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Abstract Stratigraphic correlation of wells involves

correlation of stratigraphic interfaces which should be

continuous across the area between the wells. Strati-

graphic correlation of wells comes at an advanced

stage of reservoir estimation, where accurate quanti-

tative information is required for prospect evaluation

of the target reserve. It requires input from a variety of

geophysical surveys ranging from seismic surveys to

core analysis. In this work a novel and innovative

technique using discrete wavelet transform with

fourier transform and multi-scale analysis is demon-

strated, which can be utilized for detecting strati-

graphic interfaces and correlating them between wells.

The technique was first tested on synthetic gamma ray

logs for two synthesized wells and was then applied to

the well data taken from geophysical surveys under-

taken by dGB Earth Sciences in the Netherlands

Offshore F3 Block. Discrete wavelet transform and

fourier transform was applied to gamma ray logs to

identify potential interfaces and then multi-scale

analysis was used to characterize each horizon by

finding its fractal dimension. Interfaces which had

similar lithology and thickness, had similar fractal

dimensions and were therefore correlated. This

approach was also compared with conventional

wavelet based techniques and was proved to be

superior. The well correlation was also independently

verified by identifying marker beds using seismic data

in between the wells, and there was good agreement

between the results that were obtained.

Keywords Well logging � Stratigraphic correlation �
Stratigraphic interfaces � Wavelet transform � Multi-

scale analysis

1 Introduction

Well logging is a very important technique for

reservoir characterization and has been in use since

Conrad and Marcel Schlumberger first tested this

technique in the year 1912, for the iron mines located

in Normandy, France. This technique involves mea-

suring the geophysical properties of the subsurface and

translating the log response to determine the variations

in the petrophysical properties in the subsurface.

These include finding volume of clay, lithology, grain

size, water saturation, porosity and permeability, all of

which are essential for reservoir characterization.

Various log responses exist, and the commonly used

logs are sonic logs, self potential logs, gamma ray

logs, and resistivity logs. The subsurface is sampled

very densely, with a resolution as low as 0.1 m and

therefore gives an excellent structural and strati-

graphic mapping of the subsurface. Using the petro-

physical parameters the estimation of the intended
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reservoir extent and pay thickness is characterized,

which could be for either hydrocarbons or minerals,

and plays a crucial role in their production (Ellis

1987).

The log responses can be used to obtain strati-

graphic information of the reservoir (Igbokwe 2011;

Li et al. 2014; Mory and Iasky 1996). The self

potential and gamma ray logs are used for strati-

graphic interpretation as they are good lithology

indicators and based on the log responses, the

depositional environment ranging from deltaic and

fluvial setting to clastic marine can be interpreted.

The transgressive and regressive facies change can

also be identified in the depositional environment

from the log responses. A bell shaped response of

either of the log responses indicates a transgressive

environment. A funnel shaped response of either of

the log responses indicates a regressive environment.

The log responses can also be interpreted to give

structural information of the subsurface (Hestham-

mer and Fossen 1998; Trautwein-Bruns et al. 2011;

Chattopadhyay and Ghosh 2006; Serra 1984). The

dipmeter log response is very useful to identify faults.

In a plot of dip versus azimuth, faults can be

recognized by the variations in dip patterns, where

the dip amount suddenly increases and then decreases

as in a case of normal fault and vice versa in a reverse

fault. From the same plot unconformities can be

recognized by the sudden change or sudden reversal

in the dip direction, while folds can be identified by

the gradual changes in the dip direction and dip

amount. Fractures and lineaments in the borehole can

also be identified by image logging tools like

Formation Micro Imaging (FMI), Borehole Tele-

viewer (BHT), and Formation Micro Scanner (FMS)

logging tools (Shahinpour 2013; Williams and John-

son 2004; Kabir et al. 2009). The image logging tools

obtain a clear image of the borehole just like the core

samples. The FMI and FMS imaging tools obtain

images based on the variation of the resistivity values

of the boreholes. The BHT tool uses the principle of

reflection of acoustic waves of high frequency

(0.5–1.5 MHz) and obtains an image of the borehole

based on the arrival times of the acoustic waves. The

image logging tools though have a poor depth of

penetration and are correlated with the structural

information to obtain a better characterization of the

reservoir and aid in the extraction process of the

target reservoir.

