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Abstract Bearings vibration in gas turbines is considered as
an injurious event, which results in incidents such as emer-
gency shutdown or damages in turbine blades and imposes
expensive costs to the system. Thus, measuring and analyz-
ing of vibration rate in gas turbines is very important and
knowing about its operational conditions and prediction of
this phenomenon can help a lot in reducing vibration, avoid-
ing damage to the blades and eventually financial savings. In
this paper, we are modelling the vibration rate of a real dou-
ble shaft 25MW gas turbine, located in Iran, by making use
of a hybrid intelligent model based onmulti-layer perceptron
neural network and cuckoo optimization algorithm; so, the
model in this paper is abbreviated asMLP-COA. It should be
noted that this work is an absolutely novel work and the idea
is implemented in a real turbine for first time. We have used
a real dataset with 161 samples which are collected during a
year from a gas turbine in a gas pressure booster station. Fur-
thermore, to obtain the effect of each input parameter on the
vibration rate, we have applied sensitivity analysis using the
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cosine amplitude technique. Evaluation of predicted vibra-
tion rates was performed and prove satisfactory efficiency of
this model than other predictive models such as radial basis
function and multi-layer perceptron. The model can also be
used for prediction of online vibration rate without any con-
straint in selection of data points in training phase.

Keywords Industrial intelligence · Gas turbine ·
Neural networks · Cuckoo optimization algorithm ·
Intelligent system · Prediction · Vibration rate

1 Introduction

Nowadays, it is very often to use gas and steam turbines in
different branches of industry and jetmotors to generate elec-
tricity or load booster. One of the most important threats to
such an equipment is vibration which results huge financial
loses. Damage of turbine blades and emergency shutdown
(ESD) of the unit are another of the most serious results
of such a phenomenon. In general, turbines are designed
to work in a static and risk-free place. Many researchers
believe turbine vibrations should be continuously monitored
to make sure they are working correctly; consequently, a
proper method should be chosen based on different damages.
Basically, there are four levels of observing and monitoring
turbine vibration. At the first level, measuring is done man-
ually in the case it is needed (old turbines). At the second
level, vibration is continuously observed using the installed
sensors on the related places. At this level, when the con-
trol room operators observe emergency state, they should
trip the unit if it is needed. The third level is similar to the
second level, while a module is automatically trips the unit.
Finally, in the fourth level by collecting various data, predict-
ing and analyzing turbine vibration spectrum, the unit will
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tripwhenever it is needed.Gas turbines are considered as sen-
sitive and spare-less equipment. This important equipment
should be equipped with at least the second level monitor-
ing system. Recently, some accelerometers are proposed by
producers of vibration transducers with 4–20mA current as
output which is useful for control system. These transducers
could be installed on bearings with their output connected
to the distributed control system (DCS) so that the vibra-
tion could be shown permanently. Among these methods,
employing vibration analysis is known as a reliable method,
in which the vibration sensors output are received by experts
in the control room at a far place from powerhouse. Experts
analyze these data to measure turbine blades damage and
estimate their lifetime.

Generally, the main factors of vibration in turbines are
consists of mass unbalancing, non-coaxially, over-looseness
of bearing, unstable operation environment and variable
inside turbine. To recognize the reason of a turbine vibra-
tion, forth level of vibration analysis is needed. Powerhouses
and stations personnel could prevent inopportune failure
of turbine by monitoring turbine vibration continuously. In
addition, vibration prediction could be a good guidance and
appropriate troubleshooter to recognize, control or remove
vibration reason, before serious problems happen.

Usually, the vibration is caused by very fast spiral move-
ment of rotor which continue from several seconds to several
minutes, resulting severe damages such as shaft fracture and
turbine blades cracking [1]. Based on researches that are
done, 42% of gas turbine damages is caused by the dam-
age of turbine blades, which among all vibration-induced
damage modes has the maximum damage rate [2]. Since tur-
bine blades work in an unstable operating conditions within
the enclosure of the turbine such as heterogeneous distrib-
ution of pressure, different conditions of bearings oil level
and their vibrations, knowing about operational conditions
and predicting unseen conditions can help a lot in reduc-
ing vibration, avoiding damage to the blades and eventually
financial savings. In general, lifetime of a turbine and its
equipment depends on forces applied to it such as centrifugal
and dynamic forces [3]. It should be noted that the results of
vibration analysis are used tomakeCampbell diagram,which
depicts natural frequency of turbine blades that are derived
from rotor speed (RPM) [4].Analysis of vibration and natural
frequency of blades along with analyzing their derived stress
is done in a laboratory mode using a finite element software
called analysis system (ANSYS) [5–8]. Researchers in recent
researches on modelling gas and steam turbines blades life-
time use statistical and analytical methods [9–16]. As stated
in [17] practical parameters such as vibration rate of gas tur-
bine, bearings temperature, oil level, etc. are used to predict
gas turbine damages, and using data mining techniques such
as preprocessing data, sampling, feature selection and dimen-
sion reduction is very common to predict power and speed

