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Abstract The present paper proposes two method-
ologies of identifying hyperelastic material parameters
of thin structural silicones based on so-called direct
and inverse methods. Based on part I of this paper,
analytical investigations were performed to conduct
homogeneous experiments with structural silicones. To
obtain more insight wether or not an experiment pro-
vides a homogeneous stress state, the so-called triaxi-
ality was introduced, which allows one to illustrate dif-
ferences between homogeneous and inhomogeneous
experiments. With the help of this scalar, it was possi-
ble to design experimental test setups, which ensure a
homogeneous stress and strain distribution within the
tested rubber-like material. Furthermore an engineer-
ing approach to determine the testing speed of arbitrary
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experiments dependent on one reference testing speed
and experiment was presented. This approach ensured
equivalent strain energies between arbitrary and refer-
ence test specimens during testing, by which expen-
sive strain rate controlled experiments can be relin-
quished. Based on these analytical studies, experimen-
tal data could be provided for the material parameter
identification, which exhibits firstly a nearly homoge-
neous stress state in accordance to the desired stress
and strain field of the applied mathematical model and
secondly providing nearly equivalent strain energies
within different experimental test set-ups and geome-
tries of test specimens. Returning to the present paper,
the first methodology identifies simultaneously hyper-
elastic material parameters based on a set of conven-
tional and homogeneous experimental tests, like uniax-
ial tension and uniaxial compression, biaxial tension as
well as shear-pancake tests. The second methodology
determines inversely hyperelastic material parameters
utilizing the inverse Finite Element Method based on
one single unconventional and inhomogeneous experi-
mental test, here amicroindentation test. Themain idea
is to obtain reliable hyperelastic material parameters
based on a single, inhomogeneous experiment to avoid
many, time-consuming homogeneous experiments. To
validate the inversely determined hyperelastic mate-
rial parameters, simultaneous multi-experiment data
fits are performed to relate the obtainedmaterial param-
eters to those of the microindentation tests. Consid-
ering the set of homogeneous experiments, two clas-
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sical hyperelastic constitutive equations (Neo-Hooke
and Mooney–Rivlin) were utilized to determine con-
stitutive parameters. Due to the simplicity of the clas-
sical material laws, a more sophisticated, novel phe-
nomenological hyperelastic material law will be pro-
posed and compared with the results of the classical
models respectively the results obtained by a modern
hyperelastic material model after Kaliske & Hein-

rich, which generally delivers outstanding results for
the material parameter identification.

Keywords Thin structural silicone adhesive ·
Material parameter identification · Inverse finite
element method · Incompressible hyperelasticity

List of symbols

UT Uniaxial tension test
UC Uniaxial compression test
BT Biaxial tension test
SPC Shear pancake test
MI Microindentation test
MPI Material parameter identification
iFEM Inverse finite element method
FEMU Finite element model updating
TRM Trust region method
LAR Least absolute residuals
MOP Meta model of optimal prognosis
RMSE Root mean squared error
(•)iso Isochoric/volume-preserving
tr(•) Trace of argument
Grad(•) Gradient of argument

F Deformation gradient
J Relative volume
C Right Cauchy- Green tensor
b Left Cauchy- Green tensor
b̄ Isochoric left Cauchy- Green tensor
λi Principal stretches
ε
eng
i Engineering strain
Ib First principal strain invariant of b
I Ib Second principal strain invariant of b
I I Ib Third principal strain invariant of b
ti Principal engineering stress
σi Principal Cauchy stress
p Hydrostatic stress

Ψ (•) Helmholtz free energy
S Objective function

Φk Trigger function
p Vector of material parameters

1 Introduction

In general, structural silicones belong to the group
of hyperelastic materials, which are characterized by
strain energydensity functions respectivelyHelmholtz
free energy functions. In literature, there exist three
ways of classifyingHelmholtz free energy functions:
(i) molecular-statistical hyperelastic material models
accounting for the molecular structure and the motion
of the macromolecules (Treloar 1975; Arruda and
Boyce 1993; Yeoh and Fleming 1997; Kaliske and
Heinrich 1999;Miehe et al. 2004). (ii) phenomenologi-
cal Helmholtz free energy functions, which are char-
acterized by treating hyperelasticity only under amath-
ematical framework without referencing to molecular
concepts (Mooney 1940; Rivlin 1948; Ogden 1972).
Since for both models material parameters have to be
determined, within the last classification (iii) tabulated
formulations of hyperelasticity were developed, where
the experimental data is used directly as input data
to characterize the material behavior (Marlow 2003;
Kolling et al. 2007). Hence, no material parameters
have to be determined within this class of constitutive
models.

Since the focus of the present paper lies in the deter-
mination of hyperelastic material parameters, for the
following studies phenomenological and molecular-
statistical material models will be utilized, wheremate-
rial parameterswill be determined based on experimen-
tal tests presented in part I (Drass et al. 2017). In gen-
eral, there exist two methods for obtaining hyperelas-
tic material parameters. The conventional procedure is
characterized by fitting hyperelastic material parame-
ters based on experimental data of homogeneous exper-
iments, which can be understood as direct method.
Therefore, expressions for the stress strain behavior
dependent on the deformation state can be analyti-
cally derived from hyperelastic constitutive equations
to determine material parameters by regression analy-
ses (Ogden et al. 2004;Berselli et al. 2011;Khajehsaeid
et al. 2013; Gorash et al. 2015). Here, in addition, one
can choose between incompressible and slightly com-
pressible hyperelastic material models, however, in the
present work incompressibility will assumed for the
sake of mathematical convenience.
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An unconventional method of material parameter
identification (MPI) is based on inhomogeneous exper-
iments, where arbitrary stress and strain fields are
inherent in the specimen. From this, the inverse Finite
Element Method (iFEM) based on Mainçon (2004a),
Mainçon (2004b), Tessler and Spangler (2004), Hauser
et al. (2008), Pacheco et al. (2016) can be utilized,
where material parameters are inversely determined.
Another established expression for iFEM is Finite
Element Model Updating (FEMU) technique. FEMU
describes a method, where, for instance, numerical cal-
culations with randomly chosen initial material param-
eters are conducted iteratively and compared with
experimental data as long as the residuum between
experiment and simulation is smaller than a fixed tol-
erance (Farhat and Hemez 1993; Cottin et al. 1984;
Avril et al. 2008; Pagnacco et al. 2005). Additionally,
a gradient-based optimization algorithm can be cou-
pled with the FEMU results to improve the constitutive
parameters (Drass and Schneider 2016b).