Correlation of logs is done to match the lithology of

a formation between two wells identified from the

signatures of the log response. The log correlation

gives a complete structural and stratigraphic informa-

tion of the reservoir. The log signatures mimic the

geophysical properties of the formation including

geomachanical properties, electrical properties, and

characterize lithology (Lukeš 2005; Luthi and Bryant

1997). Various techniques have been developed to

correlate the log responses which include neural

networks, cross-correlation algorithms with covari-

ance measures, and using artificial intelligence with

rule based systems. In the neural network based

correlation techniques, the neurons are initially trained

to identify a particular geologic marker for a given

well and subsequently these are used to identify the

markers in other wells. In the cross-correlation based

well correlation techniques, the cross-correlation of

raw well log data for corresponding logs between

wells are done and a high correlation implies a

correlation of strata (Dashtian et al. 2011). The

artificial intelligence based techniques suffer from

the drawback that it is not able to identify gaps and

stretching of sequences which probably might be due

to the presence of uncorrelated strata. To correlate the

strata with the log response seismic data is used and a

seismic to well tie is made by generating synthetic

seismograms from the log data (Lorenzo and Hesselbo

1993; White and Simm 2003; Hampson-Russell 1999;

Herrera and Van Der Baan 2012).

In this work we propose a novel method for

stratigraphic correlation of wells, using discrete

wavelet transform (DWT) and Fourier transform

(FT) to identify stratigraphic interfaces, and using

multi-scale analysis to characterize each interface.

The fractal dimension of beds is found in this approach

and the beds which have similar fractal dimensions are

believed to characterize an independent strata, and

based on this outlook the correlation between the wells

is done. The feasibility of this technique is explained

through synthetic examples and then tested on real

data. The veracity of results is tested using seismic

data between the wells using interpreted marker beds.

2 Detection of stratigraphic interfaces

Detection of stratigraphic interfaces can be visualized

in the well log response by the sudden variation in the
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signal accompanying the log. These abrupt changes in

the log response indicate sudden lithological changes

in the concerned strata. Continuous wavelet transform

(CWT) has been applied for bed boundary detection in

the past (Vermaa et al. 2012; Choudhury et al. 2007).

The advantage that CWT possesses over other tech-

niques like fourier transform (FT) and Short Time

Fourier Transform is that it gives good spatial and

temporal resolution (Polikar 1996). The CWT analysis

of the log response using a suitable mother wavelet is

done through the variation of the scale factor x and

translation factor y which complete the definition of

the mother wavelet u t � yð Þ=xð Þ. This is defined in the
following equation.

W x; yð Þ ¼ 1
ffiffiffiffiffi

xj j
p

Z 1

�1
f tð Þu t � y

x

� �

dt ð1Þ

The wavelet coefficients W(x, y) record the varia-

tions in the log response and presumed to occur due to

lithological changes. In CWT analysis the mother

wavelet is continuously shifted by changing the scale

and translation factors. The scale factor is inversely

proportional to the frequency of the signal. A high

scale factor implies the lower frequency components

are analyzed using the mother wavelet, whereas a low

scale factor implies that the high frequency component

of the signal are analyzed. The variation of the scale

factor changes the shape of the mother wavelet. The

translation factor controls the shifting of the mother

wavelet which acts as a window function. Electrofa-

cies association of well log signatures with core data

has been done using CWT for studying the stratigra-

phy and deposition pattern (Perez-Muñoz et al. 2013;

Panda et al. 2015) by varying the scale factor, and

studying the wavelet coefficients of the well logs. But

to validate this method it is very important to also have

core data, as quiet often these changes do not have any

geologic significance and are very misleading, espe-

cially when dealing with logs like gamma ray and SP

which are more often very noisy. The noise here refers

to the statistical nature of the log signatures. This

method though promising fails to detect all the

interfaces and does not give accurate depth informa-

tion of all the interfaces, as demonstrated in this study

through synthetic examples. Therefore we use discrete

wavelet transform (DWT) and fourier transform (FT)

to identify stratigraphic interfaces (Pan et al. 2008).

