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Abstract
This paper seeks to understand the long memory behaviour of global equity returns 
using novel methods from wavelet analysis. We implement the wavelet based mul-
tivariate long memory approach, which possibly is the first application of wavelet 
based multivariate long memory technique in finance and economics. In doing so, 
long-run correlation structures among global equity returns are captured within the 
framework of wavelet-multivariate long memory methods, enabling one to analyze 
the long-run correlation among several markets exhibiting both similar and dissimi-
lar fractal structures.

Keywords  Long memory · Fractal connectivity · Wavelets · Hurst exponent

JEL Classification  C13 · C14 · C22 · C32 · G15

Introduction

Estimation and the analysis of long memory parameters have mainly focused on 
the analysis of long-range dependence in stock return volatility using traditional 
time and spectral domain estimators of long memory. The presence of long mem-
ory requires major revisions in the standard estimation procedures without which 
the estimated results can be seriously biased. In this paper on long memory among 
global equity markets, several wavelet-based estimators are applied to test for pres-
ence of long memory in global equity returns and also returns volatility. The pres-
ence of long memory in volatility of stock returns as well as some returns themselves 
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is demonstrated from the empirical evidences. Furthermore, phases of efficiency 
and inefficiency of markets, as adjudicated by presence of both long memory and 
no-memory, is evidenced when the analysis is performed using rolling windows. 
Existence or absence of long memory in stock returns may be used to determine 
the stage of market development in terms of efficiency and inefficiency. According 
to the weak-form version of the Efficient Market Hypothesis (EMH), equity prices 
contain all available information about equity price, acquired from past trading. This 
suggests that prediction of prices, when the EMH hold, is not possible. On the other 
hand, presence of long-memory in equity returns and volatility implies that distant 
observations in the equity returns and volatility series are related to each other. This 
implication leads to rejection of efficient markets as presence of long-range depend-
ence is incompatible with the basic tenets of efficient market hypothesis (EMH).

The analysis of long memory is further extended to estimate long-run correla-
tion matrix of global equity returns using wavelet based multivariate long memory 
estimator. Long memory among several groups of equity markets can either be the 
result of some same underlying process generating the data or it could be a prod-
uct of multiple mechanisms (Wendt et al. 2009). The long-run correlation matrix, 
also known as fractal connectivity matrix, generated from multivariate long-mem-
ory model helps in determining convergence of wavelet correlations of long-range 
dependent processes. The convergence to an asymptotic value over a range of low-
frequency wavelet scales helps one in determining regimes of fractal connectivity 
(Achard et al. 2008; Achard and Gannaz 2016). In doing so, associations and simi-
larities between the processes that generate equity market returns of various markets 
can be highlighted. Furthermore, a hierarchical clustering algorithm is implemented 
on the elements of the generated fractal connectivity matrix to group markets having 
similar long-run correlation behavior. Significant rise in long-run correlations is evi-
denced during the subprime crisis period. However, long-run correlations among all 
equity markets are very low.1 Nonetheless, comparisons can be drawn with regard to 
the long-memory behavior of global equity markets during both normal and crisis-
hit periods. In this paper, the issue of multifractality of equity returns is also high-
lighted via implementation of a rolling window long memory procedure. The result-
ing estimates of long memory parameters, with varying degrees of fractal structures, 
are found to be not always stable, and fluctuate between regimes of efficiency and 
inefficiency. This implies that markets are not always efficient in the weak sense and 
arbitrage opportunities exist. The pattern of evolution of long memory parameter, as 
verified from the time-series of Hurst exponents, is in agreement with the adaptive 
markets hypothesis (Lo 2004).

1  This is not to be confused with the regular wavelet correlation where correlations tend to be strong in 
the long-run. Correlations based on fractal connectivity are used to determine the similarity in mecha-
nisms that generate the underlying long memory behaviour among markets.
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Literature Review

Since the groundbreaking work of Hurst (1951), where he investigated the flow of 
river Nile and found evidence of long-range dependence, there has been signifi-
cant interest, spanning researchers across disciplines, in the phenomena of long 
memory (Mandelbrot and Ness 1968; Granger and Joyeux 1980; Hosking 1981). 
Since then, a plethora of time-series based models of long memory has been 
developed to analyze long-range dependence in stochastic processes. However, 
a majority of research articles that focuses on estimation of long memory param-
eters and detection of the same relies on the traditional approaches (Mandelbrot 
1965; Lo 1991; Geweke and Porter-Hudak 1983). Numerous studies have been 
carried out to test the presence of long run dependence in stock returns and vola-
tility (see for eg. Ding et al. 1993; Granger and Ding 1995; Lobato and Velasco 
2000).