In part I (Drass et al. 2017), homogeneous and inho-
mogeneous experiments were presented, which are the
basis for theMPI. Based on homogeneous experiments
(Uniaxial Tension—UT, Uniaxial Compression—UC,
BiaxialTension—BT,Shear-Pancake—SPC)onTSSA,
in the present paper a simultaneous multi-experiment
data fit will be presented and compared with inversely
determined material parameters based on an inhomo-
geneous experiment, here a microindentation test (MI).
For this purpose, the iFEM coupled with an optimiza-
tion algorithm will be utilized to simulate the MI test
under optimizing material parameters.

Generally, regarding the analyzed transparent sil-
icone, TSSA, which belong to the group of rubber-
like materials, a broad application form are laminated
connections (Santarsiero et al. 2016). The laminated
connection is achieved by directly bonding glass to
metal using adhesives like TSSA, SentryGlas or PVB
(see Fig. 1). To reduce the application effort, which
is obviously with regard on classical connection sys-
tems, like articulated and undercut point fixing cour-
tesies (Overend 2005), in laminated connections the
same production process as for laminated glass com-
ponents is utilized, which was analyzed by Santarsiero
et al. (2016). Furthermore, by utilizing laminated con-
nections, thermal bridges and local stresses within the
glasses can be reduced. As local bonding materials,
transparent structural silicones have prevailed because

Fig. 1 Point fixing connected to a glass pane with TSSA—
Permission of Dow Corning Europe SA (2017)

of their transparent appearance and mechanical prop-
erties (Sitte et al. 2011).

2 Basics on continuum mechanics

Deforming a bodyB0 toB, thematerial points P0 of the
reference configuration are mapped to the current con-
figuration. The position vectorsX and x of the reference
and current configuration describe the movement of P0
by a second order tensor, which is called deformation
gradient F = Grad x.

Considering incompressible materials, the determi-
nant of F must satisfy det F = J = 1. The assump-
tion of incompressibility enables one to directly solve
the stress strain relationship for hyperelastic materials,
which is a common assumption for the sake of mathe-
matical convenience. In contrast, regarding compress-
ible hyperelasticity, a relation between the principle
stretches λi and the relative volume J exists, hence it
can only be solved with respect to J using Newton’s
method.

With the help of the polar decomposition, the defor-
mation gradient can be written asF = RU = VR, where
the left and right Cauchy-Green stretch tensors can
be derived by b = V2 = FFT and C = U2 = FTF.

In the area of hyperelasticity, there exists a so-called
Helmholtz free energy Ψ (C) or Ψ (b) defined per
unit volume, which is symmetrically dependent on the
principal stretches λi with i ∈ [1, 2, 3]. The principal
stretches can be calculated by λi = 1+ε

eng
i , where ε

eng
i

represents the engineering strain. Generally, hyperelas-
tic constitutive equations can be formulated based on
strain invariants of b, which leads to the strain invari-
ants
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Ib = bii = λ21 + λ22 + λ23, (1)

I Ib = 1

2

(
bii b j j − b ji bi j

)

= λ21λ
2
2 + λ22λ

2
3 + λ21λ

2
3, (2)

I I Ib = det bii = λ21λ
2
2λ

2
3. (3)

Regarding compressible hyperelasticity, the iso-

choric part of b can be reformulated into b̄ = J− 2
3 b,

whereas b̄ = b for incompressible materials. The prin-
cipal engineering stresses ti for incompressible mate-
rials can be derived by

ti = ∂Ψ

∂λi
− pλ−1

i ≡ σiλ
−1
i with i ∈ [1, 2, 3] , (4)

where p is aLagrangemultiplier,which canbeobtained
by boundary constraints and σi describes the principal
Cauchy stress in the current configuration. Togetmore
insight into nonlinear solid mechanics with the focus
on rubber-like materials respectively hyperelasticity,
the reader is referred to the classical monographes of
Holzapfel (2000) and Chaves (2013).

3 Isochoric,
hyperelastic HELMHOLTZ free energy functions

Considering a Helmholtz free energy Ψ (F), there
exist two approaches to built up this functional under
exclusion of tabulated formulations like Kolling et al.
(2007); Marlow (2003). The first approach is based
on molecular-statistics, which analyzes the deforma-
tion behavior of rubber-like materials on a micro-scale
level deriving the stress strain interaction from ideal-
ized, macromolecular models (cf. Sect. 3.1). The sec-
ond approach treats the mechanical behavior of rubber-
like materials on a phenomenological level regarding
hyperelasticity from a mathematical viewpoint, while
disregarding the molecular concept (cf. Sects. 3.2 and
3.3).

