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Abstract When tempered glass breaks, it shatters
into relatively small pieces depending on the residual
stress state in the glass. This has been known for cen-
turies and is currently used in standards for classifying
whether a piece of glass is tempered or not. However,
the process of fragmentation is complex and only a few,
relatively simple, models have been suggested for pre-
dicting the fragment size. The full theoretical expla-
nation is still to be found and this work aims at pro-
viding another brick to the puzzle. The strain-energy
present in tempered glass is obviously contributing to
the fragmentation process and some authors e.g. Bar-
som (J Am Ceram Soc 51(2):75, 1968), Gulati (Glass
processing days, Tamglass Engineering Oy, Tampere,
1997), Warren (Fractography of glasses and ceramics
IV, Alfred University, Alfred, 2001) and Tandon and
Glass (Fracture mechanics of ceramics—active mate-
rials, nanoscalematerials, composites, glass and funda-
mentals, Springer, Houston, 2005) have proposedmod-
els for the fragments size based on an energy approach.
Often an estimate of the remaining strain energy in
the fragment is used; which leaves the questions: (a)
what parameters are important for the remaining strain
energy? (b) what is the magnitude of the remaining
strain energy? (c) is there a simple way to estimate the
remaining strain energy?
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The present paper applies a quasi-static finite element
model in order to answer these questions. In the present
paper an example on the deformation and the stress
redistribution in a fragment is given. Furthermore, a
parametric investigation on the strain energy remain-
ing in cylindrical- and prismatic fragments is given. It
is shown, that there exists a simple relation between
the thickness of the glass pane and the remaining strain
energy in the fragment. A simple method for estimat-
ing the remaining strain energy in a fragment of a given
shape and initial residual stress state is presented.

Keywords Tempered glass · Fragments ·
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1 Introduction

Glass is notoriously known for being a brittle material
with a tensile strength governed by flaws in the sur-
face. In tempered glass, the surface flaws are in com-
pression, leading to a significant increase in apparent
strength. This is one of the reasons why tempered glass
is a popular material for many applications in the field
of engineering. This surface compression is balanced
by a tensile stress in the center part of the glass, the
tensile zone, where only smaller and less critical flaws
occur. These flaws, if any, in the central part are fur-
thermore sealed from the surroundings and the strength
is therefore time-independent and high enough to carry
the relatively high permanent tensile stresses.
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46 J. H. Nielsen

If the glass, for some reason, suddenly is unable to
carry the tensile stresses in the center, the so-called
fragmentation process will start. The fragmentation
process is characteristic for tempered glass and leads
to a failure, where the glass is fragmentized into small
harmless pieces due, to release of the energy stored in
the glass. The tempered glass is therefore sometimes
referred to as safety glass.

This fragmentation process has fascinated people
since the beginning of the 17th century where the so-
called “prince ruperts drops”, “LacrymaeBatavicae” or
“Dutch tears” have been used for entertainment of the
upper class since they are extremely strong in the bulk
part. However, when the thin tail is broken, they fail
completely into “dust” (very small fragments). These
dropswere investigated and reported by several authors
e.g. Hooke (1665) in 1664 where he observed a rela-
tion between the cooling rate and the tendency to frag-
mentize. In 1877 a transcription of a French article is
appearing in the ScientificAmerican (1877) where the
increase in strength and the failure is explained by the
residual stresses.

The small fragments in the above mentioned drops
are caused by the high strain energy in the droplets,
originating from the extremely rapid cooling. In tem-
pered flat glass used today, the magnitude of the resid-
ual stresses is much lower and thereby the stored strain
energy, is lower. As a result of this, the fragments in
modern tempered flat glass are larger due to a lower
cooling rate required for tempering flat glass with-
out failure during the process. It seems therefore evi-
dent that a relation between the magnitude of resid-
ual stresses and the fragment size must exist. This has
been investigated and proved experimentally by sev-
eral authors (Akeyoshi and Kanai 1965; Barsom 1968;
Gulati 1997; Schiavonato et al. 2005; Mognato et al.
2011; Lee et al. 2012; Reich et al. 2013). Several mod-
els for relating the fragment size to the residual stress
state have been suggested in the litterature, e.g. (Bar-
som 1968; Gulati 1997; Shutov et al. 1998; Warren
2001) some of which incorporate the possibility of a
remaining strain energy in the fragment. Then the ques-
tion arises: what is then the strain energy left in a frag-
ment?

