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Abstract This study investigates the cyclic struc-
tural behaviour of adhesive joints of glass and metal
using thin, structural silicone adhesives in heavily con-
strained applications. Based on cyclic uniaxial ten-
sile tests on dog-bone and pancake test samples, the
pseudo-elastic cavitation model from part I of this
publication will be extended to describe two phe-
nomenons: stress softening due to Mullins effect, as
well as a mechanical hysteresis occurring under hydro-
static loading of rubber-like materials. This mechani-
cal hysteresis under hydrostatic loading is associated
with the growth and shrinkage of microscopic voids
in the materials structure, and shows distinctive dif-
ferences to the mechanical hysteresis known from iso-
choric test samples. In order to transfer the already pre-
sented pseudo-elastic cavitation model to describe the
cyclic material behaviour, the isochoric part of the cav-
itationmodel is extended according to the classical the-
ory of pseudo-elasticity to numerically describe stress
softeningunder isochoric deformations. In addition, the
volumetric part is provided with a special material for-
mulation so that it can numerically reproduce the void
growth hysteresis under cyclic volumetric tests, e.g.
pancake tests. For validation, three-dimensional simu-
lations of both cyclic tensile tests (dog-bone and pan-
cake tests) are carried out.

M. Drass (B) · N. Bartels · J. Schneider · D. Klein
Institute of Structural Mechanics and Design, Technische
Universität Darmstadt, Franziska-Braun-Str. 3, 64287
Darmstadt, Germany
e-mail: drass@ismd.tu-darmstadt.de

Keywords Cavitation · Mullins effect · Void growth
hysteresis · Cyclic pancake tests · Extended pseudo-
elastic cavitation model · Hydrostatic loading of
rubber

Abbreviations

EPDM Ethylene-propylene-diene-monomer
PP Polypropylene
NR Natural rubber
PDMS Polydimethylsiloxane
PC Pancake test
DIC Digital image correlation

List of symbols

Ψ (•) Helmholtz free energy
F Deformation gradient
b Left Cauchy–Green tensor
b̄ Isochoric left Cauchy–Green tensor
J Relative volume
I Second order identity tensor
I Fourth order identity tensor
σ Cauchy stress tensor
p Hydrostatic stress
Ω Shape function
Dcav Dissipated energy due to void growth
ηiso Isochoric Mullins variable
Ψ̂iso,max Isochoric history variable
r Isochoric Mullins material parameter
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m Isochoric Mullins material parameter
erf (x) Error function
Diso Driving force isochoric Mullins effect
ς Volumetric softening/healing variable
ηvol Volumetric softening variable
rvol Volumetric softening material parameter
mvol Volumetric softening material parameter
Dvol Driving force volumetric Mullins effect
ηheal Volumetric healing variable
rheal Volumetric healing material parameter
mheal Volumetric healing material parameter
Dheal Driving force volumetric healing effect

1 Introduction

1.1 Motivation

With regard to the experimental investigations and
results of the analysed transparent structural silicone
adhesive TSSA according to “Appendices A and B”, in
which cyclic uniaxial tensile tests and cyclic pancake
tests were investigated, a very interesting and so far
unknown structural behaviour could be observed.

With respect to the structural behavior of the thin sili-
cone adhesiveTSSAproduced byDowChemical Com-
pany, the material behaves according to the properties
of theMullins effectwhen analysing so-called dogbone
samples under uniaxial cyclic loading. A typical and
pronounced stress softening can be clearly seen on the
unloading path (see Fig. 1a). Looking at the reloading
path, the material shows the same structural response
according to the unloading path until the previously
reached maximum value of deformation is exceeded.
Then thematerial response corresponds to the response
of a virginmaterial. Furthermore, it is important to note
that no healing or recovery effects under cyclic uniax-
ial loading could be observed. Therefore, the stiffness
of the unloading and reloading paths is identical for
large areas of applied deformation. This behaviour is
well-known for isochoric deformations of rubber-like
materials.

In the majority of the experimental investigations
and industrial usage of rubber-like materials, the mate-
rial behaves almost isochoric (foams excepted). Only
under heavily constrained conditions, like in thin adhe-
sive silicone layers used in the connection of glass
façades, the material can no longer be treated as iso-
choric, and the volumetric properties have to be inves-

(a)

(b)

Fig. 1 Exemplary structural behaviour ofTSSAunder a uniaxial
and b constrained cyclic loading (Pancake Test) with schematic
representation of the loading, unloading and reloading paths

tigated carefully. Regarding the cyclic pancake test
according to “Appendix B”, the materials response
under hydrostatic loading may be investigated. The
mechanical hysteresis occurring at cyclic pancake test
shows remarkable differences to the mechanical hys-
teresis occurring under isochoric loading conditions.
In the unloading path, the material shows softening
as it is known from isochoric test samples. How-
ever, the reloading path does not follow the unloading
path which one would expect according to the theory
of the classical Mullins effect (see Fig. 1b). In gen-
eral, the Mullins effect is irreversible for some mate-
rials, but it can recover at high temperatures, which
takes time. Looking at Fig. 1b, the material seems to
recover instantly under cyclic hydrostatic loading. This
implies that the effect is not associated with the classi-
calMullins effect, but takes place as elastic void growth
and shrinkage which may be observed under hydro-
static loading. However, since in the reloading path a
slightly reduction of the maximum reached stress level
is observed, a combination of void growth hysteresis
through elastic pore growth and shrinkage and real iso-
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choricMullins damage through possible bond breakage
and filler rupture must be present.

