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Abstract The unified strength theory with the two-
piecewise linear equations is more convenient and 
concise to calculate the strength of materials. It can 
fully explore the potential in the strength of materi-
als and improve the economic benefits of engineering 
design. This study combines the semi-implicit return 
mapping algorithm and the Aitken accelerated itera-
tion scheme and develops a plastic constitutive algo-
rithm for isotropic softening materials based on the 
unified strength theory. The combining method can 
simplify the stress update and make the calculation 
of consistent tangent modulus easier. Furthermore, it 
can avoid solving the partial derivatives of the plastic 
flow rule and overcome the stress-deviating problem. 
The self-developed constitutive algorithm is used to 
simulate the elastic–plastic excavation process of a 
deep-lying circular tunnel. The numerical simulation 
results match well with the theoretical solution, veri-
fying the correctness of the self-developed constitu-
tive algorithm. Based on the self-developed constitu-
tive algorithm, the stability of an underground mining 
stope is comprehensively analyzed, and its structural 

parameters are optimized. The research reveals the 
mechanism of stope instability, provides a reliable 
scientific basis for the mining design and decision-
making, ensures the safe and efficient production of 
the stope, and achieves the expected goal.

Highlights 

• Review of the shear strength theory of rock mate-
rial.

• A new elastic-plastic stress update algorithm for 
the unified strength theory.

• Applications to underground stope’s stability anal-
ysis and optimization.

Keywords Unified strength theory · Elastic–plastic 
stress update algorithm · Semi-implicit return 
mapping algorithm · Aitken accelerated iteration 
scheme

1 Introduction

The strength of rock mass refers to the ultimate bear-
ing capacity of the combined material of the rock and 
the weakening interior structure. The rock strength 
theory only includes the strength of undamaged mate-
rial, but the influence of weakening interior structure 
on the strength of intact rock is excluded. Therefore, 
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the strength of rock refers to the ultimate bearing 
capacity of an intact rock specimen under all complex 
stress states. The Mohr–Coulomb strength theory 
proposed in 1900 has a dominant role in developing 
geotechnical mechanics and is one of the primary 
rock strength theories. In this more than a century of 
development, many scholars have conducted experi-
ments to revise the Mohr–Coulomb strength theory, 
meanwhile they progressed many new rock strength 
theories (Walton et al. 2015; Yu 2018).

Under low confining compression stress, the mechani-
cal behavior of rock is essentially a brittle failure, and the 
brittle failure of rock induces shearing dilatancy. How-
ever, the brittle failure converts into ductile failure under 
high confining compression stress, and the ductile failure 
stimulates shearing shrinkage. Mogi (1966) studied the 
transition point between the brittle failure and the duc-
tile failure of rock and observed that the average ratio of 
axial compression stress to confining compression stress 
is between 3.4 and 4.3 when the transition happens. 
Hoek (1983), Hoek and Brown (1997) used a straight-
forward standard to judge the brittle failure of rock mass 
by assuming that the brittle failure occurs if the confin-
ing compression stress is less than the uniaxial compres-
sion strength of rock mass. Besides, they restricted the 
Hoek–Brown empirical strength criterion to the thresh-
old that the confining compression stress must be less 
than half of the uniaxial compression strength.

This research deals with the strength theory related to 
plastic shear yielding, which induces the brittle failure 
of rock. According to the multi-shear yielding proposed 
by Yu et  al. (2000, 2004), the strength theory can be 
divided into single-shear strength theory, double-shear 
strength theory, triple-shear strength theory, and various 
empirical strength criteria. The former three types all 
have clear physical significance. In this study, the stress 
uses the mathematical symbolic representation defined 
in material mechanics by assuming that the tensile stress 
is positive. Oppositely, the mathematical symbolic rep-
resentation defined in rock mechanics is reversed.

Based on the classical soil unloading model, cavity 
expansion theory, and unified strength theory under 
large strain conditions, Wu et  al. (2022) studied the 
influence of the soil unloading effect on compaction 
grouting and proposed a compaction grouting diffu-
sion model considering the soil unloading effect, they 
also derived and verified the theoretical relationship 
between the soil unloading degree and the soil defor-
mation modulus. According to the unified strength 

theory, the equilibrium state of ultimate stress, and 
the theory of elastic mechanics clamped beam, Chen 
et  al. (2022) established the arbitrary point stress 
calculation model, derived the stress solution of the 
clay soil under the action of gravity, and obtained 
the formula for calculating the critical radius of cav-
ity induced by water and sand gushing. Based on the 
unified strength theory, Sun et  al. (2022) studied the 
analytical solutions for the responses of the inter-
mediate principal stress on the strain-softening rock 
behavior under excavated tunnels and investigated the 
influence of the elastic strain expressions on the tun-
nel responses. Gao and Li (2023) applied the unified 
strength theory to study the displacement and stress 
distribution in plastic zones of the tunnel surround-
ing rock. They concluded that the proper application 
of unified strength theory will guarantee the safety of 
engineering practice and have more practical value. 
The unified strength theory constitutive model was 
embedded in the secondary development of Abaqus 
to investigate the effect of soil-structure interaction 
on the seismic response of frame buildings on col-
lapsible loess and develop a new nonlinear elastic 
model generated by the unified strength theory (Xiong 
et al. 2023). Based on the unified strength theory and 
the true triaxial test data of the fourteen rock types 
reported in the literature, Li et al. (2023) developed a 
generalized unified strength theory by introducing a 
mobilized factor to characterize the weakening effect 
of rock strength under high pressure. Wang et  al. 
(2023) proposed a new numerical model based on the 
generalized nonlinear unified strength theory, verified 
the empirical formula for determining the parameter b 
by practical engineering, and concluded that the uni-
fied strength theory has good applicability to practical 
rock engineering and can provide guidance and refer-
ence for similar rock projects. Liu et  al. (2023) used 
the twin-shear unified strength theory to calculate the 
active earth pressure. Considering the influence of 
intermediate principal stress, their research has theo-
retical significance and considerable engineering eco-
nomic benefits. Zhang and Sun (2023). considered 
the intermediate principal stress effect of soils and 
applied the unified strength theory to correct the shear 
strength index of soils. Their research showed that the 
relative error of the slope stability coefficient could 
reach 39.87% due to the underestimation of the shear 
strength of soils and the missing effect of intermediate 
principal stress. Miao et  al. (2024) developed a new 
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calculation method that uses the unified strength the-
ory to improve the accuracy and reliability of the ulti-
mate bearing capacity of reinforced concrete beams.

In our work, based on the unified strength theory, 
we develop a new combination method by combining 
the semi-implicit return mapping algorithm and the 
Aitken accelerated iteration scheme in the plastic con-
stitutive algorithm for isotropic softening materials. 
The new combination method has a solid convergence 
and excellent applicability. The self-developed consti-
tutive algorithm is used to simulate the elastic–plastic 
excavation of a deep-lying circular tunnel, and then it 
is applied to optimize structural parameters of a stope 
with mining practice. This research is split into seven 
major sections. Apart from the introduction, a review 
of the shear strength theory of rock material and the 
unified strength theory are presented in Sect.  2. The 
new proposed method is particularly described in 
Sect. 3. The effectiveness of the proposed approach is 
evaluated by numerical models and engineering appli-
cations in Sect.  4, Sect.  5, and Sect.  6, respectively. 
Finally, the main conclusions are drawn.

2  The shear strength theory of hard brittle material

2.1  Single-shear strength theories

The single-shear strength theory only takes the maxi-
mum shear stress and its correlative normal stress as the 
plastic shear yielding criterion.

According to the Mohr–Coulomb strength theory, 
among the three principal stresses, only the maximum 
and minimum principal stresses influence the plastic 
shear yielding behavior of materials. By using the prin-
cipal stresses, the Mohr–Coulomb strength theory is 
expressed as follows:

where c is the cohesive strength, � is the internal friction 
angle, �13 is the maximum shear stress, �13 is the normal 
stress on the acting surface of the maximum shear stress, 
�1 is the maximum principal stress, �2 is the interme-
diate principal stress, and �3 is the minimum principal 
stress. According to the Mohr–Coulomb strength theory, 
the uniaxial compressive strength �c and uniaxial tensile 
strength �t of the material can be obtained as follows:

(1)
{

�13 + �13 sin� = c cos�

�13 =
(
�1 − �3

)/
2, �13 =

(
�1 + �3

)/
2

The Mohr–Coulomb yielding surface is the inner 
boundary of all externally convex yielding surfaces, 
and its corresponding physical model is the hexahedron 
element of maximum shear stress (see Fig. 1).