DWT is used to denoise the log data and then it is

analyzed using FT, and the various formation inter-

faces are consequently detected. In DWT analysis the

variation of the scale factor is done as powers of 2 and

not continuously which gives remarkable results (Yue

et al. 2004). The DWT analysis gives coefficients

called detail coefficients (CD) and approximation

coefficients (CA) which correspondingly represent the

high frequency component analysis and low frequency

component analysis of the signal. In case of noisy

signals the Approximation Coefficients are again

operated by DWT to get another series of CA and

CD. For reconstruction the Detail Coefficients are then

inverse wavelet transformed. Mathematically they can

be represented by the Eqs. 2, 3 and 4.

cA0
y ¼

X

t

f tð Þ � u t � yð Þ ð2Þ

cD j
y ¼

X

t

h1 t�2yð Þ � cDj�1
t ð3Þ

cA j
y ¼

X

t

h0 t�2yð Þ � cAj�1
t ð4Þ

h0y ¼
1p
2

Z 1

�1
w t=2ð Þw0 t � yð Þdt ð5Þ

h1y ¼
1p
2

Z 1

�1
w t=2ð Þw0 t � yð Þdt ð6Þ

R
j
cDy ¼

X

t

h01 t�2yð Þ � cDj�1
t ð7Þ

The above equations highlights the process of the

DWT analysis and the reconstruction of the denoised

log response. Equation 2 explains the reconstruction

process of the approximation coefficients, Eq. 3

elaborates on the reconstruction of the Detail Coeffi-

cients for level j, and Eq. 4 explains the reconstruction

of the Approximation Coefficients for level j. Equa-

tions 6 and 7 denote weights which are used in

defining the Approximation Coefficients and Detail

Coefficients, respectively. The function w is the scale

function which is orthogonal to the mother wavelet.

The signal can be reconstructed using Eq. 7 (Misiti

et al. 2000; Yue et al. 2004; Boggess and Narcowich

2001), where RcD is the reconstructed detail coeffi-

cients. The Fourier transform of the reconstructed

signal is then taken to identify the frequency spectrum

of the signal. Only those frequency components are
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chosen which have maximum energy or amplitude,

and are then inverse transformed and the variation of

this resultant signal is used for detection of strati-

graphic interfaces. The inflection points on the resul-

tant signal when plotted, represent boundaries of the

formation interfaces and correspondingly give their

respective depths. The mother wavelet chosen for

analysis was the Haar wavelet which gave superior

results as compared to other wavelets and their

families.

In our study we use only gamma ray logs and the

flowchart highlighting the DWT and FT operation for

identification of stratigraphic interfaces is shown in

Fig. 1. The DWT operation works as a filtering

operation and decomposes the signal into approxima-

tion coefficients (equivalent to low pass filtering) and

detail coefficients (equivalent to high pass filtering).

The mother wavelet used in this operation was the

Haar wavelet. Since there is a large statistical variation

in the gamma ray log equivalent to noise, the signal is

denoised using a 3 level decomposition, after which

the detail wavelet coefficients (CD3) finally obtained

are inverse transformed to get the reconstructed signal

RCD, which is used for spectrum analysis. The

Fig. 1 The flowchart illustrating the steps involved in DWT and FT analysis of gamma ray logs
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decomposition level generally varies with the type of

log signal used for analysis and is more for noisy

signals like gamma ray logs, while even a single order

decomposition is sufficient for less noisy signals. It is

very important extract the Detail Coefficients from the

signal, as they contain the high frequency components

of the signal which has geologically crucial informa-

tion and useful to identify thin and thick interfaces. If

the log response is not denoised using DWT at its

various decomposition levels, then it is very difficult

to distinguish between signal and noise in the ampli-

tude spectra when FT operations are done. The signal

and noise in such situations have comparable

strengths. Therefore when denoising using DWT

operations, the sudden statistical fluctuations in the

signal are eliminated and the stratigraphic formation

signatures of the log response are better seen. A

logarithmic transform is done at the end to the

recovered signal D after DWT and FT operations,

after which we obtain signal O which is used for

stratigraphic interpretation.

3 Multi-scale analysis

The multi-scale analysis of geophysical data is a new

concept that has been applied to many fields of

geophysical signal analysis ranging from earthquake

seismology (Dimri et al. 2005; Srivardhan and Srinu

2014), magnetotellurics (Telesca et al. 2012), elec-

trical methods (Vedanti and Dimri, 2003), gravity

and magnetic methods (Maus and Dimri, 1994; Maus

and Dimri 1996; Fedi 2003; Fedi et al. 1997),

reservoir characterization using well logs (Ouadfeul

and Aliouane 2013, 2011), and exploration seismol-

ogy (Ouadfeul and Aliouane 2012; Saraswat et al.

