting 
with many predictors. Such methods have generally ignored nonlinear dynamic 
relations among predictors and the target variable.

In this study, we suggested an Adaptable and Automated Shrinkage Estimation 
of Neural Networks (AAShNet). We explained how skip-layer connections move 
the model in the right direction when the data contains both linear and nonlin-
ear components. To overcome the curse of dimensionality and to manage model 
complexity, we penalized the model loss function with L1 and L2 norms. Setting 
the size of shrinkage is still an open question. Recent studies have proposed auto-
mated approaches for estimation of algorithm hyperparameters. We employed 
the gradient-based automated approaches which treat shrinkage hyperparameters 
in the same manner as the network weights during training, and simultaneously 
optimize both sets of parameters.

The empirical application to forecasting daily returns of equities in the S&P 500 
index from 2006 to 2018 provides support for the out-of-sample forecasting ability 
of AAShNet algorithm vis-à-vis some competing approaches, both in terms of sta-
tistical criteria and trading simulation performance. Our empirical results encourage 
further research toward other possible applications of the proposed model.

Appendix: Automatic Differentiation

There are three main approaches that computer can work out the derivatives: 
Numerical, Symbolic and Automatic differentiation.

Automatic differentiation refers to a family of procedures to automatically cal-
culate exact derivatives of any function, including program subroutines, with time 
complexity at most a small constant factor of the time complexity of the original 
function. It is not inherently ill-conditioned and unstable similar to the numerical 
method and has much less computational complexity. It also does not suffer from 
expression swell problem of symbolic differentiation.

AD augments the standard computation with calculation of derivatives whose 
combination through chain rule gives the derivative for overall composition. AD 
can be applied on evaluation trace of arbitrary program subroutines which can be 
more than closed-form functions and are in fact capable of incorporating complex 
control flows which do not directly alter values. An automatic differentiator takes 
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a code subroutine that computes a function of several independent variables as 
input and gives as output a code that computes the original function along the 
gradient of the function with respect to the independent variables. As most of the 
functions are piece-wise differentiable and control flows not directly interfering 
with calculations, chain rule can be used repeatedly in such a way that gradients 
are calculated along intermediate values being computed.

Based on modus operandi of automatic differentiation there can be two 
implementations of this technique; the forward mode and the reverse mode. 
We investigate each method, by applying them on the same trivial function 
y = f (x1, x2) = x1x2 − cos(x1) at (x1, x2) = (6, 3).

In forward mode, we build a Forward Primal Trace of the values propagating 
through the function and a corresponding Forward Tangent Trace. Equation  10 
shows the forward evaluation of primals. Forward primal trace depicts the natural 
flow of composition. Equation 11 is the corresponding tangent trace for ẏ = 𝜕f

𝜕x1
 , that 

is the rate of change of the function f with respect to the input x1 . Notice that both 
traces are evaluated as written, top to bottom. To calculate the derivative with 
respect to n different parameters, n forward mode differentiations would be needed. 
This makes the forward-mode very inefficient for deep learning models where the 
number of parameters may amount to millions.

The reverse mode works by complementing each intermediate variable vi with an 
adjoint v̄i representing the sensitivity of output y to changes in vi . In reverse mode 
the code is executed and the trace is stored in memory at first stage. At second stage, 
the adjoints are calculated in opposite direction of the execution of the original func-
tion. The reverse adjoint trace corresponding to Eq. 11 is depicted in 12.
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For a function f ∶ ℝ
n
→ ℝ

m whose number of operations to be evaluated is denoted 
by ops(f ) , the complexity of calculating the Jacobian by forward and reverse modes 
are n × c × ops(f ) and m × c × ops(f ) , respectively, where it is guaranteed that c < 6 
(Griewank and Walther 2008). That is if n ≫ m , backward-mode is preferable, 
although it would have increased memory requirements. And forward mode should 
be used when the number of dependent variables is greater than the number of inde-
pendent variables.
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