In recent years, experimental studies on the brittle 
failure of hard rock under low confining compression 
stress show that the friction strength and the bonding 
strength do not act simultaneously. Furthermore, in 
the progressively brittle failure of hard rock, the fric-
tion strength generates its matching effect only when 
the intergranular bonding strength gradually weakens 
(Hajiabdolmajid and Kaiser 2003; Hajiabdolmajid 
et al. 2002, 2003).

The microscopic brittle failure mechanism shows 
that the intergranular bonding force decreases through-
out the initial crack propagation. After the crack sur-
faces coalesce, the friction force is generated. Besides, 
the cracks propagate parallelly to the excavation bound-
ary, causing surrounding rock to spall and fall of. Based 
on the mechanism that the friction strength strengthen-
ing and the bonding strength weakening, Hajiabdol-
majid and Kaiser (2003), Hajiabdolmajid et al. (2002, 
2003) introduced a rock brittleness indicator IB� related 
to the equivalent plastic strain �p (see Fig. 2) and pro-
posed the CWFS model as follows:

where �pc is the equivalent plastic strain when the 
bonding strength reaches its residual value, and �p

f
 is 

(2)�c =
2c cos�

1 − sin�
, �t =

2c cos�

1 + sin�

(3)

{
� = c(�p) + �n(�

p) tan�

IB� =
�
p

f
−�

p
c

�
p
c

Fig. 1  Single-shear stress model
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the equivalent plastic strain when the friction strength 
reaches its maximum strengthening value.

Qiao et  al. (2012) stated that the friction strength 
is not only dependent on the normal stress �n but also 
related to the friction coefficient tan� on the crack sur-
face, which is controlled by the roughness of the closed 
crack surface. Furthermore, when the micro-cracks 
accumulate but not reach penetration yet, the increase of 
crack surface roughness and friction coefficient is small, 
and the change can be negligible. Nevertheless, when 
the crack is closed, the friction coefficient increases rap-
idly, the normal stress on the crack surface is effectively 
transferred, and the friction strength is mobilized.

However, the Mohr–Coulomb strength theory does 
not consider the influence of the intermediate princi-
pal stress �2 on the strength of the material. Moreover, 
many true triaxial experiments of rock materials show 
that the influence of intermediate principal stress �2 
on material yielding and failure is up to 20–50% (Gao 
and Tao 1993). By combining the hydrostatic stress 
and the maximum shear stress to reflect the influ-
ence of intermediate principal stress, a generalized 
single-shear stress theory was proposed to improve 
the Mohr–Coulomb theory as follows(Yu et al. 2000, 
2004; Labuz and Zang 2012):

where �m is the average principal stress, A and C are 
the undetermined material parameters.

Moreover, the effect of intermediate principal 
stress �2 on yielding is segmented. Further research 
showed that as the value of �2 increased from �3 to �1 , 

(4)
{

�13 + A�m = C

�m =
(
�1 + �2 + �3

)/
3

the material strength would increase to a peak value 
and then begin to gradually decrease (Mogi 1967, 
1971; Yu 2004). This physical phenomenon is known 
as the piecewise effect of the intermediate principal 
stress on the strength of materials.

Single-shear strength theories have common 
defects since they do not consider the influence of 
intermediate principal stress on the strength of the 
material. Besides, the single-shear strength theo-
ries unable to characterize the piecewise effect of 
the intermediate principal stress on the strength of 
the material. Thus, they underestimate the material 
strength and cannot maximize the material potential 
(Yu et al. 2006, 2009; Yu and Li 2012; Yu 2018).

In conclusion, new theories must be developed 
because of those deficiencies, leading to the double-
shear strength theories, triple-shear strength theories, 
and various empirical strength criteria.

2.2  Double-shear strength theories (the unified 
strength theory)

The three principal stresses can be converted to three 
principal shear stresses and three matching normal 
stresses. The double-shear strength theories are the 
shear strength theories that take only two principal 
shear stresses and corresponding normal stresses as 
the material plastic yielding criterion.

Yu et al. (2000) proposed the unified strength the-
ory (see Fig. 3) to consider the piecewise effect of the 
intermediate principal stress on the material strength. 
Based on the double-shear stress models, meanwhile, 
with the help of the two principal shear stresses and 

Fig. 2  The CWFS model
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corresponding normal stresses, they obtained the 
mathematical expression of the unified strength the-
ory as follows:

where b is the double-shear parameter of rock. 
In different lithology, the influence of intermedi-
ate principal stress on the strength of the mate-
rial is dissimilar, so the value of b is different. 
In conformity to the uniaxial tensile strength �t 
and uniaxial compression strength �c , we obtain 
expressions: � = (1 − �)∕ (1 + �) = �t

/
�c and 

C = (1 + b)�c
/
(1 + �) . Substituting the above results 

into Eq. (5), we get the following expression:

Using the three stress invariants 
(
I1, J2, �

)
 , the uni-

fied strength theory can be expressed as follows:

(5)

⎧⎪⎨⎪⎩

𝜏13 + 𝛽𝜎13 + b
�
𝜏12 + 𝛽𝜎12

�
= C, 𝜏12 + 𝛽𝜎12 ≥ 𝜏23 + 𝛽𝜎23

𝜏13 + 𝛽𝜎13 + b
�
𝜏23 + 𝛽𝜎23

�
= C, 𝜏12 + 𝛽𝜎12 < 𝜏23 + 𝛽𝜎23

𝜏23 =
�
𝜎2 − 𝜎3

��
2, 𝜎23 =

�
𝜎2 + 𝜎3

��
2

𝜏12 =
�
𝜎1 − 𝜎2

��
2, 𝜎12 =

�
𝜎1 + 𝜎2

��
2

(6)

{
𝜎1 −

𝛼

1+b

(
b𝜎2 + 𝜎3

)
= 𝜎t, 𝜎2 ≤

𝜎1+𝛼𝜎3

1+𝛼
1

1+b

(
𝜎1 + b𝜎2

)
− 𝛼𝜎3 = 𝜎t, 𝜎2 >

𝜎1+𝛼𝜎3

1+𝛼

(7)

⎧⎪⎪⎨⎪⎪⎩

F1 =
1−𝛼

3
I1 +

√
J2

�
2+𝛼√

3
cos 𝜃 +

𝛼(1−b)

(1+b)
sin 𝜃

�
= 𝜎t, F1 ≥ F2

F2 =
1−𝛼

3
I1 +

√
J2

��
𝛼 +

2−b

1+b

�
cos 𝜃√

3
+
�
𝛼 +

b

1+b

�
sin 𝜃

�
= 𝜎t, F1 < F2

I1 = 𝜎1 + 𝜎2 + 𝜎3, J2 =
2

3

�
𝜏2
13
+ 𝜏2

12
+ 𝜏2

23

�
, 𝜃 = arccos

�
𝜏13+𝜏12√

3J2

�
∈
�
0,

𝜋

3

�

where � is the spatial stress angle in the principal 
stress space.

The double-shear strength theory rationally reflects 
the piecewise effect of the intermediate principal 
stress on the material strength. Moreover, with rea-
sonable values of parameters � and b , the unified 
strength theory can be degraded to many frequently 
used strength theories (see Fig. 4) as follows:

1. If b = 0 , and then the unified strength theory 
degrades into the Mohr–Coulomb criterion 
F1 = F2 = �1 − ��3 = �t.

2. If b = 1 , the unified strength theory is degraded 
to the twin-shear strength theory proposed by Yu 
in 1985 and becomes the outer boundary of all 
external convex yielding surfaces.

3. If b > 1 or b < 0 , the unified strength theory is 
degraded to the concave strength theory.

4. If � = 1 , the tension and compression strength of 
unified strength theory are equal, which is more 
suitable for traditional metal materials.

Figure  5 describes the yielding surface of the 
unified strength theory and its various special cases 
in the principal stress space.

Fig. 3  Double-shear stress 
models



 Geomech. Geophys. Geo-energ. Geo-resour.          (2024) 10:135   135  Page 6 of 26

Vol:. (1234567890)

Twin-shear yielding 
criterion

Unified yielding criterion

Tresca yielding
criterion

Twin-shear strength theory
Mohr-Coulomb 
strength theory

New strength theory New strength theory New strength theory

Fig. 4  The unified strength theory and its special cases

Fig. 5  The yielding surface 
of the unified strength 
theory in the π-plane and 
the principal stress space

The concave yielding surface

The twin-shear
yielding surface

The Mohr-Coulomb
yielding surface

The concave yielding surface
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In recent years, experimental studies on the failure 
properties of materials under complex stress states 
have shown that the plastic yielding surface of mate-
rials in the principal stress space has the following 
characteristics (Yu et al. 2000, 2006, 2009; Yu 2004, 
2018; Yu and Li 2012):

1. In the compressive stress region, the trace of the 
yielding surface in the π-plane is a convex and 
non-circular smooth curve.