The presence of long memory in squared daily returns of S&P 500 index is 
evident in the works of Ding et al. (1993) and Lobato and Savin (1998). Ray and 
Tsay (2000) unearthed the presence of strong long-range dependence in the vola-
tilities of selected companies of the S&P 500 index. Granger and Ding (1995) also 
detected presence of long memory in absolute value of stock returns. Further-
more, Lobato and Velasco (2000) using a frequency domain method unearthed 
presence of long memory in stock returns and volatility of returns. Similarly, 
presence of long memory in returns of emerging markets is documented in Assaf 
and Cavalcante (2002), Barkoulas et al. (2000), Panas (2001), and Henry (2002).

In their analysis of the EMH, Jagric et al. (2005) employ a wavelet method to 
test for long memory in returns of some select European markets. Similar analysis 
using wavelet-based methods to detect long memory in the returns of Dow Jones 
Industrial average (DJI) is employed by Elder and Serletis (2007) where no evi-
dence of long memory is detected. However, presence of long memory in equity 
returns of some developed markets is documented in Ozdemir (2007). Similarly, 
there are many studies that either refute or confirm presence of long memory in 
both developed and emerging markets (Ozun and Cifter 2007; Bilal and Nadhem 
2009; Mariani et. al 2010; Tolvi 2003).

The presence of heterogeneous investment horizons can be one of the most 
important factors that generate long memory behavior in equity markets. Invest-
ment horizons, which can be successfully disaggregated into several micro-units 
using wavelet methods to delineate price behaviors from varying time-horizons, 
contain varying returns and volatility structures (Nekhili et  al. 2002; Gencay 
et  al. 2005; In et  al. 2011). Aggregation of all micro units, ranging from very 
short run to long run, is said to produce long memory properties in aggregate 
series (see Granger 1980; Davidson and Sibbertsen 2005). However, contempo-
raneous aggregation of microunits having both short-memory and long-memory 
may lead to spurious long-memory in the aggregate, thereby biasing the results 
in favour of long-range dependence. Granger and Ding (1996) attempt to theo-
retically explain this bias arising out of aggregation but however fail to empiri-
cally demonstrate that long memory in returns volatility of stock indices is due 
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to aggregating volatility of individual stocks containing short-memory. Further-
more, Andersen and Bollerslev (1997) theoretically demonstrated volatility to 
be an assortment of various heterogeneous information structures in the short-
run and concluded that the underlying volatility processes contain long memory. 
Nonetheless, in some major studies, estimates of long-memory are found to be 
uncontaminated by aggregation effects thereby supporting evidence in favour of 
fractality in equity returns (see Han 2005; Souza 2007; Kang et al. 2010), thereby 
rejecting any indication of spurious long memory.

Early studies examining long memory in financial time series, using wavelets, are 
relatively few. (See Jensen 1999; Jensen and Whitcher 2000; Xu and Gencay 2003; 
Vuorenmaa 2005; DiSario et al. 2008). Significant contribution to studies in wavelet 
based long memory and fractal properties of asset returns can be found in Gencay et al. 
(2001) and Xu and Gencay (2003). Recent studies demonstrating long memory in high 
frequency time series mainly focus on newer approaches built from wavelet building 
blocks (Power and Turvey 2010; Tan et al. 2012, 2014; Xue et al. 2014; Pascoal and 
Monteiro 2014).

This paper investigates long memory among global equity markets using estima-
tors from the wavelet domain by implementing wavelet based approaches of Abry and 
Veitch (1998) and Abry et  al. (2003) to examine the Hurst exponents, and its time-
varying structures. Moreover, an analysis of multivariate long memory of global equity 
markets using the recent method of Achard and Gannaz (2016) is carried out, which 
possibly is the first application of wavelet domain multivariate long memory technique 
in finance and economics. The aforementioned multivariate method allows one to ana-
lyze the long-run correlation among several markets exhibiting fractal structures.