of wind and optimizing wind turbines efficiency [18,19].
As a double shaft turbine is equipped with four bearings
and vibration of each bearing results vibration in a specific
part of turbine, we have to use the most important bearings
for analysis. The bearings are of tilting pad design with a
directed lubrication system. During operation, oil is continu-
ously supplied to the bearing. Each bearing is equipped with
temperature and vibration sensors which are continuously
monitoring the temperature and vibration rates. As analyzed
in [20] and a double shaft turbine that has been depicted in
Fig. 1, considering vertical and horizontal load amount that a
bearing has to bear, the bearing #2 is the most important one;
also damage has been known to be resulted from the vibration
of this bearing by observing the cracked shaft and analyzing
all bearings vibration. Furthermore, it has been emphasized
on the effect of some factors on vibration such as tank oil
level. The work described in [21] is able to predict six dif-
ferent type of common damage in steam turbines, by making
use of 8 frequency domain of signals that are resulted from
vibration and applying support vector machine technique.
Similarly, in [22] one type of damage is recognized using
vibration signals and optimized support vector regression
technique. In a data-driven model [23] which made use of
combination of particle swarm optimization algorithm and
prediction techniques such as artificial neural network and
support vector regression, is able to predict the amount of
wind turbine vibration; it is aim at controlling wind turbine,
emphasizing on maximizing power of electricity generation
and reducing vibration. In the most recent research described
in [24], a damage detector filter which is based onmulti-layer
perceptron neural network is used to discover damage in gas
turbine motors (JET motor).

To overcome the problems of empirical methods such as
high computations and their complexity on calculation of
growth rate of turbines vibration, artificial neural network
technique is recommended. Using this technique, it is possi-
ble to solve problems in which there is a very large number of
parameters and related values that correlating between them
is not feasible. The topology of an artificial neural network
is determined by number of layers, nodes in each layer and
the nature of activation functions. Taking into account that
optimizing an artificial neural network is a very important
step in making a predictor model with high accuracy [25],
we have used cuckoo optimization algorithm to optimize our
network. The rest of this paper is organized as follows. “The-
oretical routines” section describe the multi-layer perceptron
neural network structure in detail, aswell as cuckoooptimiza-
tion algorithm. “The proposedmethod” section examines the
hybrid model proposed in this paper. Then, “Results and dis-
cussion” section compares the obtained results fromprevious
section with other predictive methods. Finally, “Conclusion”
section summarizes and concludes the present and future
works.
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Fig. 1 A real double shaft
25MW gas turbine along with
its equipments (Iran—Gas
booster station)

2 Theoretical Routines

2.1 Artificial Neural Networks

ANNis used as an efficient tool to simulate the human’s brain.
Nowadays, it has a wide range of applications in science,
engineering [26,27]. Also, it has been used widely in gas
and oil industries [28,29].

Mathematically speaking, nervous systems of human
could be assumed as a large number of layered elements.
Multi-layer perceptron is one of the most common used feed
forward ANNs. Hidden layers of a MLP are usually fully
connected to each other. Figure 2 depicts a typical schematic
of this architecture. This figure shows three layers of neu-
rons, i.e. input layer, hidden layers and output layer. Also,
Fig. 3 shows a simple neuron. In this figure, p stands for the
number of inputs, w the weight, b the bias which employs
the result as the argument for a singular valued function, f the
transfer function and a the output neurons. Common transfer
functions are the log-sigmoid, hyperbolic tangent sigmoid,
Gauss–Hermite and the linear functions. Among this, the sig-
moidal andGauss–Hermite is themost widely considered for
the non-linearity parameters.