Therefore, referring to part I of the present investi-
gations (Drass et al. 2019), a modified pseudo-elastic
approach must be formulated for the volumetric part
of a general Helmholtz free energy function based on
Ogden and Roxburgh (1999), which can represent void
growth hysteresis phenomenologically according to the
present cyclic loading condition.

1.2 Some features of the Mullins effect

Loading filled elastomers cyclically, Bouasse and Car-
rière (1903) already discovered a distinct difference
in the stress-strain behavior between virgin, unload-
ing and reloading path in the experiments carried out,
which manifests itself with a distinct softening effect
in the structural response of the elastomers. This phe-
nomenon was further investigated by Mullins (1949)
and Mullins and Tobin (1965), whereby this effect was
designated asMullins effect. In their studies, the soften-
ing effect for unfilled and filled elastomers was experi-
mentally investigated. It was found that in both types of
elastomers a softening in the structural response could
be detected during the unloading. A schematic repre-
sentation of the Mullins effect is shown in Fig. 2.
Under some conditions, the material may experience
healing or recovery, where—after thermal treatment
of thematerial—the stiffness on the reloading pathmay
be greater than in comparison to the unloading path, i.e.
the material has experienced healing (DAmbrosio et al.
2008). A second definition of healing or recovery of
elastomers exposed to cyclic loading is described when
the residual strains or the permanent set can be reduced
by temperature storage or by the removal of specimens
with long relaxation times, so that the residual strains
almost drop to zero. The test sample is then not exposed
to external loads during the relaxation time or tempera-
ture storage, so that it can deform free of constraint.Dif-
ferent experiments to describe the healing effect in rub-
bers were carried out, for example, by Mullins (1948),
who investigated stress-recovery of a filled NR under
temperature influence and sample storage for a certain
period of time. He found that with increasing temper-
ature or storage time the healing effect in the form of
reduction of residual strains in the material increased
significantly. In contrast, for a carbon black filled NR
only a small amount of healing was observed even dur-

Fig. 2 Schematic Mullins effect

ing a relaxation period of 4weeks (Mullins 1948). Dur-
ing the studies on healing of Hanson et al. (2005) on a
silica-filled PDMS, it was found that even at the relax-
ation period of 6months no recovery took place, so it
is not surprising that Diani et al. (2009) state that this
effect can be neglected with standard application in
indoor climate. In contrast to these investigations, the
cyclic pancake tests seem to show significant recov-
ery without being exposed to heat for a longer time.
This implies that the origin of the mechanical hystere-
sis is not due to the microscopic effects associated with
Mullins, but rather with the growth and shrinkage of
voids under hydrostatic loading.

A unified theory for the physical interpretation
of the Mullins effect does not yet exist. Therefore,
three descriptive models for the characterization of the
Mullins effect are briefly discussed below. In the early
investigations of Blanchard and Parkinson (1952), it is
assumed that stress softening occurs as a result of the
Mullins effect by so-called bond rupture between poly-
mer chain and filler. This idea was taken up by Bueche
(1960) and further explained by the fact that the phys-
ical bond between polymer and filler is weaker than
the chemical bond between the Kuhn segments of the
polymer chain. When the polymer chain between two
filler particles is completely stretched, fracture must
take place at the filler–matrix-interaction according to
that model, since on the one hand the weaker bond is
present and on the other hand it is assumed that the
Kuhn segments are rigid and therefore cannot be fur-
ther stretched. Another theory on the Mullins effect
states that during the initial loading molecules slip over
the surface of the fillers and new bonds are formed
along the chains (Houwink 1956). The model concep-
tion of molecules slipping is equivalent to the change
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of entropy in the material, which may be restored to the
almost original dimension by temperature input, which
corresponds to the experimental results of Mullins
(1948). The third model assumes a rupture of the filler
agglomerates or aggregates, since in the experimental
investigations of Kraus et al. (1966) neither the theory
of bond rupture, molecule slipping nor the formation of
vacuoles at the matrix–filler-interaction were sufficient
to explain the observed Mullins effect.

1.3 Methodology

In this paper an extension of the previously pre-
sented pseudo-elastic cavitation model (Drass et al.
2019) is introduced in order to describe the structural
behaviour of silicone adhesives under cyclic loading.
The basic idea is to transfer the classical description
of pseudo-elasticity for stress softening under cyclic
loading according to Ogden and Roxburgh (1999) to
the pseudo-elastic cavitation model presented in part I
of the present study (Drass et al. 2019). The advan-
tages of the approach of pseudo-elasticity lie in the
simple formulation, where the strain energy function
can be completely described at amacro-scale, the appli-
cation of the volumetric-isochoric split, which brings
advantages regarding the material parameter identifi-
cation and the avoidance of computationally intensive
and complex multi-scale modelling methods.

2 General concept

Since the pseudo-elastic approach of Lazopoulos and
Ogden (1998) has already been presented in part I
(Drass et al. 2019), only the essential equations neces-
sary for deriving the extended pseudo-elastic cavitation
model for cyclic loading are summarized below.

Assuming a general Helmholtz free energy function
Ψ (F) that depends solely on the deformation gradient
F, the pseudo-elastic approach to this problem reads

Ψ (F, η) = η Ψ̂ (F) + φ (η) , (1)

which is capable of describing the classical Mullins
effect in rubbers and rubber-likematerials phenomeno-
logically. In this context, φ (η) describes a damage
function, which serves to determine the damage param-
eter η ∈ [0, 1] implicitly in terms of the state of defor-

mation through an additionally proposed equilibrium
equation

∂Ψ (F, η)

∂η
= 0. (2)

This general concept is now specifically applied to sep-
arately describe the effects proposed in Sect. 1.1 with
respect to isochoric and volumetric deformations.