2. Under low compression stress, the trace of the 
yielding surface in the π-plane is approximately 
a triangle. When the compression stress increases 
continuously, it becomes a three-petal curve, 
which is close to a circle.

3. In the meridian plane, the trace of the yielding 
surface is convex and smooth, and the plastic 
yielding surface expands as the increase of com-
pression stress.

4. The tensile strength and the compressive strength 
of materials are different, and the equal biaxial 
compression strength is not equal to the uniaxial 
compressive strength. The general strength the-
ory should include more material parameters.

Based on the above experimental phenomenon, 
Yu et al. (2000, 2004) added the following nonlinear 
mathematical expression of the hydrostatic stress into 
the plastic yielding function of the unified strength 
theory to distinguish the uniaxial compression 
strength and the equal biaxial compression strength:

where A , B , and C are the undetermined material 
parameters.

Under certain complex stress states, the strength 
of the material is higher than the expected value 
given by the single-shear strength theory. Further-
more, increasing or decreasing the value of the 
intermediate principal stress will cause rock failure. 
The unified strength theory appropriately estab-
lishes the mathematical expression for the piecewise 
effect of intermediate principal stress on the mate-
rial strength. The unified strength theory remarkably 

(8)
{

𝜏13 + 𝛽𝜎13 + b
(
𝜏12 + 𝛽𝜎12

)
+ A𝜎m + B𝜎2

m
= C, 𝜏12 + 𝛽𝜎12 ≥ 𝜏23 + 𝛽𝜎23

𝜏13 + 𝛽𝜎13 + b
(
𝜏23 + 𝛽𝜎23

)
+ A𝜎m + B𝜎2

m
= C, 𝜏12 + 𝛽𝜎12 < 𝜏23 + 𝛽𝜎23

resolves these influences of intermediate principal 
stress on the strength of the material. Besides, it 
contains various strength theories, and its yield-
ing surface includes the convex and concave types. 
Therefore, it can be applied to a wider range of 
materials. Using the unified strength theory can fur-
ther develop the material potential and improve the 
economic benefits of the material strength design.

2.3  Triple-shear strength theories

The triple-shear strength theories refer to the shear 
strength theories that take the maximum shear 
stress, intermediate shear stress, minimum shear 
stress, and corresponding normal stresses as the 
material plastic yielding criterion.

Fig. 6  Isoclinal octahedron stress model

In 1913, Mises proposed the shear deformation 
energy theory, and the shear deformation energy of 
the stress element is identified as the material plas-
tic yielding criterion. Mises theory is applicable to 
conventional metal materials with equal tensile and 
compressive strength. Generally, the hydrostatic 
stress does not affect its shear strength. Therefore, 
the normal stress �m at the isoclinal octahedron 
element is ignored in its plastic yielding criterion. 
Besides, for linear elastic materials, the shear defor-
mation energy is proportional to the square of the 
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shear stress �8 on the isoclinal octahedron element 
(see Fig. 6).

In order to consider the influence of hydrostatic 
stress on plastic yield and clarify the difference 
between tensile strength and compressive strength, 
Drucker and Prager made the following improve-
ments to the Mises shear deformation energy  
theory of geotechnical materials (Shen 1995): (
�8 = �m, �8 =

2

3

√
�2
13
+ �2

12
+ �2

23

)

where A and C are the undetermined material parame-
ters. However, Drucker–Prager’s theory does not con-
sider the influence of the spatial stress angle � on the 
strength of the material, and the traces of its yield-
ing surface in all meridian planes are identical, which 
contradicts the actual strength experimental results 
(Yu et al. 2000, 2004).

For this reason, Zienkiewicz and Pande (1977) 
recommended the following general modified model 
to reflect the influence of the stress angle � on the 
strength of the material:

where A , B , and C are the undetermined material 
parameters. Similarly, based on analyzing the unified 

(9)�8 + A�8 = C

(10)
�√

J2

�
g(�)

�2

+ A�m + B�2

m
= C

strength theory and the Mohr–Coulomb strength the-
ory, Hu and Yu (2004) proposed the following triple-
shear unified strength theory by using the three shear 
stresses on the dodecahedron (see Fig.  7) and their 
normal stresses on the acting plane to characterize the 
strength of material:

Similarly, Yu (2007) proposed a more generalized 
nonlinear unified strength theory based on the rhom-
bicuboctahedron stress model (see Fig.  8), which 
unifies many commonly used linear and nonlinear 
strength criteria. The rhombicuboctahedron stress 
model has octahedral shear stress, hydrostatic stress, 
three principal stresses, three principal shear stresses, 
and corresponding normal stresses. Yu (2007) inves-
tigated the influence of these stresses on the yielding 
of the material, adopted the two-equations modeling 
method of unified strength theory, and minimized 
undetermined material parameters to build a math-
ematical expression of the plastic shear yielding func-
tion as follows(Yu et al. 2009; Yu and Li 2012):

(11)

(

�13 + ��13
)

+ b
(

�12 + ��12
)

(

1 −
�2 − �3
�1 − �3

)

+ b
(

�23 + ��23
)�2 − �3
�1 − �3

= (1 + �)(1 + b)�t

(12)
{

(1 − 𝛾)
[(
𝜏13 + 𝛽𝜎13

)
+ b

(
𝜏12 + 𝛽𝜎12

)]
+ 𝛾

(
𝜏8 + 𝛽𝜎8

)
+ A𝜎m + B𝜎2

m
= C, 𝜏12 + 𝛽𝜎12 ≥ 𝜏23 + 𝛽𝜎23

(1 − 𝛾)
[(
𝜏13 + 𝛽𝜎13

)
+ b

(
𝜏23 + 𝛽𝜎23

)]
+ 𝛾

(
𝜏8 + 𝛽𝜎8

)
+ A𝜎m + B𝜎2

m
= C, 𝜏12 + 𝛽𝜎12 < 𝜏23 + 𝛽𝜎23

Fig. 7  Dodecahedron stress model (triple-shear stress model)

Fig. 8  Rhombicuboctahedron stress model
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where � is the coefficient reflecting the influence of 
normal stress, b is the effective coefficient of inter-
mediate principal stress, � is the reaction coefficient 
of nonlinear yielding failure, and A , B , and C are the 
undetermined material parameters. With the help of 
this more generalized mathematical expression, the 
new nonlinear unified strength theory contains the 
Mohr–Coulomb criterion, the Drucker-Prager cri-
terion, the Huber-Von Mises criterion, the unified 
strength criterion, and a series of new linear and non-
linear strength criteria.

Unlike the linear unified yielding criterion, the non-
linear unified yielding criterion has a nonlinear yielding 
surface and is applied to the nonlinear yielding behavior 
analysis of the material. Besides, the nonlinear unified 
yielding criteria overcome the multiple-slipping planes 
and unstable slipping plane problems in the linear uni-
fied yielding criterion (Yu 2004, 2018; Yu et al. 2006).

From the theoretical point of view, the shear strength 
theories can reasonably quantify the plastic shear yield-
ing characteristics of the material. Nevertheless, they 
still need to be calibrated by the experiments. Based on 
the above shear yielding strength theories, many empir-
ical strength criteria are developed and studied in rock 
mass engineering.

2.4  Empirical strength criteria

The empirical strength criterion is more consistent with 
the characteristics of engineering rock mass through the 
data provided by a large number of strength tests. The 
generalized Hoek–Brown criterion is the most famous 
criterion in the empirical strength criterion of plastic 
shear yield of engineering rock mass.

If the compressive stress is negative, the generalized 
Hoek–Brown empirical strength criterion frequently 
used in rock mechanics is expressed as follows (Hoek 
et al. 1992):

where mb , s , and n are rock mass parameters, and �ci 
is the uniaxial compressive strength of intact rock.