3.1 Molecular-statistical constitutive laws

The elementary statistical theorywas foundby thework
of Kuhn (1934, 1936a, b), Kuhn and Grün (1942) and
James and Guth (1943), where rubber-like materials
are treated as materials exhibiting long, flexible chain
molecules,weak intermolecular forces andpartial cross

linkings between molecules, which are forming net-
works. During the deformation process the entropy
decreases in accordance to statistical thermodynamics,
hence it can be postulated that the change in entropy is
directly dependent on the work done by temperature.
ThemacroscopicNeo- Hookean free energy attributed
with a micro-mechanical background reads

Ψ = μ

2
Ib̄ with μ ≡ nkT, (5)

where n represents the number of network chains
per unit volume, k is the Boltzmann’s constant and
T is the absolute temperature. Since no free energy
should be available in the undeformed state, which
is conterminous when the first isochoric invariant is
Ib̄ = 3, the originally proposed form of the micro-
mechanically motivated Neo- Hookean (NH) consti-
tutive law (Treloar 1975) is given by

Ψiso,NH = μ

2

(
Ib̄ − 3

)
, (6)

which will be considered in the following, since only
one material parameter has to be determined.

Due to well-known reasons the affine deforma-
tion assumption stays in contrast to experimental
results (Miehe and Schänzel 2013), consequently a
non-affine deformation was introduced by the micro-
sphere model, which was developed by Miehe et al.
(2004). Since the proposed micro-mechanically moti-
vated models do not account for topological constraint
effects because the idealized polymer networks are free
in motion and only considering a single polymer chain,
the constrained segment theories and constrained junc-
tion theories have been developed. In this work, the
constrained segment theory,whichwas seized byDeam
and Edwards (1976), Edwards and Vilgis (1988), Hein-
rich and Straube (1983), Kaliske and Heinrich (1999),
plays an important role, so it will be presented more
in detail, i.e. the extended tube model (ExtTube) of
Kaliske and Heinrich (1999).

The extended tube model accounts for the above-
mentioned topological constraints aswell as the limited
chain extensibility of network chains. It is described by
four material parameters with physical meaning. The
Helmholtz free energy of this model is presented by
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Ψiso,ExtTube = Gc

2

[(
1 − δ2

) (
Ib̄ − 3

)

1 − δ2
(
Ib̄ − 3

)

]

+ Gc

2

[
ln

(
1 − δ2

(
Ib̄ − 3

))]

+ 2Ge

β2

3∑

A=1

(
λ

−β
A − 1

)
. (7)

In this hyperelastic material law the parameter Gc

describes cross-link distribution of the shear modulus,
whereasGe represents the constraint distribution of the
shear modulus. The total shear modulus is the sum of
both parts. The parameter β describes the rearrange-
ment of cross-links upon deformations and δ stands for
the maximal extensibility of a polymer chain.

3.2 Phenomenological constitutive law

An important phenomenological model was developed
by Mooney (1940), where an incompressible, homo-
geneous and isotropic material obeys Hooke’s law in
simple shear considering twomaterial parameters. This
model was generalized by Rivlin (1948) expressing the
Helmholtz free energy as an infinite power series,
which yields

Ψ
(
b̄
) =

∞∑

i=0

∞∑

j=0

Ci j
(
Ib̄ − 3

)i (
I Ib̄ − 3

) j
. (8)

Considering the originally proposed form with two
parameters, the Mooney- Rivlin (MR2) material law
is given by

Ψiso,MR2 = C10
(
Ib̄ − 3

) + C01
(
I Ib̄ − 3

)
, (9)

which will be utilized for all following studies.

3.3 Internal development of a constitutive law

Additionally to the above-mentioned constitutive mod-
els, an internal development of a novel Helmholtz
free energy Ψ will be proposed, which is based on
an inverse polynomial function, which was originally
developed by Nelder (1966) to describe processes in
agriculture. The initial proposal of Nelder (1966) is
formulated by

x

y
= β0 + β1x + β2x

2. (10)

The Nelder function has the advantages over usual
quadratic polynomial functions, that it has no built-in
symmetry and its two extremes are described by two
separately parameters. By reformulating the original
function of Nelder (1966) and setting β2 = 0, the func-
tion yields to

y = x

β0 + β1x
. (11)

Considering that Eq. (11) can be formulated in the
context of hyperelasticity, it can be presented as a
Helmholtz free energy respectively as a strain energy
density function only accounting for isochoric defor-
mation modes by

Ψ
(
b
) =

(
Ib̄ − 3

)

α + β
(
Ib̄ − 3

) . (12)

In this context the first isochoric, principal invariant
is assembled by Ib̄ = tr

(
b̄
)
, whereas the second iso-

choric principal invariant, which is presented in Eq. (2)
and Eq. (13), can be described by the first isochoric,
principal invariant and the trace of the isochoric left

Cauchy-Green tensor with I Ib̄ = 1
2

[
I 2
b̄

− tr
(
b̄2

)]
.

Since the second isochoric, principal invariant I Ib̄
plays an important role to describe biaxial deforma-
tion loading conditions (Wineman 2005; Horgan and
Smayda 2012), in the following the Nelder function
will be extended towards the second invariant in the
same manner as the first invariant was incorporated.
Hence, Eq. (11) is reformulated by

Ψiso,MD =
(
Ib̄ − 3

)

α + β
(
Ib̄ − 3

) +
(
I Ib̄ − 3

)

χ + δ
(
I Ib̄ − 3

) , (13)

which only accounts for isochoric deformation modes.
In contrast to an isochoric formulation of aHelmholtz
free energy, in Drass and Schneider (2016a), the
Nelder function was successfully reformulated to
describe the volumetric behavior of rubber-like mate-
rials in terms of a Helmholtz free energy function
accounting for isotropic cavitation (void growth) at
finite strains.