3 Extended pseudo-elastic cavitation model

3.1 Isochoric Mullins damage under cyclic loading

To describe the isochoric Mullins effect phenomeno-
logically with the pseudo-elastic approach, exactly the
model proposed by Ogden and Roxburgh (1999) is
used, in which the isochoric part of any Helmholtz free
energy function becomes

Ψiso
(
b̄, η

) = ηiso Ψ̂iso
(
b̄
) + φ (ηiso) . (3)

Since the isochoric–volumetric split accordingly to
Flory (1961) was applied, the isochoric Helmholtz free
energy function is only dependent on the isochoric left
Cauchy–Green tensor b̄.

By satisfying the additional equilibrium equation of
Eq. (2) arising from the inclusion of an internal variable
in the constitutivemodel, the damagevariableηiso reads

ηiso = 1 − 1

r
erf

⎡

⎣

(
Ψ̂iso,max

(
b̄
) − Ψ̂iso

(
b̄
))

m

⎤

⎦ . (4)

In this context, r ∈ ]1,∞] andm ∈ ]0,∞] arematerial
parameters, which must be determined through experi-
ments. The operator erf (•)describes the error function,
which is a sigmoid function. It is often used in statistics
and in the theory of partial differential equations and
is closely related to the error integral. It is generally
defined by

erf (x) = 2√
π

x∫

0

e−t2dt . (5)

For a positive argument x , the error function has the
value range of erf (x) ∈ [0, 1].

123



Pseudo-elastic cavitation model—part II 71

Fig. 3 Exemplary structural behavior of one-element test under cyclic uniaxial tensile loading varying the parameter a r with m = 1.0
and b m with r = 2.0

Returning to the governing parameters of ηiso, the
larger r is chosen, the less the influence of Mullins
effect on the structural response of the material under
cyclic loading. In contrast, parameter m describes in
particular how much softening occurs in the case of
small deformations. The smallerm is chosen, the more
softening occurs at small deformations. The strain
energy Ψ̂iso,max is a history variable and stores the
maximum reached isochoric strain energy density dur-
ing loading history. To better illustrate the influence of
parametersm and r , the structural responses are shown
separately inFig. 3 for each varying parameter for a uni-
axial one-element test under cyclic loading. A normal-
ized, incompressible Neo-Hooke material model with
μ = 1.0 MPa was coupled with the pseudo-elastic
approach according to Ogden and Roxburgh (1999).

Due to the choice of the pseudo-elasticity approach,
the calculation of the isochoric Cauchy stress tensor
simplifies significantly, as all partial derivatives of the
isochoric Helmholtz free energy function with respect
to the damage variable disappear. Hence, the isochoric
Cauchy stress tensor reads

σ iso = ηiso

[
I − 1

3
I ⊗ I

]
: ∂Ψ̂iso

∂b̄

(
b̄
)
, (6)

where I⊗I represents the dyadic product of two second
order identity tensors and I describes a fourth-order
identity tensor. It can be clearly seen from Eq. (6), if
ηiso is inactive (ηiso = 1), then the classic undamaged
material response is obtained, whereas stress softening
only occurs when ηiso is active (ηiso < 1). This means
ηiso is only active if Ψ̂iso,max

(
b̄
) �= Ψ̂iso

(
b̄
)
, which

is generally the case for unloading and for reloading
until the previously maximum reached strain energy is
exceeded. Then, Ψ̂iso

(
b̄
)
and Ψ̂iso,max

(
b̄
)
are identical

again.

3.2 Volumetric softening and recovery under cyclic
loading

In the following, an extension of the pseudo-elastic
cavitation model proposed by Drass et al. (2019) is
presented, which is intended to describe the structural
behavior of the pancake test under cyclic loading phe-
nomenologically. As previously mentioned, individual
sections of the structural response of TSSA under con-
strained cyclic tension could be assigned to different
phenomena (see “Appendix B”). Starting with an elas-
tic pore growth during virgin loading, it is followed
by an irreversible void growth hysteresis for unloading
and a dominant instantaneous healing for reloading.

The primary or virgin loading path shows stress soft-
ening due to the cavitation effect (Drass et al. 2018a)
and can be represented with the pseudo-elastic cavita-
tion model presented in part I of the present studies,
which reads in a general form

Ψ = Ψiso
(
b̄
)+Ψvol,ND (J )+Ω Dcav (J )+φ (Ω) . (7)

For reasons of clarity for the subsequent model exten-
sion, all operational terms of the pseudo-elastic cavi-
tation model representing stress softening due to void
growth are grouped together as
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Ψcav = Ψvol,ND (J ) + Ω Dcav (J ) + φ (Ω) , (8)

so that the pseudo-elastic Helmholtz free energy func-
tion is now briefly described by

Ψ = Ψiso + Ψcav. (9)

Further, looking at the cyclic pancake tests presented
in Fig. 1b, the unloading paths showed an additional
material softening, where all experimental curves meet
at a force level of 3.600 kN and then decrease to zero
again with full unloading. A suitable approach to rep-
resent this phenomenon is the application of the clas-
sical pseudo-elastic approach according to Ogden and
Roxburgh (1999) to Ψcav in order to characterize soft-
ening under cyclic loading. As mentioned before, the
instant recovery of the volumetric softening indicates
other effects than the classical Mullins effect, which is
associated with microscopic reformation mechanisms
of both polymer chains and filler particles. The vol-
umetric softening, which instantly recovers, seems to
be associated with the growth and shrinkage of micro-
scopic voids in the material. Nonetheless, the soften-
ing can be modeled with a pseudo-elastic approach
in analogy to the Mullins effect. Since the classical
approach of Ogden and Roxburgh (1999) to describe
the Mullins effect is not able to represent healing or
recovery effects, it needs to be extended with respect
to a healing variable. This is necessary because from
the cyclic pancake tests a kind of recovery effect could
be observed for all reloading paths up to a force level of
approximately 6000 kN (see “Appendix B”). Here, it
could be shown experimentally that the unloading and
reloading paths differ significantly, so that it is obvi-
ous to introduce an additional variable to describe the
recovery effect.