Furthermore, the generalized Hoek–Brown criterion 
and Hajiabdolmajid’s CWFS model were combined to 
establish the following yielding criterion to study the 

(13)�3 = �1 − �ci
[
s − mb�1

/
�ci

]n

mechanical characteristics of the progressively brittle 
failure in hard rocks (Walton et al. 2015):

where s(�p) is the bonding strength, and �1(�p) is the 
friction strength. Both depend on the equivalent plas-
tic strain �p . As the plastic deformation increases, the 
bonding strength is mobilized ahead of the friction 
strength, and it is continuously weakening. Mean-
while, the friction strength is mobilized and continu-
ously strengthening. If the equivalent plastic strain 
exceeds �pc , the bonding strength no longer decreases 
and remains stable. When the equivalent plastic strain 
increases and exceeds �p

f
 , the friction strength stays at 

a maximum value. This criterion can well reflect the 
gradual brittleness failure of hard rock and agrees 
with the brittleness characteristics of the engineering 
rock mass.

The generalized Hoek–Brown empirical strength 
criterion does not include the intermediate principal 
stress, so it cannot reflect the effect of intermediate 
principal stress on material strength. Thus, Singh al. 
(1998) revised the generalized Hoek–Brown empiri-
cal strength criterion as follows:

This criterion reflects the effect of intermediate 
principal stress on the material yielding.

However, this revised generalized Hoek–Brown 
empirical strength criterion cannot reflect the 
piecewise feature of intermediate principal stress 
and its different impact on different materials. To 
reasonably reflect the piecewise effect of interme-
diate principal stress on the yielding of geotech-
nical materials, Zan and Yu (2013) introduced the 
double-shear stress function of the unified strength 
theory into the generalized Hoek–Brown empirical 
strength criterion. They used the two-piecewise 
modeling method to establish the mathematical 
expression of the plastic shear yielding function 
and proposed the generalized nonlinear unified 
empirical strength criterion of engineering rock 
mass (Yu et  al. 2002; Zan et  al. 2002, 2004) as 
follows:

(14)�3 = �1(�
p) − �ci

[
s(�p) − mb�1(�

p)
/
�ci

]n

(15)�3 = �1 − �ci
[
s − mb

(
�1 + �2

)/(
2�ci

)]n
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If b = 0 , the generalized nonlinear unified 
empirical strength criterion is degraded to the 
generalized Hoek–Brown empirical strength crite-
rion (see Fig.  9) and becomes the lower bound of 
all external convex yielding surfaces. If b = 1 , the 
generalized nonlinear unified empirical strength 
criterion is degraded to the generalized nonlinear 
twin-shear empirical strength criterion of rock mass 
and becomes the upper bound of all external con-
vex yielding surfaces. Based on the Hoek–Brown 
empirical strength criterion, the generalized non-
linear unified empirical strength criterion can suf-
ficiently express the essential characteristics of the 
strength of engineering rock mass. The generalized 
nonlinear unified empirical strength criterion com-
bines the unified strength theory and the general-
ized Hoek–Brown empirical strength criterion to 
build a new system of empirical strength criteria 
for engineering rock mass (Yu et al. 2002; Zan et al. 
2002, 2004; Zan and Yu 2013).

Using the Hoek–Brown empirical strength crite-
rion as a development guideline for the multi-shear 
yielding strength criteria of engineering rock mass 
helps the practical application and promotion.

(16)

⎧

⎪

⎨

⎪

⎩

F1 =
[

�1 −
1

1+b

(

b�2 + �3
)

]

− �ci
[

s − mb�1
�ci

]n
= 0, F1 ≥ F2

F2 =
[

1
1+b

(

�1 + b�2
)

− �3
]

− �ci
[

s − mb(�1+b�2)
(1+b)�ci

]n
= 0, F1 < F2

3  The unified strength theory and its elastic–
plastic stress update algorithm

Since most finite element codes do not have a built-in 
constitutive algorithm related to the unified strength 
theory, it is necessary to develop an elastic–plastic 
constitutive algorithm based on the unified strength 
theory to simulate the strength of rock material.

Assuming that the rock material is isotropic and 
linearly elastic before yielding. Under the framework 
of small elastic deformation, the stress–strain rela-
tionship can be obtained as follows (Yu 2004, 2018; 
Yu et al. 2006, 2009; Yu and Li 2012):

where � is the Cauchy stress, � is the elastic strain, � 
is the elastic tangent modulus, � is shear modulus, K 
is the bulk modulus, � is the unit tensor, dev(�) is the 
deviatoric strain, and tr(�) is the trace of the elastic 
strain. The plastic yielding function of rock material 
is expressed as follows:

where q is the equivalent plastic strain.
The deformation state of a material parti-

cle at the time tn is expressed by these variables (
�n, �n, �

e
n
, �

p
n, pn

)
 . �n is the Cauchy stress, �n is 

(17)� = � ∶ � = 2�dev(�) + Ktr(�)�

(18)F(�, q) = F�(�) − g(q) = 0

Fig. 9  The generalized 
nonlinear unified empirical 
strength criterion and its 
exceptional cases

Unified yielding
criterion

Generalized nonlinear unified 
empirical strength criterion

Unified strength 
theory

Mohr-Coulomb 
strength theory

Nonlinear unified empirical 
strength criterion

Tresca yielding 
criterion

Hoek-Brown empirical 
strength criterion

Generalized Hoek-Brown
empirical strength criterion

Generalized nonlinear 
twin-shear empirical 

strength criterion
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the strain, �pn is the plastic strain, �e
n
 is the elastic 

strain, and qn is the equivalent plastic strain. In addi-
tion, the deformation state of the material parti-
cle at the time tn+1 , which is the succeeding time 
step after the time tn , is expressed by these variables (
�n+1, �n+1, �

e
n+1

, �
p

n+1
, pn+1

)
 . �n+1 is the Cauchy stress, 

�n+1 is the strain, �p
n+1

 is the plastic strain, �e
n+1

 is the 
elastic strain, and qn+1 is the equivalent plastic strain. If 
the strain increment obtained at the next time step tn+1 
is d� , then the trial stress �trial

n+1
 is calculated as follows:

According to the associated plastic flow rule, the 
partial derivative of the yielding function is the plas-
tic flow vector obtained at the yielding point. By sub-
stituting the three variables 

(
C1,C2,C3

)
 and the stress 

state at the yielding point into Eq. (20) to obtain the 
plastic flow vector �F∕��.

According to Eq. (20) and the unified strength the-
ory, substituting the partial derivative of 

(
F1,F2

)
 and 

the three stress invariants 
�
I1,

√
J2, �

�
 into Eq.  (7), 

and the following equations are applied to calculate 
the plastic flow vector obtained at the yielding point:

As shown in Fig.  10, the unified strength theory 
has two singularity regions at the two cross-regions 
of its two yielding surfaces with the two axes and one 
singularity region inside the two axes at the cross-
region between its two yielding surfaces.

For the unified strength theory, if any of the fol-
lowing conditions are met: � = 0◦ , � = 60◦ , F1 = F2 , 
it means that the yielding point is located in any of 
the three singular regions and the plastic flow vec-
tor obtained at these yielding points is singular. 

(21)

⎧
⎪⎪⎨⎪⎪⎩

𝜕F

𝜕I1
=

1−𝛼

3
𝜕F

𝜕
√
J2

=
2+𝛼√

3
cos 𝜃 +

𝛼(1−b)

1+b
sin 𝜃

𝜕F√
J2𝜕𝜃

=
𝛼(1−b)

1+b
cos 𝜃 −

2+𝛼√
3
sin 𝜃

if F1 ≥ F2

,

⎧
⎪⎪⎨⎪⎪⎩

𝜕F

𝜕I1
=

1−𝛼

3

𝜕F

𝜕
√
J2

=
�
𝛼 +

2−b

1+b

�
cos 𝜃√

3
+
�
𝛼 +

b

1+b

�
sin 𝜃

𝜕F√
J2𝜕𝜃

=
�
𝛼 +

b

1+b

�
cos 𝜃 −

�
𝛼 +

2−b

1+b

�
sin 𝜃√

3

if F1 < F2

3.1  Plastic flow rule and its singularity treatments

To facilitate the numerical calculation and for the 
sake of simplicity, the yielding function and its partial 
derivative are commonly expressed by the three stress 
invariants as follows:

(19)�
trial
n+1

= �n + � ∶ d�

(20)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�F

��
=

�F

�I1

�I

��
+

�F

�
√
J2

�
√
J2

��
+

�F

��

��

��
= C1�� + C2�� + C3��

C1 =
�F

�I1
, C2 =

�F

�
√
J2
+

cot 3�√
J2

�F

��
, C3 = −

cot 3�

3J3

�F

��
= −

√
3

2 sin 3�

√
J3
2

�F

��

�
�
= [1, 1, 1, 0, 0, 0]T

�
�
=

1

2
√
J2

�
��
11
, ��

22
, ��

33
, 2�12, 2�23, 2�13

�T

�
�
=
�
��
22
��
33
− �2

23
+

J2

3
, ��

11
��
33
− �2

13
+

J2

3
, ��

11
��
22
− �2

12
+

J2

3
, 2
�
�23�13 − ��

33
�12

�
,

2
�
�12�13 − ��

11
�23

�
, 2
�
�12�23 − ��

22
�13

��T
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Therefore, the following methods are used to cal-
culate the plastic flow vectors at the three singular 
regions (see Fig. 10):