Data

The empirical data consists of closing prices of twenty-four major stock indices com-
prising both developed and emerging markets. The stock indices included are BSE 
30 (India), Nasdaq (U.S.), S&P 500 (U.S.), DJIA (U.S.), FTSE 100 (Great Britain), 
CAC40 (France), DAX 30 (Germany), NIKKEI 225 (Japan), KOSPI (Korea), KLSE 
(Malaysia), JKSE (Indonesia), TAIEX (Taiwan), SSE (China), STI (Singapore), HSI 
(Hong Kong), BEL20 (Belgium), ATX (Austria), AEX (Netherlands), IBEX 35 
(Spain), SMI (Switzerland), STOXX50 (Eurozone), ASX 200 (Australia), KSE100 
(Pakistan), and IBOV (Brazil). The period of study ranges from 01-07-1997 to 20-01-
2014 consisting of 4096 dyadic length observations making it suitable for various 
wavelet methods. Returns of all the stock indices are calculated by taking first order 
logarithmic differences. Furthermore, the data was formatted and aligned keeping in 
mind the closing dates of different stock exchanges.
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Methodology

In this paper, wavelet-based measures of long memory parameters are applied to 
analyze long memory behavior of global equity returns. There are several classes 
of wavelet based long memory estimators that can measure long-term correla-
tions present in a time series. The wavelet-based Hurst estimator of Abry and 
Veitch (1998) is used in a rolling window algorithm to analyze the time varying 
structure of the Hurst parameter and its evolution, and long range dependence 
over time.

Long-range dependence a phenomenon is associated with a slow power law 
decay of the autocorrelation function of a stationary process x. The covariance 
function �x(k) of the long memory process x takes the following form, 

where c
�
 is a positive constant and H ∈ (0, 0.5) . The Hurst parameter H is used 

to measure presence of long memory. The spectrum Γ
x
(�) of a long memory pro-

cess x is given by,

where � is the frequency, cf = �
−1c

�
Λ(2H − 1) sin(� − �H) , and the Gamma 

function is given by Λ . This mathematical structure of long memory processes is 
the reason for its inclusion in a class of stochastic processes which have the 1∕|�|� 
form. The property of long memory also finds some close association with the 
phenomenon of scale invariance, self-similarity and fractals. Hence, statistically 
self-similar processes like fractional Brownian motion (FBM) are closely related 
to long memory phenomenon.

Let �0 be an arbitrary reference frequency selected by the choice of �0 , the 
mother wavelet. The amount of energy in the signal during scaled time 2jk and 
scaled frequency 2−j�0 is measured by the squared absolute value of the detail 
wavelet coefficient |dx(j, k)|2 . A wavelet based spectral estimator of Abry et  al. 
(1998) is constructed by taking a time average of |dx(j, k)|2 at a given scale, and is 
given by,

where nj is the “number of wavelet coefficients” at level j, and nj = 2−jn , where 
n is the data length. Therefore, 

∧

Γ
x
(�) captures the amount of energy that lies within 

a given bandwidth and around some frequency � . Hence, 
∧

Γ
x
(�) can be regarded as 

an estimator for the spectrum Γ
x
(�) of x. The wavelet based estimator of the Hurst 

exponent 
∧

H is designed by performing a simple linear regression of log2(
∧

Γ
x
(2−j�0)) 

on j, i.e.,

(1.1)�x(k) ∼ c
�
k−(2−2H), k → +∞

(1.2)Γx(�) ∼ cf |�|1−2H , � → 0

(1.3)
∧

Γ
x
(2−j�0) =

1

nj

∑
k

|dx(j, k)|2
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where ∧c estimates log2(cf ∫ |�|(1−2H)|Ψ0(�)|2d�) , where Ψ0 is the Fourier trans-
form of the mother wavelet �0.). c ̂ is the estimator provided that the integral con-
verges. The derivation of c ̂ as an estimator of the above is not detailed in this paper 
and interested readers may refer to Abry et  al. (1998) and Abry et  al. (1995). A 
weighted least square estimator is constructed by performing a WLS fit between the 
wavelet scales j1 and j2 which gives the estimator of the “Hurst exponent”, H.