To take into account the effects of softening on
the unloading and healing on the reloading path phe-
nomenologically, Eq. (9) is now extended through the
alreadypresentedpseudo-elastic approach,which leads
to

Ψ = Ψiso + ς Ψcav + φ (ς) . (10)

In this context, φ (ς) represents a damage or healing
function depending on the current loading condition
and ς characterizes a history variable that determines
the amount of volumetric softening for unloading and
the amount of healing for the reloading conditions.

For the present approach, the Cauchy stress tensor
with respect to Ψcav is calculated exactly in line with
Sect. 3.1, which leads to

σ cav = 2

J

⎡

⎢⎢
⎣

∂Ψcav

∂b
(J, ς) + ∂Ψcav

∂ς
(J, ς)

︸ ︷︷ ︸
=0

∂ς

∂b
(b)

⎤

⎥⎥
⎦ b

= ∂Ψcav

∂ J
(J, ς) I.

(11)

Here, too, the calculation of the stress tensor σ cav could
be considerably simplified due to the additional equi-
librium condition

∂Ψcav

∂ς
(J, ς) = 0, (12)

which results from the inclusion of the additional inter-
nal variable ς in the pseudo-elastic constitutive model.

In order to describe the phenomenological consti-
tutive model completely, the internal damage vari-
able ς must be defined more precisely. Starting with
the description of the volumetric Mullins damage, a
slightly modified approach according to Ogden and
Roxburgh (1999) is used, which reads

ς̄ = 1 − rvol erf

(
Ψcav,max − Ψcav

mvol

)

︸ ︷︷ ︸
=ηvol

. (13)

Since Eq. (13) does not represent the final form for the
internal damage variable representing volumetric soft-
ening and possible healing effects, ς is provided with
an bar. For the sake of clarity, the variable for volumet-
ric softening is designated ηvol, which depends on two
material parameters, rvol ∈ [0, 1] and mvol ∈ ]0, 1],
and the difference between the maximum reached (vol-
umetric) strain energy Ψcav,max and the current strain
energy Ψcav. This is a standard approach that has been
used to describe the isochoric Mullins effect in particu-
lar (Zhang et al. 2011), but has been transferred here in
order to investigate softening due to volumetric defor-
mations.

In order to transfer the standard approach of
Eq. (13) to possible healing effects, Bartels (2018)
proposed an ansatz in which ηvol is again multiplied
by an additional healing variable ηheal, which is also
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defined in the samemanner asηvol. The healing variable
reads

ηheal = rheal erf

(
ς̄ − ς̄min

mheal

)
,

ς̄min(t) = min [ς̄ (τ ), τ ≤ t]

(14)

where rheal ∈ [0, 1] and mheal ∈ ]0, 1] are mate-
rial parameters describing the course of healing. Since
according to the results of the pancake tests the healing
variable can only be active (ηheal > 0) on the reload-
ing path, its driving force is the difference between
the current and the minimum volumetric Mullins dam-
age. When the reloading path exceeds the previously
occurred maximum, the stress follows the virgin curve,
on which no healing should occur. To uniquely char-
acterize the reloading path, and to differentiate it from
the virgin curve, the healing variable has to be reset
as soon as the previously occurred maximum defor-
mation is exceeded. From a thermodynamical point of
view, this reset of the healing variable has to be seen
critical. Nevertheless, no further thermodynamic inves-
tigations are carried out in this work, so that the model
is purely phenomenological. In summary, the internal
damage variable is completely defined by

ς = 1 − ηvol (1 − ηheal) , (15)

with ς ∈ [0, 1]. Assuming no healing occurs in the
material, i.e. ηheal = 0, the classic approach for volu-
metric Mullins damage is present, where the unloading
and reloading path are identical. Upon complete heal-
ing of the material, the reloading path is equal to the
virgin material response, but the structural response for
the unloading path exhibits stress softening caused by
the void growth and shrinkage.