1. If conditions F1 = F2 and � = �b are satisfied, 
then the yielding point is located in the singular region, 
and the mean plastic flow vector is taken. By summing 
the plastic flow vectors of the two yielding functions, 
the mean plastic flow vector is obtained as follows:

2. If the yielding point is located in any one of the 
two singular regions satisfying the condition � = 0◦ 
or � = 60◦ , then the plastic flow vector is obtained 
by using the double-shear parameter b = 1 . The plas-
tic flow vector adapted to correct the singular plastic 
flow vector in the programming is as follows:

(22)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C1 =

�
lim C1

�→�+
b

+ lim C1
�→�−

b

��
2

C2 =

�
lim C2

�→�+
b

+ lim C2
�→�−

b

��
2

C3 =

�
lim C3

�→�+
b

+ lim C3
�→�−

b

��
2

(23)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

C1 = C1
b=1

=
1−�

3

C2 = C2
b=1

=
2

3
√
3
(2 + �)

C3 = C3
b=1

=
(2+�)

6J2

� = 0◦

,

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

C1 = C1
b=1

=
1−�

3

C2 = C2
b=1

=
2

3
√
3
(1 + 2�)

C3 = C3
b=1

= −
(1+2�)

6J2

� = 60◦

3.2  Elastic–plastic stress update algorithm

3.2.1  Explicit forward integral algorithm

At first, substituting the trial stress into the yielding 
function to obtain the loading criteria:

If F
(
�
trial
n+1

, qn
)
≤ 0 , the current stress is directly 

updated to the test stress without any plastic yielding 
during this process. Moreover, the plastic strain incre-
ment and the equivalent plastic strain increment are 
zero, and the continuous tangent modulus equals the 
elastic modulus �.

If F
(
�
trial
n+1

, qn
)
> 0 , the material particle has plas-

tic deformation. The stress �0

n+1
 at the initial yielding 

point is first solved by the following equations:

The remaining strain increment (1 − �)d� is 
divided into m equal parts. For each equal strain 
increment d�m , the associated flow rule and an 
explicit forward integral algorithm are used to update 
the stress and state variables. The calculation scheme 
at step i is as follows (see Fig. 11):

(24)

{
F
(
�
trial
n+1

, qn
)
≤ 0, elastic loading

F
(
�
trial
n+1

, qn
)
> 0, plastic loading

(25)

⎧⎪⎨⎪⎩

�
0

n+1
= �n + �� ∶ d�, 0 ≤ � ≤ 1

q0
n+1

= qn, F
�
�
0

n+1
, q0

n+1

�
= 0

d�m = (1 − �)d�∕m

Fig. 11  Schematic diagram of the explicit forward integral 
algorithm

Using the plastic flow 
vector of 

Using the mean 
plastic flow vector

Using the plastic flow 
vector of 

Fig. 10  Treating the singular plastic flow vectors in unified 
strength theory
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Furthermore, the final stress state and its asso-
ciated plastic flow vector are taken into the last 
expression of Eq.  (26) to obtain the continuous tan-
gent modulus �m

ep
 . By substituting �F∕�q = 0 into 

the above expression, the stress update scheme and 
the continuous tangent modulus for the ideal plastic 
materials with the associated plastic flow rule are 
obtained.

In the explicit forward integral algorithm, the stress 
will deviate from the yielding surface, resulting in the 
last updated stress point outside the yielding surface, 
and its continuous tangent modulus will decrease 
convergence speed. It is easy to result in a non-con-
verging calculation. Unlike the explicit forward inte-
gral algorithm introduced earlier, the implicit return 
mapping algorithm and semi-implicit return mapping 
algorithm do not cause the stress to deviate from the 
yielding surface. Moreover, they calculate faster than 

(26)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩
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(

�F
/

��i−1n+1

)

/

‖

‖

‖

‖
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/
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‖

‖

‖

‖
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�in+1:(�:d�
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�in+1:�:�
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√

2∕ 3
(

�F
/

�qi−1n+1
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/

‖

‖

‖

‖

�F
/
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‖

‖

‖

‖

qin+1 = qi−1n+1 +
√
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√
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‖
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‖

‖

�F
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‖
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‖

⎤

⎥

⎥

⎦

the explicit forward integral algorithm and belong to 
the unconditional convergence algorithm.

3.2.2  Implicit return mapping algorithm

The plastic flow vector of the fully implicit method is 
the normal vector of the final yielding point �n+1 , which 
is unknown during the solution. In the fully implicit 
method, the trial stress returns to the updated yielding 
surface F

(
�n+1, qn+1

)
= 0 along the plastic flow vector 

of the stress point �n+1 . The plastic strain increment is 

Δ��n+1 = Δ�
(
�F

/
��n+1

)/‖‖‖
(
�F

/
��n+1

)‖‖‖ , and the 

equivalent plastic strain increment is 
√
2∕3Δ� . By 

applying the constraint condition ‖‖‖�F
/
��n+1

‖‖‖ = 1 to 
the yielding function, the following equations can be 
obtained (see Fig. 12):

The consistent tangent modulus of the implicit 
return mapping algorithm can be expressed as follows:

Since the partial derivatives of the plastic flow vec-
tor at the terminal stress point need to be solved, the 
fully implicit method requires numerous calculations 
and is very complicated. Due to the local singularities 
in the first-order partial derivatives of the non-smooth 
piecewise linear yielding function, solving its second-
order partial derivatives is a very challenging prob-
lem. Besides, calculating the consistent tangent mod-
ulus in the fully implicit algorithm is very intricate. 
Therefore, this study does not use the fully implicit 
algorithm to update the stress state and the consistent 
tangent modulus.

(27)

⎧⎪⎨⎪⎩

�n+1 = �
trial
n+1

− � ∶ Δ�
�
�F

�
��n+1

�
�
p

n+1
= �

p
n + Δ�

�
�F

�
��n+1

�
qn+1 = qn +

√
2∕3Δ�, F

�
�n+1, qn+1

�
= 0

(28)

⎧⎪⎨⎪⎩

�ctm
ep

= � −

�
�∶(𝜕F∕ 𝜕�n+1)

�
⊗
�
(𝜕F∕ 𝜕�n+1)∶�

�

(𝜕F∕ 𝜕�n+1)∶�∶(𝜕F∕ 𝜕�n+1)−
√
2∕ 3(𝜕F∕ 𝜕qn+1)

� =
�
�−1 + Δ𝜆

�
𝜕2F

�
𝜕�2

n+1

��−1

Fig. 12  Implicit return mapping algorithm under associated 
flow rule
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3.2.3  Semi‑implicit return mapping algorithm

Unlike the fully implicit method, the plastic flow 
vector of the semi-implicit return mapping algo-
rithm is known during the solution. In the semi-
implicit algorithm, the plastic flow vector of the 
stress point �n at the time tn should be first calcu-
lated as �n =

(
�F

/
��n

)/‖‖‖
(
�F

/
��n

)‖‖‖ . By return-

ing from the trial stress point �trial
n+1

 along the plastic 
flow vector �n to the updated yielding surface 
F
(
�n+1, qn+1

)
= 0 at the time tn+1 . The stress �n+1 , 

the plastic strain increment Δ��n , and the equivalent 
plastic strain increment 

√
2∕3Δ� are obtained as 

follows (see Fig. 13):

By simplifying Eq.  (29), the univariate function 
f(Δ�) can be obtained as follows:

Due to the piecewise-linear and non-smooth 
yielding function f(Δ�) , the unified strength the-
ory’s derivative is singular. Accordingly, a new 
method without calculating the derivatives of the 
yielding function is required, and we propose the 
Aitken accelerated iteration scheme to solve the 
piecewise-linear and non-smooth yielding func-
tion f(Δ�) . With the Aitken accelerated iteration 

(29)
�

�n+1 = �
trial
n+1

− � ∶ Δ��n, �
p

n+1
= �

p
n + Δ��n

qn+1 = qn +
√
2∕3Δ�, F

�
�n+1, qn+1

�
= 0

(30)
f (Δ�) = F

�
�
trial
n+1

− � ∶ Δ��n, qn +
√
2∕3Δ�

�
= 0

Fig. 14  The flowchart of updating stress and calculating the consistent tangent modulus

Fig. 13  Semi-implicit return mapping algorithm under associ-
ated flow rule
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scheme, the solution is straightforward without any 
derivatives. Moreover, the Aitken accelerated itera-
tion scheme can reach a second-order convergence 
speed.