Most of the work trying to establish an analytical
model for this is considering the release of the so-
called tension strain energy defined as the part of the
strain energy coming from the tensile stresses alone.
This is first suggested by Barsom (1968) where it is

Fig. 1 Fragments, left float glass subjected to bending, right
tempered glass (fragmentation initiated by diamond drill)

said that: “One of the many complications encoun-
tered is that the part of the stored elastic energy due
to the compressive layers does not affect the fracture
propagation as does that part due to the tensile region.
This is verified by the fact that the fracture propagated
in the tensile region first and then in the compressive
layer over a period of time”. However, in more recent
work, (Nielsen et al. 2009; Dugnani et al. 2014) it
is shown experimentally and analytically that the sur-
face regions are cracking (almost) simultaneously with
the center part. It is therefore decided, in the present
work, to investigate the total strain energy in a frag-
ment.

When tempered glass fails, energy is obviously
released and the amount of energy available for driving
the fragmentation process is not only dependent on the
degree of tempering, but also on the method for initi-
ating the failure. Bending of ordinary float glass may
lead to a fracture pattern with small pieces due to the
energy built-up during bending before failure, however,
a closer look at the failure fragments will reveal a clear
difference, see Fig. 1.

The fragmentation process can be initiated without
practically adding energy to the glass. Some authors,
(Barsom 1968; Nielsen et al. 2009), have drilled with
diamond tipped drills into the tensile zone, in order
to minimize the energy added to the system. In these
cases, it is reasonable to assume, that only the stored
strain energy, from the residual stresses, are driving the
fragmentation. In general the amount of energy avail-
able for driving the fragmentation, U0, can be written
as:
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U0 = Uresidual stress +Uloading (1)

where it should be noted that in this study, it is
assumed that the glass is not loaded, leading to U0 =
Uresidual stress.

When the glass fragmentizes, energy is used for cre-
ating new surfaces (cracking), kinematics and defor-
mation (heat). The strain energy left in a fragment,U1,
must therefore be given as:

U1 = U0 −Usurface −Ukinetic −Uheat −Uother (2)

whereUother represents other energy consuming effects
such as sound. In this study, only the difference between
the final energy state and the initial energy state is con-
sidered, leaving the terms in U1 (except for U0) to be
unknown.

In order to use an energy criterion for setting up a
valid theory, predicting the fragmentation process in
tempered glass, it is necessary to have knowledge of
the energy left in the fragment after fragmentation. If
we consider a single fragment, there will obviously be
a reduction in the stresses when it is fragmentized and
thereby a reduction in strain energy. This paper inves-
tigated the change of stress state in a fragment which
is important in order to develop a theory capable of
explaining the relation between fragments size, thick-
ness and residual stress. In other words; the present
work aims at determining U1 in (2).

2 Deriving the initial strain energy, U0,
in a cylindrical fragment

It is common to assume that the equilibrated stress state,
σ , through the thickness of a (thin) glass plate is pla-
nar hydrostatic (equal in the plate plane and zero in the
transverse direction) and distributed parabolic over the
thickness. This assumption is reasonable as long as only
locations far from edges are considered. Figure 2 is
showing the residual stress distribution over the thick-
ness, far from an edge. The zero stress contour line,
separating the tensile zone and the compression zone is
also sketched. This parabolic stress distribution, σ(z),
can be written in terms of the surface stress, σs , as:

σ(z) = σs
1

2
(1 − 3ξ2), ξ = 2z

h
(3)

using symbols defined in Fig. 2. From the parabolic
stress distribution, which is in equilibrium and sym-

Fig. 2 Stress distribution far away from edges and a sketch
showing a contour line at zero stress

metric about the mid-plane, it is easy to derive the
well-known rule of thumb saying that the compressive
surface stress is twice the tensile stress in magnitude,
2σm = −σs, and that the zero stress contour line is
located at a depth of approximately 21 % of the thick-
ness, h.

The strain energy in a fragment before the glass actu-
ally fragmentizes can be calculated analytically. This
has been done by several authors for fragments with a
box shape (rectangular parallelepiped), in the follow-
ing it will be done for a cylindrical fragment which
is used as a reference value here. However, the strain
energy per surface area will obviously be the same as
found by other authors.