In order to gain a better understanding of the pre-
sented material model, which can represent cavitation,
isochoric Mullins effect and volumetric softening and
healing due to reversible pore growth, the load history
of a one-element test under cyclic hydrostatic loading is
examined below as an example. Looking at Fig. 4a, the
load history of a cyclic hydrostatic tensile test is shown
separately for virgin loading, unloading and reloading.
Additionally, the history variable ς is shown, which
is a combination of the volumetric damage variable
ηvol according to the unloading pathway and the heal-
ing variable ηheal for the reloading path according to
Eq. (15). Figure 4b, c additionally show the develop-

ment of the corresponding damage or healing variables.
First, consideringonly the volumetric softening, Fig. 4b
shows that softening only occurs when Ψcav,max is not
equal toΨcav. This is generally the casewhenever one is
on the unloading or reloading path. Consequently, the
softening variable ηvol must assume values greater than
zero, as shown in Fig. 4b. It should also be noted that the
chosen driving force (Ψcav,max − Ψcav) to describe the
volumetric softening effect exactly reflects the ranges
of unloading and reloading, which justifies the chosen
phenomenological approach. In contrast, looking at the
course of the healing variable ηheal, Fig. 4c shows that,
on the one hand, the selected driving force (ς̄ − ς̄min) is
a goodmeasure to reproduce the recovery effect. On the
other hand, the chosen formulation provides a clear dis-
tinction between virgin loading, unloading and reload-
ing. Accordingly, healing occurs only on the reloading
path until the maximum deformation reached before is
exceeded. For the sake of completeness, the algorith-
mic box for the numerical treatment of the extended
pseudo-elastic cavitation model for cyclic loading is
given in Table 1.

3.3 Parameter studies on cyclic pseudo-elastic
cavitation model

Since the existing material model is now dependent on
parameters describing a volumetric softening and/or
healing effect, a parameter study will be carried out
in the following with regard to these parameters for
reasons of comprehensibility. First, the influence of
the parameter rvol on the structural response under
cyclic hydrostatic loading is investigated. For reasons
of clarity, all healing effects have been excluded, so that
rheal = 0. Figure 5a shows that this parameter deter-
mines the degree of softening compared to the virgin
loading path.

It is notable that with an increasing rvol the amount
of softening increases also for the unloading path. Since
no healing effects have been considered in the present
study, the unloading and reloading paths are identi-
cal. Returning to the parameter rvol, it gives the ratio
between bifurcation load of the unloading paths and
virgin loading path. Hence, it can be stated that

rvol ≈ 1 − pvolcr

pcr
(16)
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Fig. 4 Exemplary load history of cyclic hydrostatic tension loading

applies. In this context, pcr describes the bifurcation
point for the virgin load path, whereas pvolcr charac-
terizes the critical stress, at which all unloading and
reloading curves coincide disregarding healing effects.
Therefore, using Eq. (16), the material parameter rvol
for the volumetric softening can be calculated approx-
imately directly from the experimental data obtained,
for example, from the pancake tests.

A similar statement applies considering the bifurca-
tion load of the reloading path when healing effects are
present (see Fig. 5b). Here, the parameter rheal can be
described as the ratio of

rheal ≈ phealcr − pvolcr

pcr − pvolcr
. (17)

Considering the experimental results of the cyclic pan-
cake test, in which all unloading and reloading curves
converge to a specific load level, the knowledge of these
approximate solutions for the parameters rvol and rheal
is very valuable, since both material parameters can be
approximated directly from the experimental results.
It should also be mentioned that these approximation
formulas also apply to inhomogeneous stress and strain
states, as is the case with the pancake test, since these
have just been developed from the experimental results
of these tests.

If one also considers the parametermvol with neglect
of healing, it is noticeable that it slightly influences pvolcr
on the one hand, and in particular controls the course
of the softening at small to moderate deformations on
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Table 1 An algorithmic
box of the FE procedure 1. given: deformation gradient F at tn and tn+1

2. compute pseudo-elastic Helmholtz free energy function according to (Drass et al. 2019)

Ψ = Ψiso + Ψcav

3. compute isochoric Mullins effect

ηiso = 1 − 1
r erf

[ 1
m

(
Ψiso,max − Ψiso

)]
, where

Diso = Ψiso,max − Ψiso represents the driving force for the isochoric Mullins effect

4. compute void growth hysteresis

ηvol = rvol erf
(

Ψcav,max−Ψcav
mvol

)
, where

Dvol = Ψcav,max − Ψcav represents the driving force for the void growth hysteresis

5. compute recovery effect

ηheal = rheal erf
(

ς̄−ς̄min
mheal

)
, where

Dheal = ς̄ − ς̄min represents the driving force for the volumetric recovery effect

6. compute internal history variable ς accounting for void growth hysteresis

ς = 1 − ηvol (1 − ηheal)

7. update (2) with internal history variable ηiso and ς to calculate Helmholtz

free energy function and Cauchy stress tensor

Ψ = ηiso Ψiso + φ (ηiso)︸ ︷︷ ︸
isochoric Mullins Effect

+ ς Ψcav + φ (ς)
︸ ︷︷ ︸
volumetric softening

and recovery

σ = σ iso + σ cav = ηiso σ iso,0 + ς σ cav,0

the other hand (see Fig. 5c). In addition, the structural
behaviour dependent on the parameter mheal is investi-
gated taking into account healing. Figure 5d shows that
with increasing mheal one approaches the course of the
unloading curve. In contrast, a very small mheal causes
a bifurcation point that lies between the virgin loading
and the unloading path, as could be observed in the
cyclic pancake tests. It should be noted here that the
approximate solution of Eq. (17) is particularly true
for a very small mheal, whereas for a large mheal the
bifurcation point pvolcr is approached.

Finally, the structural behavior of the cyclic pan-
cake test will now be qualitatively represented by the
pseudo-elastic cavitation model extended for cyclic
loading. Therefore, a one-element test is analysed
under cyclic hydrostatic tension, knowing that no pure
hydrostatic stress state prevails in the pancake test
(Drass et al. 2018b, c). Nevertheless, the adaptability
of the phenomenological model should be presented
within this study. The material parameters of the pure
pseudo-elastic cavitationmodelwere chosen according
to Drass et al. (2018a), whereas the parameters describ-
ing volumetric softening and healing due to elastic pore

growth and shrinkage were adaptively adjusted to qual-
itatively approximate the experimental results of the
cyclic pancake test.