where �j = log2

�
1

nj

∑
k

�dx(j, k)�2
�

 and the weight Sj = (n ln2 2)∕2j+1 is the inverse of 

the theoretical asymptotic variance of �j . The scales j1andj2 are not adjacent scales 
and is determined by the length of the dataset. j1 is the initial scale (finer scale) and 
j2 is the maximum scale (coarser scale) that one can take based on length of the 
data. However, it should be noted that the scales selected are dyadic in nature (i.e. 
powers of 2). The estimator of multivariate long memory and the related “fractal 
connectivity matrix” based on the above univariate estimato,r is given in Achard 
et al. (2008) and Achard and Gannaz (2016). The term “fractal connectivity” is just 
another name for long-run correlation matrix estimated via multivariate wavelet 
estimator of Achard and Gannaz (2016).

Empirical Results

The empirical analysis first proceeds with visually analyzing the dynamic nature 
of long memory of select equity returns, as given by the time-series plot of long 
memory estimates, which are obtained by applying the wavelet based estimator of 
the Hurst exponent developed by Abry and Veitch (1998) and Abry et al. (2003) in a 
rolling windows framework.

Rolling Windows Hurst Analysis of Time Varying Market Efficiency

Long memory in equity returns can vary with due to changes in efficiency of 
equity markets over time. The advancement of equity markets, coupled with var-
ying phases of market development, policy decisions, and financial turbulence, 
can significantly alter long memory structure of financial markets. Therefore, 

(1.4)log2(
∧

Γ
x
(2−j�0)) = log2

(
1

nj

∑
k

|dx(j, k)|2
)

= (2
∧
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∧
c
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2
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estimates of long memory parameters are not always stable for all markets. In 
view of the changing structures and efficiency of equity markets, an analysis of 
long memory behavior of equity returns constitutes an analysis of time-varying 
long memory behavior of equity returns. Consequently, the Hurst exponents of 
select equity returns are estimated in a rolling window framework. The length 
of window contains 260 observations which approximately equals one year. The 
window is moved forward by an increment of twenty-four days i.e. a one month 
increment. Finally, estimation of wavelet-based Hurst exponent in rolling win-
dow framework generates a time-series of Hurst exponent. The rolling window 
is selected based on the suggestions given by (Ranta 2013) The time periods 
before and after crisis events have 250 days. Shorter time windows fail to capture 
long term events whereas longer window does not capture short term events. The 
selection of window length of 250 was done to reduce sample bias with the sole 
motive of capturing both long term and short-term events. We have also carried 

Fig. 1   Time-varying Hurst estimates of select developed markets
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out with window length 500 but found that it was inefficient in capturing short 
term events.

Plots of time-series of the Hurst exponents of select equity returns can be visu-
ally inspected to identify phases of efficiency and inefficiency, as measured by the 
drift in Hurst exponent from the threshold value of 0.5, given by the horizontal line 
around the Hurst value of 0.5 in Figs.  1, 2 which plot the generated Hurst series 
against time given in the horizontal axis in years. The vertical axis in Figs.  1, 2 
shows the Hurst values.

The plots of Hurst series given in Figs. 1, 2 reveal the time-varying wavelet cor-
relation2 of Hurst exponents. The developed equity markets of Europe show rela-
tively less degree of persistence in returns with Hurst exponent below 0.5 for most 