An advantage of the novel hyperelastic material
model is, that it can be easily transfered to classical
material models, like the NH model by setting β = 0
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and disregarding the second isochoric, principal invari-
ant I Ib̄, hence a reconciliation between molecular-
statistical and phenomenological theory is given. Set-
ting β = δ = 0, one obtains the MR2 material model.

Since the proposed isochoric hyperelastic strain
energy density function is from its derivation purely
phenomenological, the analysis of a physical back-
ground will be addressed in further investigations by
proving the Baker–Ericksen inequality, the Trues-
dell–Noll condition or Hill’s inequality and/or the
analysis of quasi-convexity, polyconvexity and elliptic-
ity in accordance to Hartmann (2001).

4 Material parameter identification

4.1 Conventional material parameter identification

For the classical procedure ofMPI, test data of different
homogeneous experimental test set-ups can be utilized
to determinematerial parameters, which are on an aver-
age adequately suitable to describe numerically differ-
ent strain and stress states. Therefore, it is essential
to conduct a simultaneous multi-experiment data fit to
obtain optimized material parameters for a large num-
ber of deformation modes (Ogden et al. 2004). Since
the formulation of an objective function for a single-
experiment data fit is easily determinable after Ogden
et al. (2004), the objective function for more than one
experiment has to be modified to account for the whole
experimental data basis. Hence, a modified objective
function S has been formulated coupled with so-called
trigger functions Φk to extend the L2-norm towards a
multi-experiment data fit, which yields into

S =
m∑

k=1

Φk

∥∥∥t simi;k
(
λi;k, p j

) − texpi;k
∥∥∥
2

2
. (14)

In this context, the index (subscript) k takes integer
values from k = 1, . . . ,m, which corresponds to the
number of experiments k. Furthermore, it is important

to note that ; k defines a sub-subscript, (•)i;k
∧= (•)ik ,

of the corresponding vectors.
The trigger function Φk with k ∈ [1, 2, 3, 4] and

y = k − 1 are defined with

Φ1 = (3 + y)
(
y2 − 3y + 2

)

6
=

{
1 for y ∈ [0]
0 for y ∈ [1, 2, 3]

,

(15)

Fig. 2 Plot of stress strain relationship for four experiments
dependent on trigger functions (black lines)/plot of fitted sur-
face (colored surface)

Φ2 = 1

2
(y − 3) (y − 2) y =

{
1 for y ∈ [1]
0 for y ∈ [0, 2, 3]

,

(16)

Φ3 = −1

2
(y − 3) (y − 1) y =

{
1 for y ∈ [2]
0 for y ∈ [0, 1, 3]

,

(17)

Φ4 = 1

6
(y − 2) (y − 1) y =

{
1 for y ∈ [3]
0 for y ∈ [0, 1, 2]

.

(18)

Based on the defined four trigger functions, amaximum
of four experiments can be utilized for the presentmate-
rial parameter fitting routine. To understand the behav-
ior of the trigger functions by trying to fit four exper-
iments simultaneously, Fig. 2 can be adduced, where
the fitting results are illustrated. Since the present four
trigger functions are either 1 or 0, depending on the
applied experiment, the fitting routine is able to choose
the right stress strain relation dependent on the applied
constitutive model and deformation field. To obtain the
stress strain relationship of a hyperelastic constitutive
model accounting for the deformation field, which is
inherent during experimental testing, Eq. 4 has to be
utilized. Here, the deformation gradient in accordance
of the governed experiment, see part I (Drass et al.
2017) has to be inserted into Eq. 4 and differentiated
with respect to the principal stretches λi . Afterwards
the obtained expressions have to be inserted into the
objective function S.

Returning to the modified objective function S, the
function tsim ⇒ t simi;k

(
λi;k, p j

)
is the derivative of

the strain energy density function in accordance to the
activated experiment k. The principal stretch vector is
defined by λ ⇒ λi;k = [

λ1;k, λ2;k, . . . , λn;k
]T cor-
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responding to the length of data points of the experi-
ment. The unknown material parameters p ⇒ p j =
[p1, p2, . . . , po]T can be determined by formulating
the minimization problem with

min S ≡ min
p

S (p) . (19)

To solve the minimization problem under utiliz-
ing different sets of start values and constraining the
lower and upper bounds to physically plausible val-
ues, adequate numerical algorithms must be chosen.
Since the curve fitting toolbox of MatLab was utilized,
one can choose between the Trust-Region-Method or
the Levenberg–Marquard-Algorithm to obtain opti-
mized material parameters for different constitutive
equations. Regarding the goodness of the results, bet-
ter results were achieved utilizing the Trust Region
Method (TRM) coupled with Least Absolute Resid-
uals method (LAR), which calculates a curve that min-
imizes the absolute difference of the residuals, rather
than the squared differences. Therefore, extreme values
have a minor impact on the fitting results. To initialize
the experimental data, each experiment was manipu-
lated in a way that it is described by 1000 data points.
Furthermore, it is to note that a non-weighted optimiza-
tion was conducted to determine the unknown material
parameters, however, a weighted optimization can also
be easily conducted.

Finally, to compare the analytical with the exper-
imental results, an error estimator, respectively rela-
tive error for every data point dependent on the applied
stretch will be utilized, which has the form

error =
∣∣∣∣
∣∣

t simi;k
(
λ
exp
i;k , p j

)

texpi;k
(
λ
exp
i;k

) − 1

∣∣∣∣
∣∣
, (20)

which is slightly different to the approach after Ogden
et al. (2004). In Ogden et al. (2004), a scalar was put
in the denominator to avoid divisions by small values
of texpi;k , what would lead to large errors for the rela-
tive error. Hence, with the present relative error large
errors at small strains are presumably due to divisions
by small values of texpi;k . To summarize the direct iden-
tification of hyperelastic material parameters, the flow
chart presented in Fig. 3 can be adduced. The opti-
mization ends, if S ≤ Tol, where the tolerance was
set to Tol = 1.0e-8 and the maximal iteration was set to

Fig. 3 Flow chart to optimize hyperelastic material parameters
with curve fitting toolbox of MatLab

MaxIter = 10.000. Additionally, the maximum number
of function evaluations within MatLab toolbox equals
MaxFunEvals = 10.000.