2014).

Fractal analysis is the study of macrostructure

properties through microstructure studies. The prop-

erties are scale invariant and do not change by

changing the scale of observation. Fractal dimension

is a statistical index generally a non-integer, which

tells us how the system becomes complex when the

scale of observation changes. It measures the degree of

irregularity when measured over multiple scales and

determines how the fractals change from Euclidean

objects. Multifractals are a group of fractals which

have different fractal dimensions depending on the

scale of observation (Mandelbrot 1983; Theiler 1990;

Barnsley 2013; Voss 1991; Kaye 2008). The fractal

dimension of geophysical signals can be found

through many methods and can be broadly classified

under various methods like box counting methods,

power spectrum methods, divider relations, vari-

ograms, and area/perimeter methods (Klinkenberg

1994). In this study the fractal dimension has been

calculated by multi-scale analysis using Continuous

Wavelet Transform (Dimri et al. 2005; De Cola 1989),

as explained in Eq. 1, and has been borrowed from

studies done in earthquake seismology. The input well

log signal was analyzed using a mother wavelet under

various scales ranging from 1 to 8.4. The variation in

scales was done in steps of 0.1 and the wavelet

coefficients were found. A linear power law relation-

ship between the variation of wavelet coefficients and

the change in the scale factor was assumed. Since the

Table 1 The design parameters for the synthetic log responses

for well-1 and well-2

S. no Depth interval (m) Thickness (m) API

Well-1

1 1248 – 130

2 1248–1244 4 87.77

3 1244–1238 6 122.2

4 1238–1233 5 128.8

5 1233–1227 6 119.9

6 1227–1224 3 11.64

7 1224–1218 6 96.44

8 1218–1215 3 125.7

9 1215–1212 3 61.11

10 1212–1205 7 114.2

Well-2

1 1258 – 130

2 1258–1254 4 87.8

3 1254–1248 6 122.2

4 1248–1244 4 128.9

5 1244–1237 7 119.9

6 1237–1234 3 11.59

7 1234–1228 6 96.48

8 1228–1225 3 125.7

9 1225–1222 3 61.2

10 1222–1215 7 114.2

11 1215–1210 5 127.2

12 1210–1206 4 46

13 1206–1201 5 81.75
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high scales represent the lower frequency variation of

the signal, the upper limit of the scale range which

gave good results was fixed at 4.4 through many trial

and error observations. The variation of the wavelet

coefficients Vcw with scale factor x gave a straight line

on a log–log plot whose slope gave the value of Holder

ExponentHwhich is related to the fractal dimension D

as demonstrated in Eqs. 8 and 9. The mother wavelet

selected for analysis was the Daubechies family of

wavelets of order 2 (db2) which gave good results.

Other wavelets like the Symlets, Coiflets, Haar, and

Morlet family of wavelets and their orders were also

tried, but the db2 wavelet gave good results.

Vcw � xH ð8Þ

2D ¼ 5� H ð9Þ

If the upper limit of the scale range selected is

further extended, then there is significant deviation

observed on the plot characterized by Eq. 8. At large

scale values there is significant deviation from the

power law relation which we assume, and the interval

is correspondingly adjusted such that the power law

relation defined by the equation is maintained. Each

stratigraphic interface identified using DWT and FT

analysis is characterized by a fractal dimension and

wells can be easily correlated depending on this value.

4 Synthetic signal

Synthetic gamma ray log signals were generated for

two wells namely well-1 and well-2. Synthetic gamma

ray logs were prepared as they are most commonly

Fig. 2 a The raw synthetic

gamma ray log response of

well-1. b The log response

after DWT and FT

operations from which

stratigraphic interfaces can

be identified at the inflection

points for well-1

Fig. 3 a The raw synthetic

gamma ray log response of

well-2. b The log response

after DWT and FT

operations from which

stratigraphic interfaces can

be identified at the inflection

points for well-2

142 Geomech. Geophys. Geo-energ. Geo-resour. (2016) 2:137–150

123



used in stratigraphic interpretation. The synthetic

response was prepared for interfaces whose thickness

and API values are detailed in Table 1. The layers

which have a API value of less than 20 can be

considered to be clean sand zones. Layers whose API

values are greater than 80 can be considered to be pure

shale zones. Intermediate values can be mixed shale-

sand zones. The synthetic response were prepared by

adding a 20 % random noise to the original signal

(API value) characterizing the synthetic anomaly. The

noise here refers to statistical fluctuations in the

synthetic signal and was taken to vary up to ± 20 %

of the mean value of the signal, characterizing a

particular interface. The depth interval for well-1 was

50 m, whereas the depth interval for well-2 was 60 m.