The Aitken accelerated iteration scheme is 
used to solve the nonlinear equation f(Δ�)∕� = 0 . 
Where � is used to unify the function f(Δ�) 
and ensures that the equation value is in the 
same order of magnitude as Δ� . Furthermore, 
� = f(Δ� = 0)

/((
�−1 ∶

(
�
trial
n+1

− �n

))
∶ �n

)
 . The 

formula of the Aitken accelerated iteration scheme 
is as follows:

The iterative solution is carried out with Eq.  (31) 
until the constraint inequation |||f

(
Δ�k+1

)/
�
||| ≤ 0.16∼8 

can be satisfied. Substituting the Δ� into Eq. (29) for 
updating stress, plastic strain, and equivalent plastic 
strain. The consistent tangent modulus of the semi-
implicit return mapping algorithm is expressed as 
follows:

The semi-implicit return mapping algorithm is 
simpler and more efficient than the implicit return 
mapping algorithm. This method avoids the com-
plexity of solving the second partial derivatives in 
the implicit algorithm. The semi-implicit method 
does not cause the issue that the stress deviates 
from the yielding surface. The algorithm uses the 
consistent tangent modulus, has second-order con-
vergence speed, and belongs to the uncondition-
ally convergent algorithm. It should be noted that 
the consistent tangent modulus of the semi-implicit 
return mapping algorithm is unsymmetrical, and 
thus, the finite element analysis will adopt an 
unsymmetrical solver. Figure  14 shows the flow-
chart of updating stress and calculating the con-
sistent tangent modulus by the semi-implicit return 
mapping algorithm and the Aitken accelerated iter-
ation scheme.

(31)Δ�k+1 = Δ�k +
f
(
Δ�k

)2/
�

f
(
Δ�k

)
− f

[
Δ�k + f

(
Δ�k

)/
�
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(32)
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�
⊗
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�n+1 ∶ �
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�n+1 ∶ � ∶ �n −
√
2∕3

�
𝜕F

�
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�����𝜕F
�
𝜕�n+1

���

4  Numerical verification

4.1  Theoretical analyses

A constitutive algorithm for isotropic softening plas-
tic materials based on the unified strength theory is 
embedded into the finite element simulation technique. 
The combination method of the semi-implicit return 
mapping algorithm and the Aitken accelerated iteration 
scheme is used to update the stress and calculate the 
consistent tangent modulus. The self-developed mate-
rial constitutive algorithm simulates an example of tun-
nel excavation (see Fig. 15), and the calculated results 
are compared with the theoretical values to verify the 
correctness of the self-developed constitutive algo-
rithm. Given a circular tunnel, its radius is a = 5 m , 
the radius of its surrounding rock is R = 30 m , the ini-
tial pressure is q� = 50 MPa , and the supporting pres-
sure is p = 0 . The surrounding rock’s elastic modulus 
is E = 200 GPa , Poisson’s ratio is � = 0.45 , internal 
friction angle is � = 45◦ , and cohesion strength is 
c = 3 MPa.

Assuming that the model is under plane strain state 
and q′ > p , and the initial ground stress field is obtained 
by uniformly distributed compressive stress outside 
the model before it is excavated, the theoretical solu-
tion of the stress in the plastic deformation zone can be 
obtained by using the unified strength theory and the 
non-associated Mohr–Coulomb plastic flow rule (Yu 
2004, 2018; Yu et al. 2006, 2009; Zeng et al. 2011; Yu 
and Li 2012). The mathematical formulas are derived 
as follows:

Fig. 15  Tunnel analysis model
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Fig. 16  The meshing and boundary conditions of the tunnel 
model

where �r is the radial stress, �� is the circumferential 
stress, and b is the double-shear parameter.

If the area of the surrounding rock is boundless, the 
following equations can be obtained:

where Rp is the external radius of the plastic deforma-
tion zone, and �Rp

 is the radial stress at the external 
radius of the plastic deformation zone.

If the area of the surrounding rock is finite, then 
the stresses in the elastic deformation zone are 
derived as follows:

where k = Rp

/
R.

If the area of the surrounding rock is finite, then 
the radial displacement ur in the elastic deformation 
zone is calculated as follows:

where uRp
 is the radial displacement at the external 

radius of the plastic deformation zone.
The radial displacement ur in the plastic deforma-

tion zone is calculated as follows:

(33)
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where �� is the dilatancy angle of the non-associ-
ated Mohr–Coulomb plastic flow rule. If b = 0 and 
�� = � , then the Mohr–Coulomb strength theory with 
the associated plastic flow rule is obtained.

4.2  Numerical verifications

The stress field of tunnel excavation is simulated with 
the axisymmetric plane element. The region adopted 
in the simulation is at least three times larger than 
the tunnel. Its length and width are 20 m and 30 m, 
respectively. The model’s upper and lower bounda-
ries apply symmetrical displacement constraints (see 
Fig. 16), and uniform compression stress at the exter-
nal boundary is 50 MPa. First, the initial stress field is 
solved. Then the tunnel is excavated by using the ele-
ment birth–death technique. Finally, the stress distri-
bution of the tunnel after excavation is simulated. The 
tunnel model is divided into 9,221 nodes and 3,000 
cells.

Figure  17 manifests the stress and displacement 
distributions in the disturbed excavation region 
and compares the finite element simulation and the 
theoretical analysis. In the comparative analysis of 
numerical experiments, the maximum relative error 
of radial stress is 1.569%, and its average relative 
error is 0.681%. The maximum relative error of cir-
cumferential stress is 2.400%, and its average rela-
tive error is 0.501%. The maximum relative error of 
radial displacement is 0.601%, and its average rela-
tive error is 0.387%. The plastic deformation zone 
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radius of the finite element simulation solution is 
7.035  m, and the corresponding theoretical analysis 
solution is 7.028 m, with a relative error of 0.101%. 
The predicted and theoretical values of the radial 
stress at the elastic–plastic interface are 12.748 MPa 
and 12.523  MPa, respectively. Moreover, their rela-
tive error is 1.797%. The numerical and theoretical 
values of the radial displacement at the elastic–plastic 
interface are − 2.030  mm and − 2.031  mm, respec-
tively. Furthermore, their relative error is 0.049%. 
The numerical and theoretical values of the radial 
displacement at the excavated surface are − 9.745 mm 
and − 9.774 mm, respectively. Besides, their relative 
error is 0.296%.

In this study, the elastic–plastic theoretical solu-
tions in the deep-lying circular tunnel are derived 
based on the condition that the surrounding rock is 
boundless. However, the surrounding rock is finite 
in the numerical simulation. Besides, the finite ele-
ments only approximately meet the plane strain 
state in the numerical simulation, and the accu-
racy of the numerical simulation is related to the 
mesh-division density. Therefore, there is an inevi-
table error between the numerical and theoretical 

solutions. The simulation results show that the 
error between the numerical and theoretical solu-
tions is small and meets the engineering precision 
requirement. The result indicates that the plastic 
constitutive algorithm for isotropic softening mate-
rials based on the unified strength theory is valid.

5  Engineering application: underground stope 
stability analysis

5.1  Engineering backgrounds

Bainiuchang Mine is a deep underground metal 
mine in Mengzi County, Yunnan Province, China. 
Its orebody in the Baiyang section is a gently 
inclined broken thin vein with poor mining condi-
tions, broken rock mass, and lack of continuity. At 
present, the room-pillar method is used for mining. 
The stability of the surrounding underground rock 
is poor, and the stope has a serious roof caving 
problem. Hence, it is necessary to study the sta-
bility of the test stope in the Baiyang mine section 

Fig. 17  Comparison between the results of finite element simulation and analytical analysis
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to improve the mining efficiency and ensure min-
ing safety. By analyzing the stress, strain, and dis-
placement distribution in the typical roof and pil-
lar, the structural parameters of the test stope are 
hopefully optimized to instruct the mine design and 
safety production. The main factors of stope sta-
bility analysis are mining depth, pillar width, rock 
strength and room width. Among them, the first 
factor and the third factor are the geological engi-
neering conditions of the stope, so only reasonable 
optimization of the size of pillars and rooms can 
improve the overall stability of the stope. Moreo-
ver, the pillar width must be bigger than 3.5 m, and 
the room width must be smaller than 5 m to ensure 
the allowable safety factor of the pillar is not less 
than 1.5.