The strain energy for a fragment in tempered glass
(assumed linear elastic) before fragmentation, U0, can
be written as:

U0 = 1

2

∫
V

σi jεi j dV = 1

2

∫
V

(σrεr + σθεθ ) dV (4)

where V is the domain (volume) of the fragment con-
sidered, σi j and εi j are the stress- and strain tensor
respectively. The factor of 1

2 is due to the assumption of
the linear elastic material behaviour. The second equal
sign due to the before mentioned assumption of a pla-
nar hydrostatic stress state where the only non-zero
stresses are σ = σr = σθ �= 0. Applying Hooke’s law
in cylindrical coordinates, we obtain:

U0 = 1 − ν

E

∫
V

σ 2 dV (5)

Inserting the residual stress field from (3) and inte-
grating over the cylinder we find:

U0 = 1 − ν

E

∫ z= h
2

z=− h
2

∫ r=R

r=0

∫ θ=2π

θ=0
σ 2r dθ dr dz

= hπR2(1 − ν)

5E
σ 2
s (6)

123



48 J. H. Nielsen

(a) (b) (c)

Fig. 3 Axisymmetric model of the cylindrical fragment in three
steps. The z-axis is used as the rotational axis. a Initial stress free
step, b residual stress state is applied by means of a temperature

distribution, c boundary condition on the free vertical edge is
removed. Due to superposition, the residual stress state can be
applied directly on c

which is the initially stored strain energy in a cylindri-
cal fragment of radius, R, height, h, and with an initial
residual surface stress of σs .

Dividing with the base area for the cylinder we
obtain the strain energy per unit surface area of any
given base shape of the fragment:

U0 = h(1 − ν)

5E
σ 2
s (7)

Which is in line with what is found in the literature,
(Barsom 1968; Gulati 1997; Warren 2001; Reich et al.
2012).

3 The remaining strain energy in a fragment: U1

This section investigates the remaining energy in a frag-
ment after the fragmentation, U1. This investigation is
carried out by means of a finite element model of the
problem. The (quasi)static response is searched for and
an implicit code is therefore used in order to minimize
computational time.

In general the initial residual stress state is applied
by means of a temperature variation over the height of
the fragment, T (z), which is related to the stress distri-
bution in the following way:

σ(z) = αE

1 − ν
	T (z) (8)

where α, E and ν are the thermal expansion, Youngs
modulus and Poisson’s ratio respectively. 	T (z) rep-
resents the temperature variation, which is a function
of the coordinate z. Applying a temperature distribu-
tion, T (z), having the same shape as the equilibrated
stress state given by (3) will allow us to represent the
unbroken glass pane by supporting the vertical bound-
ary from any in-plane movements as shown in Fig. 3b.
Next step; the boundary conditions on the vertical edge
are removed in order to simulate the free edge of the
fragment, see Fig. 3c. Due to the linear nature of the
problem (small deformations and linear elastic mate-
rial behaviour) it is sufficient just to apply the stress
state described by (8) on a model with the boundary
conditions shown in Fig. 3c. This procedure is used in
the following.

3.1 Cylindrical fragment

For the cylindrical fragment, the model is created in the
finite element program ABAQUS v. 6.14-2 using
CAX8 elements which are eight node axi-symmetric
displacement elements. Due to the symmetric nature
of the problem, the rθ -plane is utilized for symmetry
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Fig. 4 Axisymmetric model of the cylindrical fragment

as indicated in Fig. 4.A convergence analysis have been
performed for the calculations and relatively few ele-
ments are needed in order to capture the strain energy,
however, it is chosen for the axisymmetric model to
apply smallest element size according to either having
30 elements along the radius or 50 elements over half
the height. The elements are always kept strictly rectan-
gular and with a side ratio as close as possible to one.

Before fragmentation the stress state is planar hydro-
static, however, when the fragment is formed this
changes and the stress state in the fragment becomes
fully three dimensional. In case of the cylindrical frag-
ment, the four different axi-symmetric stresses are
shown in Fig. 5, and it is seen that stresses in the thick-
ness direction becomes significant. Actually, the largest
principal stress for this fragment is located in the center
with a transverse direction (σz). It can also be seen that
the shear stress becomes significant and that the radial
and tangential stresses are very similar in magnitude
and distribution, but not equal.

Apart from showing the stresses, Fig. 5 is also illus-
trating the deformations in a fragment, however, it
should be noticed that the deformations are magnified
100 times and themeasures given are only valid for this
particular fragment size and initial stress distribution.