The stratigraphic interfaces were successfully identi-

fied using DWT and FT operations and were plotted in

Figs. 2 and 3 for both the wells respectively. A

multiscale CWT analysis was also performed on both

the wells and plotted in Figs. 6 and 7 respectively. The

scale factor for this analysis was varied between 1 and

30 in steps of 1 for well-1 and 1 to 35 for well-2 in

steps of 1 respectively. The analysis was done using

four commonly used mother wavelets, namely Haar,

Daubechies 2, Gauss 1, and Morlet. The fractal

Table 2 The actual and

derived depths of the

stratigraphic interfaces and

their corresponding fractal

dimensions for well-1 and

well-2

S. no. Actual depth (m) Thickness (m) Derived depth (m) Fractal dimension

Well-1

1 1205 – 1205 1.5023

2 1212 7 1213 1.5869

3 1215 3 1215 1.5654

4 1218 3 1217 1.5250

5 1224 6 1224 1.6166

6 1227 3 1226 1.5789

7 1233 6 1232 1.4383

8 1238 5 1239 1.5169

9 1244 6 1245 1.5108

10 1248 4 1248 1.5056

Well-2

1 1201 – 1201 1.5569

2 1206 5 1208 1.3395

3 1210 4 1210 1.5312

4 1215 5 1212 1.5112

5 1222 7 1223 1.5959

6 1225 3 1224 1.5701

7 1228 3 1228 1.5233

8 1234 6 1233 1.6090

9 1237 3 1236 1.5802

10 1244 7 1242 1.4176

11 1248 4 1247 1.5175

12 1254 6 1254 1.5281

13 1258 4 1258 1.5214

Table 3 The depth of the target formations existing between

wells F02-1 and F03-4

Formation TVDSS (m)

Well F02-1

Truncation 1 995.56

FS4 1065.27

Well F03-4

Truncation 1 634.46

FS4 914.76

Geomech. Geophys. Geo-energ. Geo-resour. (2016) 2:137–150 143

123



dimensions were calculated based on the depth

information of the various interfaces, obtained using

DWT and FT analysis and was tabulated in Table 2.

5 Case study

The well data was taken from the Netherlands

Offshore F3 Block, with surveys undertaken by dGB

Earth Sciences (https://opendtect.org/osr/pmwiki.php/

Main/NetherlandsOffshoreF3BlockComplete4GB). The

block was explored using 3D seismic and well log

surveys for the presence of hydrocarbons. The datasets

have been processed and interpreted using software

OpendTect by dGB Earth Sciences and is available for

viewing and further processing in the public domain.

Geological studies for the entire basin has been

undertaken and many characteristic formations have

been identified. The formations which extend between

the two wells namely F02-1 and F03-4 needs to be

ascertained and gamma ray log responses were

(commonly used in stratigraphic interpretation) taken

for both the wells and correlated using an interpreted

seismic slice in OpendTect which was present in

between both the wells. The logs have a sampling

interval of 0.152 m. The depth interval selected for

this study was taken between 600.145 and 1100.02 m

(TVDSS) for well F02-1 and 600.151 and 1100.02 m

(TVDSS) for well F03-4. Tracking of formations was

performed and there were 2 formations namely FS4

and Truncation1 which were continuous and extended

between both the wells, as shown in Fig. 8. Their

Table 4 The predicted

depths of the stratigraphic

interfaces and their

corresponding fractal

dimensions for wells F02-1

and F03-4

S. no. Bed boundaries (m) Thickness (m) Fractal dimension

Well F02-1

1 619.95 – 1.4619

2 667.50 47.55 1.3651

3 694.93 27.43 1.5127

4 730.14 35.21 1.4973

5 787.29 57.15 1.4961

6 837.43 50.14 1.5054

7 879.03 41.60 1.4903

8 911.34 32.31 1.4750

9 944.87 33.53 1.5191

10 995.01 50.14 1.4682

11 1034.94 39.92 1.5216

12 1062.37 27.43 1.4680

13 1087.37 25.00 1.4943

Well F03-4

1 632.58 – 1.4598

2 682.44 49.86 1.4510

3 750.13 67.69 1.4541

4 812.29 62.16 1.4963

5 862.28 49.99 1.4973

6 887.27 24.99 1.5090

7 912.57 25.3 1.4679

8 937.56 24.99 1.5029

9 962.40 24.84 1.5688

10 997.45 35.05 1.4831

11 1035.1 37.65 1.5510

12 1060.09 24.99 1.4826

13 1082.50 22.41 1.5053
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corresponding depths are tabulated in Table 3. Using