As the qualitative comparison in Fig. 6 shows, the
extended pseudo-elastic cavitation model is well suited
to reproduce material softening due to cavitation. Fur-
thermore, the material softening caused by the void
growth and shrinkage can also be approximated when
the material is unloaded. Qualitatively, all unloading
paths meet in one point (pvolcr ) according to the experi-
mental results. Finally, the healing effect due to elastic
pore growth and shrinkage can also be simulated with
the proposed model. It is further possible to reproduce
the effect that all reloading curves coincide at one bifur-
cation point phealcr and then continue along the reloading
path until the maximum previous deformation state is
exceeded.

4 Numerical validation of the constitutive model

In this section, the numerical simulations of the cyclic
uniaxial tensile tests and the cyclically loaded pan-
cake tests are performed using three-dimensional full-
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Fig. 5 Parameter studies on the extended pseudo-elastic cavitation model accounting for volumetric softening and healing respectively
by variation of the parameters a rvol, b rheal, c mvol and d mheal, whereby all other parameters were set constant

(a) (b)

Fig. 6 Qualitative comparison between cyclic pancake test and numerical simulation of a one-element test under cyclic hydrostatic
load using the extended pseudo-elastic cavitation model

scale finite element calculations. For this purpose, the
extended pseudo-elastic cavitation model presented in
Sect. 3 is implemented in ANSYS FE code, which is
able to simulate the softening of isochoric deforma-
tions due to theMullins effect. Furthermore, it is able to

characterize the reversible softening due to void growth
hysteresis under volumetric deformations.

The utilized material parameters of the extended
pseudo-elastic cavitation model are summarized in
Table 2 in “Appendix C”. The material parameters for
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the description of the cyclic behaviourwere determined
by inverse numerical methods. For a more detailed
description of the inverse determination of material
parameters, the authors refer to Drass et al. (2017). As
already described in the presentation of the extended
pseudo-elastic cavitation model in Sect. 3, the param-
eters rvol and rheal can be read directly from the exper-
imental data of the cyclic pancake tests via Eqs. (16)
and (17) respectively. All other parameters to describe
the isochoric Mullins effect and the volumetric void
growth hysteresis had to be calculated based on the
above-mentioned inverse material parameter identifi-
cation.

The numerical simulations of the cyclic tests were
carried out based on three-dimensional volumemodels.
In order to save computing time, corresponding bound-
ary conditions were applied in the model in order to
have to calculate only a section of the cyclically loaded
samples. The displacement boundary conditions were

programmed according to the experimental test routine
used. The results of the simulation are shown in Fig. 7.
Since the pseudo-elastic cavitation model from part I
can now be enhanced by adding the effects of (i) iso-
choric Mullins/(ii) irreversible void growth hysteresis
(iii) void growth hysteresis, three graphs are plotted to
study the effect of successively adding these phenom-
ena.

Starting with the numerical simulation of the cyclic
tensile tests, an irreversible Mullins effect could be
observed from the experiments, which can be repro-
duced with the isochoric pseudo-elastic approach of
Ogden and Roxburgh (1999). As shown in Fig. 7a,
the pronounced material softening can be reproduced
on the unloading path. Furthermore, the effect of vir-
gin stiffness on reaching and exceeding the previously
achieved maximum deformation can be approximated
very well. Looking at the simulation of the cyclic pan-
cake test (see Fig. 7b), the isochoric Mullins effect

(a) (b)

(c) (d)

Fig. 7 Numerical validation of the cyclic tensile test under con-
sideration of a isochoric Mullins effect. Numerical validation of
cyclic pancake test under consideration of b isochoric Mullins

effect, c Mullins and irreversible void growth hysteresis and d
Mullins and void growth hysteresis
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has only a small impact on the simulation result. This
is also obvious, since in the pancake test a predom-
inantly volumetric deformation takes place, whereas
isochoric stresses and strains only occur at the edges.
By adding the volumetric void growth hysteresis effect
to the material model, it can be seen that the strongly
pronounced material softening can be approximated
during unloading (see Fig. 7c). However, it is not yet
possible to numerically describe the healing effect. In
the last simulation of the cyclic pancake test, the effects
of isochoric and volumetric Mullins effect are coupled
to the healing effect at reloadingwith the pseudo-elastic
cavitation model. As can be seen in Fig. 7d, it is pos-
sible to represent the healing effect on the reloading
paths. However, it should be noted that the experimen-
tal curves are not quite met, which is due to numerical
problems. For large deformations within the reload-
ing path, it can be clearly seen that the simulation
and experiment fit well together. However, the bifur-
cation point is not encountered during reloading. For
this, the parameter mheal would have to be selected
much smaller in order to recalculate the cyclic pan-
cake tests. However, if the parameter mheal << 0.07
is selected, there is no more convergence during the
Newton-Raphson iterations, therefore further investi-
gations are required. Nonetheless, the validation pre-
sented here and the parameter study from Sect. 3.3
have shown that the extended pseudo-elastic cavitation
model is very well suited to represent the cavitation
effect, isochoric Mullins effect and the void growth
hysteresis including healing effects during reloading.