4 Results and discussion

The amount of strain energy remaining in a fragment
with a high stress state is obviously higher than in a

fragment with a lower stress state. If we consider the
strain energy left in a fragment relative to the strain
energy in the same area before fragmentation, URR, as
given in (9), it will be independent on the initial stress
state due to the linear nature of the problem.

For that reason, the results are presented by the rel-
ative remaining strain energy, URR:

URR = U1

U0
(9)

which must be in the interval: 0 < URR < 1.

4.1 Variation with the fragment size

The remaining strain energy in a fragment, U1, is
dependent on the size of the fragment and so is theURR

as shown in Fig. 6 where the variation with the frag-
ment surface area1, A, and the thickness, h, is shown.
From the figure it is seen that URR is approaching 1
as the fragment size is increased which is as expected.
It is also seen, that in a fragment from a thick plate
the relative remaining strain energy is less than in a
thin fragment which is expected due to relatively more
slender geometry.

From Fig. 6 it is seen that curves for the different
thicknesses have the same shape. If the abscissa is nor-
malized by h2 it turns out that all the curves can be
brought to coincide as shown in Fig. 7.

From Fig. 7 it is seen thatURR is only dependent on
the ratio of A/h2. In the following the measure A/h2

is therefore used.

4.2 Stresses in the cylindrical fragment

Like the strain energy, the stress state is dependent on
the measure A/h2 and the magnitude is scaled with
the initial residual stress state. In Figs. 8, 9, 10 and
11 the four different stress components are shown for
five different values of A/h2 representing the maxi-
mum fragment size for different thicknesses according
to Eurocode (EN12150 2004), see Table 1. Only the
symmetric part of the fragment is given in the figures.
The element mesh is not shown in the figures in order
to have a clear plot, however, the mesh density is as
described earlier.

1 The fragment surface area is the area of the base shape of the
fragment (fragment volume divided by thickness).
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Fig. 5 Stress state in a cylindrical fragment from, total height is
10 mm, and the diameter is also 10 mm. The initial stress state is
parabolic with a surface stress of −100 MPa as shown in Fig. 3.

Note that the undeformed fragment is shown behind the contour
plot and the displacements are given in selected points

The grey area in the central part of the large frag-
ment in Fig. 8, indicates that the tangential stress, σθ , is
slightly higher than 50 MPa which is an increase com-
pared to the initial stress. The same is observed for the
radial stresses, σr , in Fig. 9.

For both tangential and radial stresses a decreases
with the fragment size, as expected is seen, see Figs. 8
and 9. The small fragments, corresponding to the max-
imum size for fully tempered 15 mm glass (A/h2 =
0.37), are nearly stress free as also indicated in Table 1
where it is seen that only about 5 % of the initial strain
energy remains in the fragment.

The tangential stresses are generally higher than the
radial due to the cylindrical shape of the fragment. For
the tangential stresses, it is seen that the variation is
nearly undisturbed at a distance of approximately 3/4h,

from the edge. For the radial stresses the same distance
is approximately equal to h.

For the longitudinal stresses or through-thickness
stress, σz , of the fragment, it should be remembered
that this component initially is zero; however, after
fragmentation relatively high longitudinal stresses are
found. Looking at Fig. 10, it is seen that the maximum
stress is found in a medium size fragment whereas the
minimum stress is found in the largest fragment. This
indicates that there is a fragment size atwhich themaxi-
mum longitudinal stress ismaximum. FromFig. 12 this
maximum is seen to be for A/h2 = 0.94.

Again Saint-Venant’s principle hold since the longi-
tudinal stress state is not affected by the free edge more
than one to two heights from the edge.
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Fig. 6 Showing the relative remaining strain energy in a cylin-
drical fragment as a function of the fragment surface area, A, for
different thicknesses, h

Fig. 7 Showing the relative remaining strain energy in a cylin-
drical fragment as a function of the fragment size given by A/h2.
Note that all curves are coinciding

For the completeness, the last stress component,
namely the shear stress, is shown in Fig. 11. Again
it is seen that the maximum shear stress is not found
in the largest nor the smallest fragment and the stress
state is only affected at a distance of one to two heights
from the free edge.

It is interesting to notice in Fig. 12 that in general
the extreme stress values are decreasing with the frag-
ment size, except for the through-thickness stress, σz ,
which have amaximumvalue of approximately 40MPa
for A/h2 = 0.94. It should be noted that max(σr ) ≈
max(σθ ), min(σr ) ≈ min(σθ ) and min(σr z) = 0.