Fig. 2   Time-varying Hurst estimates of select Asian markets

2  Wavelet correlation and cross-correlations are like the usual cross-spectral meaures from spectral anal-
ysis. However, cross-spectral methods cannot capture the time component as it relies on Fourier decom-
position of time signal wherein time information is completely lost, which is not the case with wavelet 
based decompositions where information from both time and frequencies are captured or localized simul-
taneously.
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of the time period. However, equity returns of France (CAC 40) and Germany 
(DAX) exhibited long-range dependence during the first three quarters of 2004, 
thereby allowing some possibility for returns predictability during that period. Nev-
ertheless, equity returns of France and Germany have been relatively unpredictable 
throughout the studied time period. The same holds good for the Eurozone (STOXX 
50) equity returns. On the other hand, the emerging markets equity returns seem 
to exhibit varying phases of return predictability with high values of Hurst expo-
nent during some time intervals. For example, some indication of persistence in the 
returns of the Indian equity market (BSE 30) can be observed during the one year 
period of January 1999-January 2000 which is then followed by a sharp drop in the 
Hurst exponent around February 2000, which may be attributed to market fluctua-
tions arising out of the dot-com bubble. However, long-memory rises again after 
March 2000 extending up to January 2001 indicating some evidence of returns pre-
dictability during this period. Some evidence of returns predictability, as indicated 
by the presence of long-memory with Hurst value above 0.5, is also observed dur-
ing February 2006-November 2006 and the last half of 2012. Moreover, the Asian 
markets of Hong Kong (HSI), China (SSE), Indonesia (KLSE) and Taiwan (TAIEX) 
exhibit evidence of returns predictability. Persistence in equity returns is evidenced 
for, i) HSI during mid 2011-mid 2012, ii) SSE during mid 2005- early 2006, mid 
2008-January 2009 and late 2010-late 2011, iii) KLSE during mid 1999-February 
2000 and 2001–2002 and, iv) TAIEX during January 1999-mid 2000.

Interestingly, with the exception of equity returns of Pakistan (KSE 100) and 
China (SSE), returns markets from both developed and emerging economies exhibit 
anti-persistence (short-memory) during the financial crisis period of 2008, thereby 
eliminating any scope for returns predictability during this period. Moreover, bar-
ring periods of abrupt changes in Hurst parameter beyond and within the thresh-
old range of 0.5, phases of market efficiency are more pronounced for the devel-
oped equity markets where Hurst exponents of these markets’ equity returns tend 
to lie below the threshold range of 0.5. However, efficiency of both developed and 
emerging equity markets is not stable throughout the studied time-period, allowing 
investors some arbitrage opportunities. Nonetheless, investors operating in emerg-
ing equity markets have more scope for arbitrage as these markets exhibit relatively 
more phases of long-range dependence.

Long‑Range Correlation among Global Equity Returns

The long memory structure, of both developed and emerging markets, and its 
dynamic evolution can vary with stock returns of different markets and their under-
lying structure as evidenced from the previous section. However, there can be simi-
larities in the fractal structure of the stock returns of some markets. Therefore, in this 
section, an attempt is made to investigate the long-range correlation among global 
equity returns using the newly developed multivariate long-memory estimators of 
Achard and Gannaz (2016) which offer an efficient way to estimate long-memory 
and analyze similarities in fractal structure among equity markets. The resulting 
long-run correlation matrix, estimated using the aforementioned method, aids in 
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scrutinizing the correlation structure among equity returns operating at long-range 
frequencies. The long run correlation matrix, also known as the fractal connectivity 
matrix, furthermore assists in analyzing similarity of fractal structures among equity 
markets. The elements of long-range correlation matrix, of equity returns exhibiting 
LRD, is clustered using the hierarchical clustering algorithm to analyze the struc-
ture of equity returns correlations during both stable and turbulent financial phases, 
thereby assisting in identifying fractally similar market groups.

Figure  3 gives the long-run correlation matrix, displaying long-run correla-
tion among seven equity markets of the U.S. (SP500), France (CAC40), Germany 
(DAX), Japan (NIKKEI), South Korea (KOSPI), Indonesia (JKSE) and India 
(BSE30). The upper panel of Fig. 3 shows the fractal connectivity matrix whereas 
the lower panel gives the clustered version, using hierarchical clustering algo-
rithm, of the long-run matrix of correlations. The left panel shows the correlation 
matrix of equity returns during the pre-subprime crisis period whereas the right 
panel gives the matrix of equity returns during the crisis period. The color-coded 
legend, on the right side of fractal connectivity matrix and towards the bottom of 
the clustered matrix, helps in identifying the strength of long-range correlations. 
The strength of correlation rises as we move from red (low) to blue (high). The 