4.2 Inverse material parameter identification

The inverseMPI can be conducted via FEMUapproach
(Avril et al. 2008), which is a numerical method based
on the Finite Element Method to solve inverse prob-
lems, which can be understood as ill-posed and ill-
conditioned after Hadamard (1902), Shkarayev. et al.
(2001). Within this class of problems, the existence,
uniqueness and stability of the solution is not per se
given. The FEMU approach describes a technique,
where numerical calculations with randomly chosen
initial parameters are conducted iteratively and com-
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pared with experimental data as long as a pre-defined
residuum is smaller than the fixed tolerance. This is
similar to the formulation of an objective function,
where the numerical response, here the global force
displacement response of a numerical simulation of a
complete experimental model, is compared with the
experimental response under minimizing the L2-norm
by adjusting the material parameters of the chosen
constitutive material law. Clearly speaking, the force
displacement response of the MI tests are compared
with the results of the numerical simulation of the MI
tests under optimizing the initially assumed material
parameters. Hence, the objective function is formu-
lated for an initial set of material parameters pinitj by

S =

√√√√√1

n

n∑

i=1

⎡

⎣
t simi;k

(
λi;k, pinitj

)
− texpi;k

texpi;k

⎤

⎦

2

. (21)

If Tol <S, the optimization procedure proceeds
with a perturbation of the initially chosen material
parameter pinitj by pinitj + Δp j resulting in

S=

√√
√√√1

n

n∑

i=1

⎡

⎣
t simi;k

(
λi;k, pinitj + Δp j

)
− texpi;k

texpi;k

⎤

⎦

2

,

(22)

until a defined tolerance is deceeded with S ≤ Tol.
Within the sensitivity analysis of material parameters,
the input parameters are deliberately varied within
a minimum number of trials in an optimal manner
based on a stochastic sampling algorithm, here the
Advanced Latin Hypercube Sampling method (Iman
andConover 1982; Iman 2008), where unwanted corre-
lations between parameters are strongly minimized by
optimization. Thereby the impact of the single input
parameters of the pre-defined objective function can
be determined. Here, every parameter set has to be
numerically simulated to build up a so-called Meta
Model of Optimal Prognosis (MOP). This MOP is
based on the results of the sensitivity analysis and
is generated by non-linear regression analysis of the
single data points (see Fig. 9). Utilizing the response
surface of the MOP, optimization algorithms like a
gradient-based algorithm can be adopted to find the
global minimum in the sense of the response sur-
face. Here, no additional numerical simulations of the
full model are necessary since the optimization algo-
rithm only works on the response function. In a final

step, the optimized material parameters have to be
validated by solving the inverse problem for a last
time. To obtain more insight into the presented pro-
cedure of inverse material parameter identification, in
Schwarz et al. (2015) a detailed description is pre-
sented.

5 Results of material parameter identification

5.1 Conventional multi-experiment data fit

Here, the results of the MPI are illustrated, which are
based on the experimental evaluation of UT, UC, BT
and SPC utilizing Eq. (14). As isochoric strain energy
density functions four different constitutive equations
are applied to prove the accuracy of them. Hereby, the
materialmodelsNHwith one parameter,MR2with two
parameters and the ExtTube model with four param-
eters will be analyzed and set into comparison with
a newly developed, phenomenological material model
(MD model).

In Fig. 4, the fitting results of the experimental data
are illustrated qualitatively. Furthermore, the relative
errors are also presented to show the accuracy of the
fitting procedure. As it can be seen from Fig. 4, even
the simple NH constitutive equation produces accept-
able results regarding the accuracy of MPI for UT
and SPC, whereas the results for UC and BT show
relative errors between 10 and 20%. From the fitting
procedure an initial shear modulus of μ = 2C10 =
2.530 [MPa] was obtained, which can be understood
as a reference point for the following inversely deter-
mined material parameters on the basis of MI tests.
It is interesting to note that the relative errors for
UT and SPC lie beneath 5% for moderate deforma-
tions, however, regarding the results for UC and BT,
the relative error is a multiple of the relative error of
UT and SPC. Hence, it can be stated that with a NH
constitutive model the structural behavior for simple
deformations can be adequately represented, however,
regarding BT the present material model with only one
material parameter, incorporating only the first princi-
pal strain invariant is not able to represent complex
deformations, which can be explained by the miss-
ing second principal strain invariant. Finally, regard-
ing small deformations the relative error is extremely
large since the simulated engineering stress t simi;k is

divided by small values of texpi;k , which is logical since
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Fig. 4 Illustration of the
fitting results concerning the
stress strain relationships
respectively the relative
error of UT, UC, BT and
SPC dependent on four
hyperelastic material laws
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a classical formulation for the relative error was cho-
sen in contrast to the approach after Ogden et al.
(2004).

Regarding the results of MR2 model, the relative
errors are improved to those of the NH model. Addi-
tionally, the results for BT could be improved domi-
nantly, which can be explained since for MR2 model,
the second isochoric strain invariant is incorporated.
Thus, it can be stated that (i) the second isochoric
strain invariant must be incorporated in hyperelastic
material models to improve the fitting results for biax-
ial deformations, (ii) a linear relation between mate-
rial parameters and strain invariants is not sufficient to
account for strong nonlinearity and (iii) two material
parameters are not sufficient to represent the structural
responses of four different experiments at the same
time.