the gamma ray log responses the various stratigraphic

interfaces for both the wells were found with DWT

and FT analysis, which were then analyzed to find the

fractal dimensions. The various formation interfaces

were correlated using the obtained fractal dimension

values and the results are tabulated in Table 4.

6 Discussion of results

The DWT and FT based analysis of the well log

signals were successfully applied to synthetic and real

gamma ray log data. The analysis was first done on

synthetic datasets for two synthesized wells. For noisy

gamma ray logs the db1 wavelet was chosen with a 3rd

order decomposition level, using the Haar wavelet.

After a first order decomposition, the obtained CA1

coefficients were again DWT analyzed and the second

order Approximation Coefficients CA2 were again

DWT analyzed to get the third order detail coefficients

CD3, which were then inverse transformed using

inverse wavelet transform to get the reconstructed

signal. The raw signal is plotted Figs. 2a and 3a for

both the wells respectively. The reconstructed signal

was then FT analyzed and the amplitude spectrum of

the log response are seen in Fig. 4a, b. Only those parts

of the spectrum were selected for further analysis that

had maximum amplitude as shown in Fig. 5a, b, which

were then inverse Fourier transformed, to get the

response D. The amplitude scale of the response Dwas

then logarithmically transformed as given by Eq. 10

(Jang and Jang 2003), for obtaining a smooth response

and plotted in Figs. 2b and 3b respectively. It can be

seen that the inflection points on the signal when

correlated with the log signal, gives the corresponding

depth of the various stratigraphic interfaces as tabu-

lated in Table 2. The derived depth of the stratigraphic

interfaces are picked from the inflection points and

tabulated. The results are compared with actual depths

of the formations which were selected when designing

the synthetic signal. The results of the detection of the

various formation interfaces have a good match with

the actual depths as evident from Table 2 respectively.

Based on the interfaces detected from the DWT and

FT analyzed reconstructed log signal the fractal

dimensions were found. These are also tabulated in

Table 2. The variation in scale parameter was done

through trial and error method and was varied between

Fig. 4 a Power spectrum of the reconstructed signal for well-1.

b Power spectrum of the reconstructed signal for well-2

Fig. 5 a Frequency range selected for well-1. b Frequency

range selected for well-2
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1 and 4.4 in steps of 0.1 for the synthetic data, using the

db2 wavelet. The results show that based on the

obtained values, the beds 1-9 correlate with beds 4-12

for well-1 and well-2 respectively. The depths which

are predicted and derived are from DWT and FT

analysis are very accurate with an error of ±1 m.

A ¼ log2
D

440

� �

þ 69 ð10Þ

The synthetic datasets were also subjected to a

CWT analysis to find out the stratigrapic interfaces,

and the results of the analysis are shown in Figs. 6 and

7, respectively for both the wells. The plot is a

scalogram of the wavelet coefficients for 4 commonly

used mother wavelets namely Haar, Daubechies 2,

Gauss 1, and Morlet. The scale range used in the

analysis was between 1-30 for well-1 and 1-35 for

Fig. 6 a The synthetic log response of well-1. Scalogram responses of b Haar (1–30), c Daubechies 2 (1–30), d Gauss 1 (1–30),

e Morlet (1–30)

Fig. 7 a The synthetic log response of well-2. Scalogram responses of b Haar (1–35), c Daubechies 2 (1–35), d Gauss 1 (1–35),

e Morlet (1–35)
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Fig. 8 The stratigraphic

correlation of gamma ray

log response for wells F02-1

and F30-4 through an

interpreted seismic section

present between the two

wells. The blue line

represents the FS4

formation. The green line

represents the Truncation 1

formation and the yellow

line is its linearly

interpolated path

Fig. 9 a The raw synthetic

gamma ray log response of

well F02-1. b The log

response after DWT and FT

operations from which

stratigraphic interfaces can

be identified at the inflection

points for well F02-1

Fig. 10 aThe raw synthetic

gamma ray log response of

well F03-4. b The log

response after DWT and FT

operations from which

stratigraphic interfaces can

be identified at the inflection

points for well F03-4
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well-2 respectively in steps of 1. In the scalogram, the

center of the cone of influence indicates the depth of

the corresponding interface. The results of well-1 for

the Haar wavelet shows that it is successful in

deciphering some of the bed boundaries, but fails to

detect all of them. The interface at depth 1244 and

1205 m is not deciphered. There is a very faint

signature obtained for the interface present at 1227 m.