Fig. 3   Long run correlation matrix of India and select developed markets
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returns of seven aforementioned equity markets are labeled numerically from 1 
to 7 in the upper panel and alphanumerically from C1 to C7 in the lower panel, 
where “C1, C2, C3, C4, C5, C6 and C7” correspond to SP500, CAC40, DAX, 
NIKKEI, KOSPI, JKSE and BSE30, respectively. It is evident from the long-run 
correlation matrix (upper panel) that long-range correlations significantly risen 
during the subprime crisis period, as indicated by larger number of elements in 
blue depicting positive correlations. The clustering of markets according to simi-
lar fractal structures is different during pre-crisis and crisis periods. Moreover, 
five markets (C1, C3, C4, C5 and C7) are clustered together during the subprime 
crisis period reflecting similar long memory behavior among these markets dur-
ing crisis period. This is in line with the results from previous section where frac-
tal structure of returns from SP500 (C1), DAX (C2), NIKKEI (C3), KOSPI (C4) 
and BSE30 (C7) behave similarly during the subprime period.

Figure 4 gives the long-run correlation matrix among seven Asian equity mar-
kets of South Korea (KOSPI), Malaysia (KLSE), Taiwan (TAIEX), China (SSE), 
Singapore (STI), Hong Kong (HSI) and India (BSE30).The fractal structure of 
Asian equity returns given in Fig. 4 evidences the rise in long-range correlation 
between South Korean and Taiwanese equity returns during the subprime crisis. 

Fig. 4   Long run correlation matrix of India and select Asian markets
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The long-range correlation among other Asian markets are very low during both 
crisis and non-crisis periods indicating dissimilar fractal structures. This is also 
evidenced from clustering of equity returns from these markets where markets 
forming clusters are almost similar during both crisis and non-crisis periods. This 
is in contrast with the developed western markets where fractal structures, based 
on long-range correlation coefficients and clustering of the same, are not similar 
during crisis and non-crisis periods.

Conclusion

This paper investigated the phenomenon of long memory among global equity 
returns using methods from both univariate and multivariate class of wavelet based 
long memory estimators. Since dependence structure of equity returns over time 
can be time-varying, analysis of long memory is first carried out in a time varying 
framework. This helps in examining the evolution of long memory parameter over 
time, thereby allowing one to detect phases of market efficiency and inefficiency. 
Accordingly, analysis of the evolutionary nature of long memory is captured using 
rolling windows estimation method where long memory of equity returns from 
both emerging and developed markets are investigated. The results indicate that the 
developed equity markets of Europe and the U.S. show relatively less degree of per-
sistence. However, phases of long-memory, though smaller, are detected for some 
developed markets. In contrast, markets from emerging economies are found to have 
relatively more phases of inefficiency, indicating presence of arbitrage opportuni-
ties. Moreover, emerging markets’ equity returns are found to move between phases 
of long memory and short memory. Furthermore, long memory is not evidenced 
during the subprime crisis period of 2008 for majority of markets which is in line 
with the wavelet-based study of Tan et al. (2014), where faster information dissemi-
nated among investors during financial crises is said to curtail speculative behav-
ior, thereby affecting predictability of markets. Likewise, the time-varying nature of 
long memory and varying phases and stages of market efficiency is consistent with 
the conception of adaptive markets, where market efficiency should be viewed from 
an evolutionary framework.

The results obtained from time varying long memory analysis reinforce the 
notion that markets are not always efficient. On the other hand, markets tend to trav-
erse through different dynamics and are subjected to evolutionary patterns, where 
stages of both efficiency and inefficiency come into play. Since, evidence of het-
erogeneity in market efficiency during both stable and turbulent periods is demon-
strated via several measure of market fractality, investors should take cognizance 
of the dynamic and evolutionary nature of market efficiency; and tactically formu-
late investment strategies based on the fractal structures of equity markets which are 
evolutionary and time varying in nature. The structure of fractality in equity returns 
based on fractal connectivity matrix, which aids one in investigating long memory 
properties of equity markets in greater detail, is used to analyze similarities in long 
memory behavior among equity markets. The analysis reveals existence of similari-
ties of fractal structures among returns from developed markets during periods of 
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financial turbulence. Thus, multivariate wavelet estimator of long-range correlation 
and fractal similarities provide an efficient way of analyzing equity markets’ correla-
tion structure. However, analyses of global equity returns using the aforementioned 
method demands a more thorough investigation as there are no studies in literature 
analyzing fractal connectivity of financial markets.
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