5.2  Stope simulation conditions and parameters

5.2.1  Overview of orebody characteristics 
and mining method

The orebody of the Baiyang mine section is mainly a 
gently inclined thin orebody. The thickness is between 
2 and 5 m. The length of the stope is about 40 m, and 
its width is about 25  m. Many pillars are preserved 
to support its roof, the pillar width is about 3 m, and 
the room width varies from 2 to 6 m. Because of the 
poor stability of rock mass, many mined stopes have 
been closed because of the roof caving and rock strata 
collapse.

5.2.2  Mechanical parameters of the engineering rock 
mass

The rocks related to the stope stability analysis are 
mainly siltstone, mudstone, carbonaceous limestone 
and orebody. Among them, mudstone and siltstone 

are distributed in the roof, and carbonaceous lime-
stone is distributed in the floor. The main mechanical 
parameters of these rock masses are listed in Table 1:

5.2.3  The initial ground stress field of the stope

The vertical ground stress of the Baiyang mine sec-
tion is mainly the overburden gravity stress. Accord-
ing to the average ratio of Baiyang average horizontal 
ground stress to vertical ground stress, the horizontal 
ground stress field is obtained. And the average ratio 
is expressed as follows (Zhao et al. 2007; Jing et al. 
2011):

where H is the buried depth. The average buried 
depth of the Baiyang mine section is H = 500m , so 
the mean ratio is k ≈ 1.25.

5.3  The stope stability analyses

5.3.1  Numerical model

The self-developed constitutive algorithm for iso-
tropic softening plastic materials based on the unified 
strength theory is used to simulate the excavation of 
the stope using the finite element technique. Further-
more, the distribution of the three principal stresses 
and the plastic yielding in the stope are analyzed. 
The geological model should be consistent with the 
actual geological conditions as much as possible, and 
its physical dimensions should be at least three times 
larger than the excavation space diameter. According 
to the actual engineering geology and mining con-
ditions, the geological modeling parameters are as 
follows: the model range is 150  m × 100  m × 150  m 
(length × width × height); the test stope in the Baiyang 

(38)k = 1.0 + (124∕H)

Table 1  The mechanical parameter of rock mass

Rock mass Elasticity 
modulus/GPa

Poisson’s ratio Double-shear 
parameter

Cohesion/MPa Friction angle/° Density/(g/cm3)

Mudstone 4.51 0.19 0.25 1.14 17.79 2.79
Siltstone 14.88 0.27 0.25 4.08 35.97 2.64
Orebody 12.60 0.22 0.5 6.50 42.07 4.00
Carbonaceous 

limestone
9.37 0.25 0.5 3.47 28.38 2.74
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mine section is about 500 m away from the surface; 
the orebody inclination is 25°; the orebody thickness 
is 3  m; the stope height is 3  m; the stope length is 
40 m; the stope width is 25 m; the width of the pillar 
is 3 m; the row spacing interval of the pillar is 4 m; 
the column spacing interval of the pillar is 6 m.

When the finite element grid is divided, the stope 
and its local grid are refined to meet the computa-
tional accuracy, and the grid outside the stope is 
rough to reduce the computational workload. A sim-
plified model of the stope is established, and then tet-
rahedral elements are used to divide the finite element 
grid for each rock mass. The entire grid is divided 

into 96,866 elements and 18,513 nodes (as shown in 
Fig. 17). In the mining of the stope, the banded room 
is first excavated along the length of the block, and 
then the continuous pillar is excavated for the second 
time along the width of the block, leaving 3 m wide 
square pillars to support the entire stope (see Fig. 18).

The hanging wall of the stope in the model is 
100  m high, and the footwall extends downward to 
50 m deep. The initial ground stress field of the stope 
is solved according to the existing load and boundary 
conditions. The initial ground stress field is imported 
into the finite element geological model, and then the 
excavation of the stope is carried out. The following 
are the boundary and loading conditions used in the 
numerical model. Vertical ground stress  �v = �gh

= 2.715 ×9.8 × 0.4 MPa ≈ 10.65 MPa is applied to 
the upper surface of the model. Horizontal ground 
stresses �H = 1.25�gh = 16.63 MPa are applied to the 
four outer surfaces of the model. The bottom surface 
of the model is constrained by a fixed boundary con-
dition, and the acceleration of gravity is 9.8 m/s2.

5.3.2  Stability analysis

Because of the symmetry of this model, only half of 
the entire model is used for numerical simulation. 
When the stope is unexcavated, the initial stress field 
is simulated first. The maximum initial ground stress 
of the stope is obtained by simulation as 18.80 MPa, 

Fig. 18  The grid of the geological model and the stepwise 
mining diagram of the stope

Fig. 20  The distribution of 
the equivalent plastic strain 
in the pillar

Fig. 19  The maximum 
tensile stress and the maxi-
mum compressive stress of 
the stope
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which is consistent with the actual situation. The 
maximum tensile stress of the roof and the maximum 
compressive stress of the pillar are taken as the pri-
mary criteria to determine stope stability. The stope is 
excavated in two steps, and the simulation results are 
as follows:

1. Stability analysis of the pillar.
As the excavation continues, the compressive 

stress in the stope increases (see Fig.  19). Moreo-
ver, the maximum compressive stress in the pillar 
increases five times. The compressive stress of the 
pillar in the middle of the stope is stronger than that 
of other pillars. The maximum compressive stress 
value 92.30 MPa appears at the bottom corner of the 
central pillar and quickly causes the pillar to yield 
locally.

Figure  20 shows the plastic deformation zone 
inside the pillar. The plastic deformation zones in 
all the pillars are widely distributed and very severe, 
and their equivalent plastic strains are greater than 
1.710e−4. The plastic strain of the pillar in the mid-
dle is significantly greater than the other pillars. The 
equivalent plastic strain runs through the entire pil-
lar, and its value is greater than 3.420e−4 at the mid-
point. The maximum equivalent plastic strain reaches 
1.026e−3 in the waist corner of the pillar, which 
forms the shear failure zone and increases the possi-
bility of the pillar peeling off.

2. Stability analysis of the roof.
Figure 21 shows the layout of potential tensile fail-

ure zone of the roof. The potential tensile failure zone 
is mainly concentrated in the middle of the stope, 
which is easy to cause roof caving.

The local maximum tensile stress of the roof is 
1.18  MPa (see Fig.  19), but the average uniaxial 
tensile strength of the roof is less than − 0.30 MPa. 
If the surrounding rock has many joint fissures, its 
tensile strength will be weakened, and even a cer-
tain compressive stress is required to maintain the 
stability of the rock mass. If the first principal stress 
in one area is greater than -0.30 MPa, then this area 
is taken as the potential tensile failure area. If there 
are too many weak structural planes in the potential 
tensile failure zone, the roof will collapse.

The distribution of the plastic deformation zone 
inside the roof is shown in Fig.  21. The roof has 
an extensive plastic deformation zone, and its local 
plastic deformation zone runs through the whole 

stope. The maximum equivalent plastic strain of the 
roof reaches 6.902e-3. The plastic yielding of the 
roof is more significant than the pillars. The plastic 
deformation zone is mainly concentrated near the 
sidewall. In the process of mining, plastic deforma-
tion occurs first in the place where the roof is close 
to the side wall, and then the pillar in the middle of 
the stope.

After the stope mining, the subsidence displace-
ment of the roof is between 2.946 and 3.881 cm, and 
the subsidence displacement of the floor is between 
2.750 and 3.736 cm. Naturally, under good engineer-
ing geological conditions, the subsidence displace-
ment magnitude still can maintain the stabilization 
of the roof. However, the surrounding rock of Baini-
uchang mine is broken and cracked, and the engineer-
ing geological condition is poor. Therefore, the settle-
ment displacement of about 3 cm will also destabilize 
the stope, causing severe instability problems.

The numerical simulation results of stope stabil-
ity show that the safety of the original stope is very 
poor, so it is necessary to optimize the structural 
parameters of the original stope.

5.4  Analysis of the stope instability mechanism

5.4.1  Analysis of the pillar instability mechanism

Figure  22 shows the yielding failure and compres-
sive failure of the carbonaceous limestone pillar. 
The dominant failure modes of most pillars in the 
Baiyang mine section are shear failure and sur-
face spalling. As the excavation continues, the pil-
lar’s compressive stress increases continuously. If 
the stress of the pillar is less than the rock mass 
strength, then the pillar remains stable. However, if 
the pillar’s stress is greater than the ultimate bearing 
capacity of the rock mass, then it will be unstable.