4.3 Polygon fragment shape

The cylindrically shaped fragment is obviously a sim-
plified geometry used for modelling, but how realis-
tic is it? It is clear that the shape of the fragments
never will be perfectly cylindrical; however, it is a com-
mon assumption to use prisms with a regular polygo-
nal shaped based for the fragments even thou this is
also a simplified approach. In the literature the rectan-
gular prisms and the hexagonal prisms are the ones
most often assumed. Experimentally, we see quite a
variety of shapes, so investigating different shapes will
be of interest. In this study, different regular polygo-
nal shapes as shown in Fig. 13 will be investigated for
varying size.

The FE models for the polygonal prisms are very
similar to what is described for the axi-symmetric
model; however, the used elements are so-calledwedge
elements with mid-side nodes (C3D15). For the 3D
models the high degree of symmetry is used which
means that only 1

2n of the base polygon is modelled
and only half the height, so e.g. for the hexagon only
1
24 of the geometry is modelled. Convergence in the
results are easily found. As an example, a model of a
fragment with four sides (n = 4) and a A/h2 = 1.05
is modelled with both 3164 (standard configuration)
elements and 420 elements and it was found that the
difference in URR was about 0.16 %.

From Fig. 14 it is seen that for fragments with n > 5
the assumption of a cylindrical fragment is reasonable.
In order to investigate this further, a plot showing the
deviation of the relative remaining strain energy from a
cylindrical fragment (having the same base area), as a
function of the number of sides in the regular polygon
forming the base of the fragment is given in Fig. 15.
From this figure it is seen, as expected, that the triangu-
lar shape is the worst. It is also seen that this tendency
seem to diminish for larger fragments. From the Figure
it is also seen that the large fragments approaches the
n = ∞ value from below whereas the small fragments
approaches from above. This could be explained by the
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Fig. 8 Tangential stress state (σθ ) in cylindrical fragments of varying size. Only half the height, h, and half the diameter is shown

Fig. 9 Radial stress state (σr ) in cylindrical fragments of varying size. Only half the height, h, and half the diameter is shown

complex redistribution of stresses in the fragments as
showed in Sect. 4.2.

Considering the minimum particle counts on a
50mm×50mmsquare, N50, given inEN12150 (2004),
realistic maximum values for A/h2 in fully tempered
glass for different thicknesses are given in Table 1.

A reasonable range covering also smaller fragments
could therefore be 0.1 < A/h2 < 20.

Relevant parts of the plot given in Fig. 14 have been
tabulated in Table 2.

Due to the almost straight line in the log-log plot in
Fig. 14 for lowvalues of A/h2 it is recommended to use
a logarithmic interpolation inTable 2. If the value, y(x),
between two points (x1, y1) and (x2, y2) in Table 2

is wanted. the following interpolation formula can be
used:

y(x) = y1

(
x

x1

)b

, where b = log y2 − log y1
log x2 − log x1

(10)

5 Example

The residual stress in a 19mm thick specimen made
of tempered glass is measured to be 130MPa. A frag-
mentation test results in an average surface area of each
fragment of A = 70mm2. Assuming square fragments
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Fig. 10 Longitudinal stress state (σz) in cylindrical fragments of varying size. Only half the height, h, and half the diameter is
shown

Fig. 11 Shear stress state (σr z) in cylindrical fragments of varying size. Only half the height, h, and half the diameter is shown

(n = 4) the initial strain energy,U0, and the remaining
strain energy, U1, can be estimated.

The initial strain energy is found from (7) multiply-
ing with the area, A:

U0 = 70 × 10−6 19× 10−3(1−0.23)
5·70× 109

(130 × 106)2 J
= 49.45 × 10−3 J

(11)

the size of the fragment is: A/h2 = 0.194 which
can be used for interpolating in Table 2 according to
(10):

b = log 0.032 − log 0.002

log 0.25 − log 0.05
= 1.723 (12)

Now the relative remaining strain energy for A/h2 =
0.194 can be found:

URR = 0.002

(
0.194

0.05

)1.723

= 0.021 (13)

From this the remaining strain energy, U1, can be
calculated by (9):

U1 = 0.021 · 49.45 × 10−3J = 1.022 × 10−3J (14)
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Table 1 Realistic maximum values for A/h2 derived from
Eurocode (EN12150 2004)

h N50 A A/h2 URR

(mm) (−) (mm2) (−) (−)