As proposed by Ogden et al. (2004), an upper bound
for the relative error of 5% was stated for fitting only
one experiment. Furthermore, following Ogden et al.
(2004), a more widened relative error of 20% pro-
duces valuable results, if two experiments are fitted
at the same time. A relative error of 20% might be
questionable at first glance, however, if one considers
that each experiment, which has to be fitted, exhibits
uncertainties due to experimental handling, variance
of material properties as well as post-processing of
experimental data, the stated bound is acceptable.
Thus, the results for NH and MR2 produces valu-
able results after the comprehension of Ogden et al.
(2004).

However, for all following considerations the upper
bound of 20% after Ogden et al. (2004) will be reduced
to 7.5%. This bound seems to be a severe bound when
trying to fit four experiments at the same time, how-
ever, the accuracy and efficiency of the following two
material models as well as the algorithm for MPI must
be proved.

Regarding the results for the ExtTube model, this
bound is only exceeded by BT under finite strains,
however, the ExtTube model is acutely adequate to
represent the structural response of TSSA under four
different deformation modes. Since Marckmann and
Verron (2006) state that the ExtTube model is the
best hyperelastic material model, which captivates by
its molecular-statistical motivation and goodness for
MPI, it is straight-forward to compare the results of
the ExtTube model with those of the novel hyperelas-

tic material model (MD model), which is presented in
Eq. 13.

Hence, regarding the results of the MD model, all
relative errors lie beneath the upper bound of 7.5%,
which is conterminous with a considerable fitting
results, keeping in mind that four different experiments
were fitted at the same time. Furthermore, the large rel-
ative error at small strains, which occurs due to math-
ematical circumstances, decreases rapidly for all four
experiments. This could also be verified by the ExtTube
model. Regarding the results for BT, the MD model
shows a strongly improved result in comparison to
the ExtTube model. Regarding the results between the
MR2 model and the MD model, the MD model shows
improved results, especially regarding the approxima-
tion of UC. Finally, it can be stated the MD model
is excellently suitable to describe the complex struc-
tural behavior of TSSA under different deformation
modes, which is proved because all results lie beneath
a severe bound for the relative error. When trying to fit
less than four experiments at the same time, the fitting
results can be more improved, which expresses itself
with relative error below 5% for the whole deformation
regime. However, it is questionable that the obtained
material parameters, especially the material parame-
ters for sophisticated material models like the ExtTube
model and MD model, were able to represent arbitrary
deformation fields, which may even lead unphysical
results. For the sake of completeness, an overview of
all experiments is given in “AppendixA”andall directly
optimized material parameters are listed in Table 1 and
“Appendix B”.

5.2 Inverse MPI—microindentation test

Here, the numerical simulation of theMI and the results
of the MPI for the MI tests are presented. As constitu-
tive material model, only the results for MR2 are pre-
sented as an example, however, the proposedmethodol-
ogy and results for all the otherHelmholtz free energy

Table 1 Material parameters of MPI considering four different
constitutive laws
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Fig. 5 Illustration of the mesh of the numerical model for the
simulation of MI

functions are represented in “Appendix C”. Due to the
fact that MR2 has only two material parameters, the
results for the relative error dependent on both mate-
rial parameters can be vividly illustrated. Furthermore,
since only two material parameters have to be deter-
mined, it is not likely to find local minima during the
optimization process, which is beneficial since if more
sophisticated material models, like the ExtTube model
and theMDmodel, are applied, the global minimum of
the objective function cannot per se be found.Addition-
ally, by increasing the number of material parameters,
the calculation time is also increased dominantly, so
that all following calculations will be performed uti-
lizing the two parametric MR2 model. For the numer-
ical simulation of the MI, which was performed using
ANSYS FE Code, a 2D numerical model was built up,
where symmetry of the experimental test set-up is con-
sidered. A mesh study showed that no great influence
of a finer mesh with respect to the numerical results,
which can be explained by the applied contact algo-
rithm, where no element penetration is allowed. There-
fore, the numerical model was meshed with the mesh
shown in Fig. 5. However, considering the contact sur-
faces respectively the edges of the numerical model, a
slight mesh refinement was conducted to avoid numer-
ical instabilities within the contact finding procedure.
The numerical model, which is shown in Fig. 5, uses
958 2D plane stress elements. For the contact mod-
eling, the normal Lagrangian detection method was
used. The normal Lagrangian defines a surface to sur-
face contact, in which the status of the contact can only
be open or closed. The normal Lagrangian formu-

Fig. 6 Flow chart to optimize hyperelastic material parameters
with ANSYS FE Code and OptiSlang

lation will close any gaps and eliminate the penetra-
tion between the contact and target surface. During the
experiment, the test specimen was clamped by under-
inflation, hence in the numerical model the bottom side
of TSSA is fixed supported. By studying the effects of
friction, it was observable that the coefficient of friction
has no impact on the force displacement behavior, since
no large deformations occur duringMI tests. Hence, the
applied contact algorithmwas equippedwith a friction-
less conditions.