5 Conclusions

The aim of this paper was to extend the pseudo-elastic
cavitation model presented in part I in order to numer-
ically characterize the cyclic behavior (isochoric and
volumetric) of a transparent structural silicone, here
TSSA. The cyclic behaviour of TSSA was first briefly
presented, with the exact experimental results being
summarized in “Appendices A and B” for reasons
of clarity. To describe the isochoric cyclic behaviour
of TSSA numerically, the pseudo-elastic cavitation
model, or only the isochoric part of it, was equipped
with the Ogden and Roxburgh (1999) approach. This
makes it possible to represent stress softening due to the
Mullins effect very well. Since in cyclic pancake tests
also softening—together with an instant recovery—

occurs, the volumetric part of the pseudo-elastic cavi-
tation model must additionally be extended with dam-
age and healing variables. Consequently, the classi-
cal pseudo-elastic approach according to Ogden was
applied to the volumetric part and extended with a
healing variable. The healing is—up to this point—not
thermodynamic consistent and only phenomenological
motivated. Future investigations should aim for ther-
modynamic consistent formulations of the void growth
hysteresis.

The one-element test showed that stress softening
as well as healing can be approximated according to
the structural behavior in the cyclic pancake test. To
validate the extended pseudo-elastic cavitation model
numerically, three-dimensional FE simulations of the
cyclic tensile test and the cyclic pancake test were per-
formed. The numerical recalculation of the cyclic ten-
sile tests yielded very good results. Considering the
simulation of the cyclic pancake tests, the cavitation
effect as well as the softening on the unloading path
could be represented very well. The numerical simula-
tion of the healing led to numerical problems regarding
the convergence. However, it should be noted that all
effects could be described in an orderly way. Further
research deals with the improvement of the numerical
stability in order to be able to map the healing effects
due to cyclic loading in three-dimensional calculations.

Furthermore, the cyclic behaviour of the transparent
structural silicone has to be investigated under fatigue
aspects. The aim here is to clarify how the material
behaves in such a large number of hysteresis loops.
The aim is to clarify whether Mullins effect and void
growth hysteresis can be recognized as dominant even
under fatigue loading.
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A Cyclic uniaxial tensile tests

Special cyclic uniaxial tensile tests were performed
to experimentally characterize the cyclic behavior of
TSSA and to observe the effect of stretch-induced
whitening of the test sample. Therefore, midget ten-
sile tests were carried out under the light microscope
in order to assign high-resolution images of the sur-
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(a)

(b)

Fig. 8 Experimental test results for TSSA under cyclic uniaxial
tensile loading: a force–displacement curves and b load history

face of each test sample and the evolution of the spot-
wise whitening to the structural response of the tests.
The test set-up therefore consists of a midget tensile
module of the company Kammrath & Weiss GmbH,
which was installed in a light microscope (Keyence
Model VHX-600 Digital Microscope). Muth (2018)
presented the geometry and manufacturing of the test
samples as well as the testing procedure in great detail
in hiswork. Nevertheless, it should bementioned at this
point that, on the one hand, a special cutting die was
produced in order to be able to produce miniature ten-
sile specimens at all. The shape was chosen according
to the available space within the miniature tensile test-
ing machine. Basically, however, it can be said that the
miniaturized test sample is only a scaling of the dog-
bone tensile test specimen developed byBecker (2009).
On the other hand, the basematerial was placed in a cli-
matic chamber at 140

◦
C and pressurized to obtain the

typical material properties of TSSA. This procedure is
the same as that proposed by Sitte et al. (2011).

The cyclic uniaxial tensile tests were performed in
standard climate with a constant displacement rate of

vCUT = 3.75 mm/min, which is the fastest displace-
ment rate of the tensile module. The force was mea-
sured with a 5000 N load cell. The specimen was
clamped using a mechanical screw-clamping system,
so that a slight slipping out of the specimen could be
detected during testing. Since a local measurement of
Hencky strains using digital image correlation was not
possible, the results of five test samples are shown in
Fig. 8 in the form of global force-displacement curves.
Additionally, the load history is presented for reasons
of clarity.

The results show theMullins effect clearly, in which
a pronounced softening of the material can be seen for
the unloading paths. Looking at the reloading paths,
they follow the unloading paths up to the maximum
stretch applied so far. Exceeding this point, the so-
called virgin path is followed again, which corresponds
to the material response of a non-cyclic loaded uni-
axial tensile test. The material behavior to be seen
corresponds to the classical definition of the Mullins
effect (Diani et al. 2009) without exhibiting healing
effects. Furthermore, it is noticeable that the structural
responses scatter strongly, especially at small defor-
mations, which is due to the slipping out of the spec-
imens due to the mechanical clamping. Nevertheless,
the structural responses show a typical behavior under
cyclic loading. Finally, it should be mentioned that the
effect of whitening, especially in the virgin loading
paths, could also be clearly seen in the cyclical exper-
iments. During the unloading and reloading paths, the
describedwhitening remains at approximately the same
level until one again loads beyond the point of maxi-
mum achieved elongation.