3 15 166.7 18.52 0.807

4 40 62.5 3.91 0.569

5 40 62.5 2.50 0.461

6 40 62.5 1.74 0.361

8 40 62.5 0.98 0.206

10 40 62.5 0.63 0.115

12 40 62.5 0.43 0.064

15 30 83.3 0.37 0.050

19 30 83.3 0.23 0.022

Fig. 12 The maximum and minimum remaining stress in a frag-
ment as a function of the size. The initally stress state was −100
MPa surface compression (σs ) and 50 MPa tensile center stress
(σm ). Note that the minimum stresses are multiplied by −1

Fig. 13 Parametric study, the range of regular polygonal shapes
investigated in addition to the cylindrical fragment

Fig. 14 Relative remaining strain energy as a function of the
fragment sizes for different (n)-regular polygon shaped frag-
ments. Note that Table 2 provides a tabulated form of the
data

Fig. 15 Deviation from a cylindrical fragment keeping a con-
stant surface area, A, but with varying base geometry

This result is deviating with 1.2% from a FEM cal-
culation; however, if linear interpolation for finding
URR had been used, a 15% deviation would have been
found.
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Table 2 Tabular data for the relative remaining strain energy,
URR, in fragments of different polygonal shapes. For n > 5 the
column for n = ∞ will provide reasonable results with a largest
relative deviation of less than 4% in the table

A/h2 n = 3 n = 4 n = 5 n = ∞
0.05 0.003 0.002 0.001 0.001

0.25 0.052 0.032 0.028 0.026

0.45 0.121 0.083 0.074 0.069

0.65 0.186 0.141 0.129 0.121

0.85 0.241 0.198 0.184 0.173

1.05 0.287 0.250 0.235 0.223

1.25 0.326 0.295 0.281 0.269

1.45 0.358 0.335 0.323 0.310

1.65 0.386 0.370 0.359 0.346

1.85 0.411 0.401 0.391 0.379

2.05 0.432 0.427 0.419 0.407

2.25 0.452 0.451 0.444 0.433

2.45 0.469 0.472 0.466 0.456

2.65 0.485 0.490 0.486 0.476

2.85 0.499 0.507 0.504 0.495

3.05 0.512 0.522 0.520 0.512

3.25 0.524 0.536 0.535 0.527

3.45 0.535 0.549 0.548 0.541

3.65 0.546 0.560 0.560 0.554

3.85 0.556 0.571 0.572 0.566

4.05 0.565 0.581 0.582 0.577

5.65 0.621 0.642 0.645 0.643

7.25 0.660 0.681 0.686 0.686

8.85 0.688 0.710 0.715 0.717

10.45 0.711 0.732 0.738 0.740

12.05 0.729 0.750 0.755 0.759

13.65 0.744 0.764 0.770 0.774

15.25 0.756 0.776 0.782 0.786

16.85 0.767 0.787 0.793 0.797

18.45 0.777 0.796 0.802 0.806

6 Conclusion

The shattering, or fragmentation of tempered glass is
an empirically well-known phenomenon which is used
in daily engineering when e.g. characterizing tempered
glass. This paper contributes to a further development
of models capable to predict, on theoretic basis, the
relation between residual stresses and fragment size.
It is shown that parameters such as fragment size and
initial residual stresses can be handled simply by scal-

ing the results. Looking at the expression for the strain
energy before failure it is seen that these parameters are
included in the remaining strain energy in a similarway.
The geometry of the fragment could not be accounted
for in a simple manner, however, a table covering poly-
gon shapes have been provided.

In the literature it is a common assumption that a
given part of the strain energy originating from tensile
stresses are contributing to the fragmentation. This is
also discussed and it is suggested, on the basis of more
recent work, that using the full strain energy might be
more reasonable.

From the investigation on the stress state in the cylin-
drical fragment it is found that:

1. The stress state changes from initially being planar
hydrostatic (σz = σr z = 0) in the tempered glass
to becoming fully tri-axial in the fragment.

2. The through-thickness stress component, σz , and
the shear stress, σr z which initially are zero can
be of a magnitude up to approximately 80 and 40
% of the initial residual tensile center stress, σm ,
respectively.

3. The maximum value for the through-thickness
stress,σz , is found in a fragmentwith A/h2 = 0.94.

4. Saint-Venant’s principle holds and fragments hav-
ing a radius of slightly above the thickness, h, or
higherwill have a central stress statewhich is nearly
identical to the initial stress state.
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