In the following, the results of the inversely deter-
mined hyperelastic material parameters, here C10 and
C01 of the second order constitutive law afterMooney-
Rivlin, based on the inhomogeneous MI test are illus-
trated. Regarding the bounds for the material param-
eters two different approaches have been applied dur-
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Fig. 7 Results of the MPI
for restricted and
non-restricted optimization
problem considering MI
tests

ing FEMU approach. The first analysis was accom-
plished by an unrestricted analysis, which is contermi-
nous with the fact that both material parameters can
have values from ± ∞. Since the Drucker stabil-
ity cannot be ensured with negative material param-
eters, the second approach uses only positive val-
ues for C10 and C01. A flow chart for the inverse
MPI utilizing ANSYS FE Code coupled with OptiS-
lang is presented in Fig. 6. On the basis of these
assumptions, the results for the force displacement
behavior in comparison to the experimental results
as well as the relative error in every data point are
illustrated in Fig. 7. From this, it can be imme-
diately observed that, the results of the inversely
determined material parameters considering the non-
restricted optimization problem show a good approxi-
mation of the experimental results. This can be proved
with regard on the relative error in every single data
point, which approximates an error smaller than 10%
for moderate displacements. The obtained material
parameters are C10 = 12.0368 [MPa] and C01 =
−10.0476 [MPa]. In contrast, the results consider-
ing the restricted MPI delivers worse results, espe-

cially regarding large displacements. Here, the opti-
mizedmaterial parameters areC10 = 0.997792 [MPa]
and C01 = 0.631406 [MPa].

5.3 Comparison
of MPI-approaches

To provide a vivid comparison, all obtained material
parameters are set in relation with each other. There-
fore, on the one hand the obtained material parameters
from the MI analyses, which have been determined by
inverse methods, are utilized to simulate the conven-
tional experiments. On the other hand, the material
parameters from the conventional or direct method,
here conventional experiments like UT, UC, BT and
SPC, are applied in the numerical model to simulate
the MI test.

Therefore, in Fig. 8a–b the results for MPI of
the non-restricted inverse method are utilized to rep-
resent the structural responses of UT, UC, BT and
SPC to show whether the inversely determined param-
eters are able to represent the structural responses
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Fig. 8 Comparison of
different MPI approaches
concerning conventional
and unconventional
experimental tests

(a) (b)

(d)(c)

(e) (f)

of the homogeneous experimental tests. As it can
be seen from Fig. 8a–b unphysical results can be
observed, which can be explained through the violation
of inequality requirements, like Druckers’s postulate
of

dσ : dε ≥ 0, (23)

which states that, the incremental internal energy
always has to increase. In Eq. (23), the variable
dσ represents the incremental stress, whereas as
the incremental strain is represented by dε. The
internal energy can therefore be calculated by the

double scalar product of both incremental tensors.
In contrast, the solutions represented in Fig. 8c–
d show an improvement of the results, especially
while regarding the trend of the solutions. Here, the
inversely determined material parameters based on
a restricted MPI are utilized to represent the struc-
tural responses of homogeneous experiments (UT, UC,
BT and SPC). From Fig. 8c–d, it is obvious that
the results now got a physical character, which is
trivial, since considering positive material parameters
for C10 and C01, Drucker’s postulate is always ful-
filled.
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Considering the obtained material parameters from
the conventional or direct method of MPI, for instance,
four different stress and strain states and fitting after-
wards hyperelastic material parameters, the simulation
of the MI test shows adequate results, but it has to be
admitted that the relative error between the simulation
and experiment is still high.

From the obtained results, it has to be admitted that
it is improbable to identify a unique solution for hyper-
elastic material parameters, which is able to represent
conventional test set-ups, like UT, UC, BT and SPC,
only on the bases of inversely determined material
parameters by one inhomogeneous experiment, here
the MI test. The reasons for this fact can be explained
byfirstly, trying to solve inverse problemsgenerally and
secondly, the experimental analysis of filled rubber-like
materials.

Regarding inverse mathematical problems in gen-
eral, these problems are ill-posed and ill-conditioned
with a non-unique solution (Hadamard 1902). In this
context, an ill-conditioned problem means that, the
small errors in the experimental data can result in
large errors in the answers, here the determined mate-
rial parameters. After Shutov and Kreißig (2010), MPI
is in general an ill-conditioned problem, since the
solution does not depend continuously on the input
data. If a strong correlation exists among the param-
eters, numerical difficulties arise. Generally speaking,
ill-conditioned means in the field of numerical anal-
ysis, that the condition number of a function with
respect to an argument measures how much the out-
put value of the function can change for a small
change in the input argument. This means for the MPI
that small changes of the calculated material param-
eters have a major influence on the output, here on
the stress strain behavior under four different exper-
iments.

To improve the bad character of inverse problems,
regularization strategies, like the Tikhonov regular-
ization, can be applied to mitigate the applied assump-
tions of the solution. This means, one can perform a
restricted optimization routine by setting e.g bounds
for the material parameters. For example, to guarantee
physical behavior, all material parameters with respect
to elasticity constants must satisfy p j ≥ 0. Further-
more, if the material parameters are getting more com-
plex e.g. regarding the ExtTube model, the parame-
ter β must satisfy 0 ≤ β ≤ 1 (Kaliske and Hein-
rich 1999). To illustrate the non-uniques of solution,

Fig. 9 3D-Plot of different material parameter combinations for
theMR2-model dependent on the RMSE under simulation of the
MI-tests

in Fig. 9 the MOP is illustrated. In this graph, differ-
ent material parameter combinations dependent on the
resulting obtained value of the objective functionS (see
Eq. 21), which is also called as the root mean squared
error (RMSE), are illustrated as data points. By fitting
the obtained data points by a surface fitting routine, a
valley of adequate solutions is obvious. The data points
are generated based on sensitivity analysis, where each
data point correspond to one numerical calculation,
where for all simulations, the RMSE was calculated.
The plotted surface is a 3D surface fit by a cosine func-
tion, which is illustrated for the purpose of clearness.
Here, the valley represents the non-uniqueness since
many material parameter combinations were able to
minimize the RMSE. The second possible explana-
tion of the poor correlation between the fitted material
parameters from the inverse method can be described
by the tested material, which can be understood as a
nano-silica filled rubber (Drass and Schneider 2016b).
Following Marco et al. (2011), who also tested silica
filled rubbers, the obtained results showed large dis-
crepancies between the inversely determined material
parameters and the conventionally obtained material
parameters, too. Therefore, Marco et al. (2011) stated
that, for filled-rubbers a scale-transition of material
parameters is not possible, which is attributed by the
content of fillers, their viscous behavior and stiffness-
differences between filler andmatrix. However, by test-
ing natural rubbers without any fillers the proposed
methodology was confirmed by various authors, where
the fitted material parameters on the micro-scale rep-
resents the macro-scale nearly perfect and vice versa
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(Saux et al. 2011; Marco et al. 2011; Chen et al.
2013).