B Cyclic pancake tests

In order to experimentally investigate TSSA under an
almost triaxial deformation condition, classical cyclic
pancake tests were carried out according to the tests
of Gent and Lindley (1959), in which two steel cylin-
ders were glued with TSSA and then axially pulled.
The pancake test samples were tested with a diame-
ter of d0 = 50.0 mm. The pancake test specimens
were produced in an autoclave according to the speci-
fications of Sitte et al. (2011). In the test series of the
classical pancake tests, seven specimens with a diame-
ter of d0 = 50.0 mm were tested in a standard climate
under cyclic axial loading. The local deformations of
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the adhesive were recorded utilizing the DIC. For this
purpose, the specimen was first coated with a white
primer in the area of the measuring field and then a
black speckle pattern was applied to carry out the local
strain measurement. In contrast to the cyclic uniaxial
tensile tests (see “AppendixA”), the pancake tests show
only slight deformations, so that a higher resolution of
the occurring deformations is necessary. This is also the
reason why the speckle pattern for these tests could be
applied by spraying. Generally, the cyclic pancake tests
were performed to explain whether the cavitation effect
is reversible and to study the Mullins effect in heavily
constrained tensile tests. To characterize the material
softening due to the Mullins effect, it is necessary to
approach defined load levels with the testing machine
and then unload it to a zero force level again. Since it
was not possible to use the local displacement signal
of the adhesive joint, which was measured optically,
as a control signal for the testing machine, the cyclic
pancake tests were performed force-controlled. This
was necessary because although the global displace-
ment of the traverse of the testing machine could be
regulated to zero, compressive stresses could occur in
the material due to slightly viscous effects or a perma-
nent set of strains of the polymer. In order to make the
axially displacement-controlled and cyclically force-
controlled pancake tests comparable, the force-ratewas
set to vCPC = 9.0 N/s, which corresponds approxi-
mately to the displacement-rate used by Drass et al.
(2018a). Preliminary investigations showed no differ-
ences in the structural response of displacement- or
force-controlled experimental tests. Accordingly, the
proposed variant of the test procedure is legitimate.
It should also be noted that all tests were carried out
at room temperature to ensure comparability with the
non-cyclical experimental studies described above.

Seven cyclic pancake tests were tested in a stan-
dard climate. All test specimens were manufactured in
an autoclave. The test set-up and the test samples are
similar to the PC-I test series according to Drass et al.
(2018a), in which two stainless steel point holders were
gluedwithTSSAand pulled axially. The first load cycle
ended after reaching a force of 6000 N and was then
unloaded to a zero force level.With each load cycle, the
load level was increased by 1000 N until the material
was completely damaged. For reasons of comparabil-
ity, the cyclic heavily constraint pancake tests were also
performed at room temperature.

(a)

(b)

Fig. 9 Experimental results of cyclic pancake tests for TSSA a
force versus local displacement; b load history

The structural behaviour of the cyclic pancake tests
is shown in Fig. 9. In addition, the load history is pre-
sented for reasons of clarity. The cyclic pancake tests
performed show a very complex structural behaviour,
which can be divided into three essential parts. The
first part of the structural response describes the load-
ing path, also called the virgin path. It corresponds to
the load path of the conventional pancake tests under
uniaxial load and has the highest structural response
to be achieved. The bifurcation load is approximately
7000 N. The second part describes the unloading
path, which exhibits a substantially reduced stiffness
compared to the virgin loading path. A very unusual
behaviour occurs during reloading, which describes the
third part of the classification of the structural response
of cyclic pancake tests. In contrast to theMullins effect,
the unloading and reloading paths are not identical. It is
clearly visible that a recovery or healing effect occurs
during the reloading process, whereby the reloading
curve is clearly above the unloading curve and below
the virgin loading curve. This implies that, in contrast to
the classicalMullins effect, themajority of themechan-
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ical hysteresis is not caused by effects like bond break-
age of polymer chains or filler rupture, but rather the
growth and shrinkage of voids in the material under
hydrostatic load. The effects associated with the clas-
sicalMullins effect are, for somematerials and to a spe-
cific amount, reversible, but only under thermal treat-
ment. However, some amount of the softening seems
to be permanent. This could be caused by the classical
Mullins effect due to deviatoric deformations inside the
pancake test, which especially occurs at the outer area
of the sample. It is worth mentioning that all unload-
ing paths converge to a force level of about 3600 N at
almost zero axial deformation.

Looking at the structural behavior, it can be assumed
that the recovery or healing effect is due to elastic pore
growth and shrinkage, which in combination with the
Mullins effect and possible bond breakage and filler
rupture leads to the present result. The cavitation effect
must be reversible so that the reloading curve is above
the unloading curve. However, since the reloading path
remains below the virgin curves, an additional Mullins
damage must occur. As it has already been shown in
the cyclic uniaxial tensile tests, no remarkable hys-
teresis develops during testing. Hence, the phenom-
ena mentioned must occur particularly in triaxially
stressed areas, which are all but the peripheral areas
in the pancake test sample. The hypothesis of elastic
void growth in the loading paths (virgin loading and
reloading) can be further consolidated, since the ini-
tial stiffness always corresponds to the virgin stiffness
even after several load cycles. Furthermore, it should
be noted that healing starts abruptly without the use of
temperature storage or the use of relaxation by incorpo-
rating holding times in the test sequence. Interestingly,
all reloading curves result in a uniform force level of
6000 N, which, however, is below the virgin bifurca-
tion load. However, following the reloading path and
reaching the previously reached maximum elongation
corresponding to the virgin curve, both curves are again
identical.

C Material parameters-extended pseudo-elastic
cavitation model

Summary of the material parameters for TSSA for
the presented extended pseudo-elastic cavitationmodel
from Sect. 3.

Table 2 Optimised material parameters for TSSA for extended
pseudo-elastic cavitation model

Material model Parameters

Isochoric Neo-Hooke model μ = 2.6652

Pseudo-elastic cavitation model κ0 = 0.0004

κ1 = 0.2699

κ2 = 0.2501

κ3 = − 0.195

Isochoric Mullins effect r = 0.5882

m = 2.0

Volumetric Mullins effect rvol = 0.45

mvol = 0.2

Volumetric healing effect rheal = 0.67

mheal = 0.07
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