The pillar from inside to outside can be divided 
into intact zone, transition zone, and crushing zone. 
Fragmenting failure and progressive exfoliating 
failure are the main failure forms of pillar in Bai-
yang section. They are also common failure modes 
of stratified orebody. The pillar is gradually dam-
aged from the surface to the inside. At first, tensile 
failure appears on the pillar’s surface, and then the 
shear failure zone develops at the pillar’s corners. 
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Fig. 21  The potential tensile failure area and equivalent plastic strain distribution in the roof
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Subsequently, the shear failure zone extends to the 
pillar inside until the pillar is completely unstable 
and crushed.

5.4.2  Analysis of the roof instability mechanism

As the mining continues, the tensile deformation 
zone first appears in the roof, and its area and ten-
sile stress increase continuously. If the tensile stress 
of the roof exceeds the tensile strength of rock mass, 
the roof will have tensile failure and induce tensile 
cracking. Finally, the roof will collapse. The stope 
width is continuously enlarged as the mining con-
tinues. Meanwhile, the vertical ground stress gradu-
ally transfers to the top and bottom of the pillar, and 
stress concentration occurs in the pillar and the con-
tact zone between the pillar and the roof. The stress 
concentration intensity is related to the buried depth, 

stope structural parameters, and regional tectonics. 
The greater the buried depth and span of stope, the 
more serious the stress concentration and the greater 
the possibility of pillar and roof failure (see Fig. 23). 
If the stress exceeds the ultimate bearing capacity of 
the rock mass, the roof will cave, and the wall will 
collapse.

6  Engineering application: underground stope 
structural parameters optimization

6.1  Optimization of the stope structural parameters

Based on the stope stability analysis results in Sect. 5, 
the pillar size and the room size for different stope 
heights are optimized to ensure the safety and sta-
bility of the stope. The stope height of the Baiyang 
mine section is between 2.5 and 4.5 m. Under three 
fixed stope’s heights, the self-developed constitu-
tive algorithm for isotropic softening plastic mate-
rials based on the unified strength theory is used to 
simulate the excavation of stope with different struc-
tural parameters to obtain the optimal size of the 
room and pillar. The orthogonal experimental design 
method is adopted to select the stope parameters, 
and the schemes of the stope structural parameters 
are obtained using the L9(34) orthogonal table (see 
Table 2).

The same grid size is used to mesh the model and 
ensures comparability between different schemes. 
The tetrahedral 8-node element is used to partition 
the mesh, and the self-developed elastic–plastic con-
stitutive algorithm in Sect. 3 is used to simulate the 

Fig. 22  The yielding and compressive failure of a carbona-
ceous limestone pillar

Fig. 23  Analysis of the 
stope instability mechanism
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stope excavation. In the study of scheme optimiza-
tion, the most important thing is to choose the rele-
vant characteristic quantity for comparison. Because 
the rock mass has feeble resistance to tensile stress, 
the maximum tensile stress in the roof, the maximum 
compressive stress in the pillar, and the maximum 
equivalent plastic strain are selected as the key crite-
ria for the comparative study of different schemes.

6.2  Comprehensive analyses of optimization results 
of the stope structural parameters

The key criteria for the comparative study of differ-
ent schemes are demonstrated in Fig.  24, Figs.  25, 
and 26. The calculation results of the fourth scheme 
are not convergent. Its pillar and roof are seriously 
deformed and become extremely unstable. The stabil-
ity evaluation of the pillar in the figures shows that 
the overall stability of the pillar is higher if the pillar 
width is greater than 4 m. The roof stability analysis 
in the figures shows that if the room width is larger 
than 4 m, the stope roof is unstable.

According to the above analysis, the optimal struc-
tural parameters of stope are as follows: the mining 
height is between 2.5 and 4.5  m; the pillar width is 
4 m; the column spacing is 4 m; the row spacing is 
between 3 and 4  m. The plastic deformation of the 
roof is large and the stability is not very high, so more 
attention should be paid to the safety monitoring of 
the roof.

Combined with the geological engineering con-
ditions of the Baiyang mine section, the optimized 
structural parameters are applied to determine the 
sizes of the room and pillar. The design stope height 
is 4  m, the reserved pillar diameter is 4  m, the row 
spacing is 3 m, the column spacing is 4 m, the stope 
length is 40  m, and the stope width is 25  m. The 
stope layout is along with the inclination, and the pil-
lars between each adjacent stope are kept 5 m wide. 
The field investigation results in the mining stope are 
as follows: 1. Most pillars are stable. However, the 
joints and fissures of some pillars are very developed, 
bringing about spalling and caving problems. 2. The 
roof and sidewall are stable, and there are no large 
dangerous rocks broken on the exposed surface of 
the roof. 3. The profile size of the pillar is difficult to 
guarantee, its centerline is not vertical, and its surface 
is uneven.

The optimized structural parameters improve the 
stability of the whole stope and realize the safe pro-
duction of underground mining. Because of the poor 
stability of the surrounding rock in the Baiyang mine 
section, if the room-pillar method is continued to be 
used, the exposed area of the room may not be too 
large, which is less than 50  m2. Some orebodies must 
be reserved as pillars, and the diameter of the pillars 
should be at least 4 m. For large stopes, the mining 
time is longer, so it is necessary to support the roof or 
keep artificial pillars. Besides, the stope height may 
not be too high, and 3.5 m is appropriate.

Table 2  The schemes of the stope structural parameters

Sequence 
number

Mining 
height/m

Square 
pillar 
width/m

Row 
spacing 
interval/m

Column spac-
ing interval/m

1 2.5 2 2 4
2 3 3 5
3 4 4 6
4 3.5 2 3 6
5 3 4 4
6 4 2 5
7 4.5 2 4 5
8 3 2 6
9 4 3 4

Fig. 24  The maximum 
tension stress of the pillar 
and roof
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7  Conclusion

The single-shear strength theory does not correctly 
consider the influence of intermediate principal 
stress. Moreover, the classical triple-shear strength 
theory does not consider the effect of stress angle on 
material strength. The calculated strength of both the-
ories deviates from the experimental results, leading 
to conservative budgets. The unified strength theory 
can solve these problems. It has established a math-
ematical expression that can reasonably reflect the 
piecewise effect of intermediate principal stress on 
material strength, which cannot be expressed by a sin-
gle-shear strength theory. Moreover, it contains many 
frequently used strength theories, and its yielding sur-
face includes the convex and concave types, which 
can be widely applied to all kinds of materials. Using 
the unified strength theory can further improve the 
economic benefits of strength design. Additionally, 
the piecewise linear unified strength theory is more 
suitable for rock material since it has the simplest and 
most effective mathematical equations.

Therefore, a plastic constitutive algorithm for 
isotropic softening materials based on the unified 
strength theory was developed for rock engineer-
ing. Furthermore, the combination method of the 

semi-implicit return mapping algorithm and the 
Aitken accelerated iteration scheme was applied to 
calculate the plastic deformation and the consist-
ent tangent modulus. The self-developed constitu-
tive algorithm was used to simulate the elastic–plas-
tic excavation of a deep-lying circular tunnel. The 
numerical simulation results agreed with the theo-
retical solution and verified the correctness of the 
self-developed constitutive algorithm. The numerical 
experiment showed that the combination method of 
the semi-implicit return mapping algorithm and the 
Aitken accelerated iteration scheme can simplify the 
solution of the stress and the consistent tangent mod-
ulus. Besides, the combination method overcame the 
stress-deviating problem and avoided calculating the 
partial derivative of the plastic flow vector. The algo-
rithm is simple and easy to be generalized.

Based on the mining practice of the gently inclined 
thin ore body in the Bainiuchang mine and its com-
plex buried depth conditions, the self-developed con-
stitutive algorithm was used to study the stabilities of 
the stope. Furthermore, the structural parameters of 
the stope were optimized. The results of stope stabil-
ity analysis and structural parameters optimization 
provided a reliable scientific basis for the mining 
design and decision of Bainiuchang mine.

Fig. 25  The minimum 
principal stress of the pillar 
and roof

Fig. 26  The maximum 
equivalent plastic strain of 
the pillar and roof
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This study closely combined the research results 
with engineering applications, guided the safe and 
efficient production of mining, ensured the safety 
of underground stope, and achieved the expected 
goals. The optimization research and application of 
stope structural parameters have achieved complete 
success.
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