6 Conclusion

The present paper introduced two methodologies to
determine hyperelastic material parameters based on
homogeneous and inhomogeneous experimental test
set-ups, which were presented in part I of this paper,
utilizing the so-called direct and inverse method. Since
hyperelastic materials, here i.e. thin structural silicone
adhesives, have a broad application in glass struc-
tures e.g. laminated connections, it is of major inter-
est to adequately characterize the material behavior
in an experimental, analytical and numerical sense.
The objective was to replace a set of time-consuming
and expensive homogeneous experiments by one inho-
mogeneous MI test to determine material parameters.
Therefore, uniaxial tension and compression, biaxial
tension as well as shear-pancake tests were conducted
and on this basis hyperelastic material parameters were
determined by regression analyses considering four
different constitutive equations, which is the conven-
tional or direct methodology. To do this, three stan-
dard hyperelastic constitutive equations were utilized
and compared with a new developed, phenomenolog-
ical hyperelastic material law. Following the results
of the conventional MPI, for NH material model and
the MR2 material model adequate results could be
obtained based on the identification of material param-
eters, where four experiments were fitted simultane-
ously. These results could be further improved regard-
ing a more sophisticated material model after Kaliske
and Heinrich (1999). As an indicator for the good-
ness of the results, an upper bound of 7.5% for the
relative error was utilized, which is a severe bound
since Ogden et al. (2004) proposed an upper bound
of 20%, when two experiments are fitted simultane-
ously. However, even with the severe bound of 7.5%

for the relative error, the ExtTube model provides con-
siderable results. Considering the novel constitutive
model for hyperelastic materials, the MD model, the
results could be further improved in comparison to the
ExtTube model. Hence, the MD model is excellently
suitable to represent the structural behavior of TSSA
under arbitrary and isochoric deformations. Regarding
the unconventionalmethodology of determining hyper-
elastic material parameters, the inverse Finite Element
Method was applied to simulate the microindentation
test with initially chosen material parameters. Both
procedures (direct and inverse method) of identifying
hyperelastic parameters were compared to each other
utilizing the second order Mooney-Rivlin material
model. The results of the inversemethod showedminor
correlation between the obtained material parameters
trying to represent the macroscopic structural behav-
ior of experiments like UT, UC, BT and SPC. On the
one hand, this can be explained by trying to solve
an inverse problem, where the existence, uniqueness
and stability of the solution is not given per se. On
the other hand, the experimental tests were conducted
on nano-silica filled rubbers, where, due to the con-
tent of fillers, viscous effects and stiffness-differences
between filler and matrix occur, whereby the scale-
transition of determined material parameters on the
micro-scale towards material parameters on the macro-
scale for finite strains is improbable. This fact was
proven by various authors, but it was also shown that
the proposed methodology is straightforward consid-
ering unfilled rubbers, where nearly perfect correlation
between thematerial of themicro- andmacro-scalewas
observed. Therefore, further investigations will focus
on regularization strategies to constrain the material
parameter space as well as accounting for more sophis-
ticated hyperelastic material laws accounting for com-
pressibility.
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Appendix-A

A data package of the presented experimental raw data
including the engineering stress strain responses for
UT, UC, BT, SPC experiments based on mean val-
ues can be granted upon e-mail request to the authors.
Table 2 gives an overview of the testing data and the
utilized fitting algorithm.

Table 2 Summary of experiments (see part I)

Experiment Number of tests Data points Fitting algorithm

(1) UT 10 1000 TRM-LAR

(2) UC 10 1000 TRM-LAR

(3) BT 10 1000 TRM-LAR

(4) SPC 10 1000 TRM-LAR

(5) MI 10 1000 FEMU

Appendix-B

In this appendix, the determined constitutive material
parameters for thin structural silicone will be provided
based on the applied twomethodologies - direct/inverse
method. The constitutive parameters are listed with
respect to the applied constitutive model (Table 3).

Table 3 Material parameters of MPI utilizing the direct and
inverse method

Material law MPI—direct method

NH C10 = 1.265

MR2 C10 = 1.175

C01 = 0.068

ExtTube Gc ≈ 0

Ge = 2.542

β ≈ −1.933

δ = 0.649

MD α = 0.849

β = −0.001

χ = 27.020

δ = −0.234

Material law MPI—inverse method

NH C10 = 1.700

MR2 C10 = 0.0078

C01 = 0.6314

ExtTube Gc = 1.682

Ge = 1.213

β ≈ 0

δ = 0.096

MD α = 0.890

β = −0.019

χ = 18.835

δ = −0.184
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Appendix-C

For the sake of completeness, in the following graphs
the comparison for the conventional and unconven-

tional MPI will be illustrated for the material models
NH, ExtTube and MD (see Fig. 10) in accordance to
Fig. 8.

Fig. 10 Illustration of the
fitting and simulation results
for the direct and inverse
method utilizing different
constitutive models: a–d
NH model; e–h ExtTube
model and i–l MD model

(a) (b)

(d)(c)

(e) (f)

(h)(g)
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Fig. 10 continued (i) (j)

(l)(k)
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