Also the interfaces at depths 1233 and 1227 m are not

accurately predicted. This is similar with the Daube-

chies 2 and the Gauss 1 wavelets as well for the same

scale range, whereas the Morlet wavelet also seems to

give the same results but it is very difficult to find the

center of the cone of influence in this wavelet which

gives the accurate depth of the interfaces in the chosen

scale range. The results of well-2 are also somewhat

similar for all the 4 wavelets. The Haar wavelet is

successful in deciphering all the interfaces, except for

the ones at depths 1206 and 1237 m. Also the

signatures from interfaces at depths 1224 and

1244 m are very weak and not convincing. Therefore

it is necessary to have a core data to corroborate the

results in such cases and the results based on CWT

analysis alone cannot be used for stratigraphic inter-

pretation and correlation of wells. This is similar for

the other 3 wavelets as well. The Haar wavelet though

performs the best when compared with other wavelets.

The data from wells F02-1 and F03-4 were

correlated after interpreting the seismic section

between them as shown in Fig. 8, and the results

are tabulated in Table 3. Only two formations

namely Truncation 1 and FS4 correlate between

the wells through the seismic section, for the given

depth interval. The log data for the two wells

between the depth interval 600–1100 m TVDSS

were selected and were denoised using DWT and

FT operations. The raw log signals for both the

wells are shown in Figs. 9a and 10a respectively.

The Haar wavelet was used in the DWT operation

with a 3 level decomposition. The power spectrum

of the reconstructed signal were then plotted in

Fig. 11a, b and only those responses that had

maximum amplitude or power were selected as

shown in Fig. 12a, b. The selected response was

then inverse transformed and logarithmically scaled

using Eq. 10 and plotted in Figs. 9b and 10b

respectively. The depth of the derived stratigraphic

interfaces were picked at the inflection points from

Figs. 9c and 10c and tabulated in Table 4. Based on

Fig. 11 a Power spectrum of the reconstructed signal for well

F02-1. b Power spectrum of the reconstructed signal for well

F03-4

Fig. 12 a The frequency range selected for well F02-1. b The

frequency range selected for well F03-4
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the stratigraphic interfaces detected, the fractal

dimensions were correspondingly found and tabu-

lated. It is important to interpret the table only after

knowing the general geological trend of the area, as

blind interpretation can lead to absurd results.

Therefore from the seismic section in Fig. 8 it can

be inferred that the beds dip downward as we move

from well F03-4 to F02-1. As a result from Table 4

it can be concluded that based on the values of the

fractal dimensions, the bed 1 of well F03-4 corre-

sponds to bed 10 in well F02-1, and bed 7 in well

F03-4 corresponds to bed 12 in well F02-1. The

depths obtained for the two beds shows good

agreement with those obtained using the interpreted

seismic data (Table 3) present between the wells.

7 Conclusion

The correlation of stratigraphic interfaces between

two wells using Discrete Wavelet Transform and

Fourier Transform through a multi-scale analysis was

demonstrated. The technique was first demonstrated

using synthetic gamma ray logs with an error of±1 m

and was then applied to real data belonging the

offshore F3 Block in the North Sea. This technique

was proved to be superior to methods using only

Continuous Wavelet Transform with a multi-scale

analysis, as the later fails to detect all the interfaces

and does not give the correct depth information of the

interfaces. Also the later requires core data, using

which one can corroborate the obtained results and it is

also difficult to choose the right wavelet and the right

scale range for analysis. The proposed technique is

able to overcome these challenges and also character-

izes each interface with a numerical fractal dimension

value which can be easily used to correlate between

wells. The technique though requires seismic data to

be present to corroborate results which is very much

required to find out the continuity of horizons. This

study demonstrates that the proposed technique is very

much accurate and can be used for stratigraphic

correlation of wells.
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