The internal weights of the network are adjusted in the
course of an iterative process termed training and the algo-

Fig. 2 Four layers MLP neural network example with input, hidden
and output layers

Fig. 3 Structure of a simple neuron

rithm used for this purpose so-called training algorithm.
The back-propagation algorithm is the most common form
of learning, utilized in ANN. Indeed, to evaluate the per-
formance of the ANN, MSE could be adopted. Standard
back-propagation algorithm for adjusting weights and biases
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Fig. 4 Procedure of neural network learning

uses the following equations (Fig. 4):

w(k +1) = w(k) + 2μe(k)pT (k) (1)

b(k +1) = b(k) + 2μe(k) (2)

Where w, b, e, p and µ represent weight matrix, bias matrix,
error, input matrix and learning rate, respectively. The com-
monly employed error function is the MSE as defined by:

MSE = 1

2

n∑

k=1

m∑

j=1

[
Pj (k) − Tj (k)

]2 (3)

Wherem is the number of outputs andn is the number of train-
ing samples. Pj(k) and Tj(k) are the predicted output, and the
actual output, respectively.Generally,minimizing theMSE is
the priority of training anANN.BP is a gradient descent algo-
rithm on the error space which most willingly gets deceive
into a local optimum making it entirely dependent on ini-
tial settings (weights). To overcome this obstacle, different
optimization algorithm such as genetic algorithm (GA), par-
ticle swarm optimization (PSO) and ant colony optimization
(ACO) can be implemented due to global searching ability of
them. Cuckoo optimization algorithm (COA) has been pro-
posed as a new evolutionary algorithm by Rajabioun [30]. In
his experiments, COA has shown effective results in compar-
isonwith some other evolutionary algorithms such asGAand
PSO. Also, COA has been freshly used in many applications
[31,32]. So, in this paper we preferred to use COA instead of
other evolutionary algorithms to find the best weight vectors.
Minimizing of the MSE is the main end of the COA which
implemented in this study.

2.2 Cuckoo Optimization Algorithm

Rajabioun [30] inspired from behavior of a group of birds
and proposed a new evolutionary algorithm as “CuckooOpti-
mization Algorithm”. Figure 5 shows a simplified flowchart
of the COA algorithm.

In order to solve an optimization problem, it’s necessary
that the values of problem variables be formed as an array.
In GA and PSO terminologies this array is called “Chromo-
some” and “Particle Position”, respectively. But here in COA
it is called “habitat”. In an N-dimensional optimization prob-

Fig. 5 The flowchart of COA

lem, a habitat is an array of 1×N, representing current living
position of cuckoo. This array is defined as follows:

habitat = [x1, x2, x3, . . . , xN ] (4)

Each of the variable values (x1, x2, x3, . . . , xN ) is floating
point number. The profit of a habitat is obtained by evaluation
of profit function f p at a habitat of (x1, x2, x3, . . . , xN ). So

prof i t = f p (habitat) = f p (x1, x2, x3, . . . , xN ) (5)

As it is seen COA is an algorithm that maximizes a profit
function. To use COA in cost minimization problems, one
can easily maximize the following profit function:

prof i t= − cost (habitat) = − fc(x1, x2, x3, . . . , xN ) (6)

To start the optimization algorithm, a candidate habitat
matrix of size Npopulation × Nvaribales is generated. Then
some randomly produced number of eggs is supposed for
each of these initial cuckoo habitats. In nature, each cuckoo
lays from 5 to 20 eggs. These values are used as the upper
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Fig. 6 Random egg laying in ELR, central red circle is the initial habi-
tat of the cuckoo with five eggs; other small circles are the eggs’ new
nest

and lower limits of egg dedication to each cuckoo at differ-
ent iterations. Another habit of real cuckoos is that they lay
eggs within a maximum distance from their habitat. From
now on, this maximum range will be called “Egg Laying
Radius (ELR)”. In an optimization problem with upper limit
of varhigh and lower limit of varlow for variables, each
cuckoo has an egg laying radius (ELR) which is proportional
to the total number of eggs, number of current cuckoo’s eggs
and also variable limits of varhigh and varlow. So ELR is
defined as:

ELR = α × number of current cuckoo′s eggs
total number of eggs

× (
varhigh − varlow

)
(7)

whereα is an integer, supposed to handle themaximumvalue
of ELR.

Each cuckoo starts laying eggs randomly in some other
host birds’ nests within her ELR. Figure 6 gives a clear view
of this concept.

When moving toward goal point, the cuckoos do not fly
all the way to the destination habitat. They only fly a part of
the way and also have a deviation. This movement is clearly
shown in Fig. 7. As it is seen in this figure, each cuckoo only
flies λ% of all distance toward goal habitat and also has a
deviation of ϕ radians. These two parameters, λ and ϕ, help
cuckoos search much more positions in all environment. For
each cuckoo, λ and ϕ are defined as follows:

Fig. 7 Immigration of a sample cuckoo toward goal habitat

Fig. 8 Pseudo-code for Cuckoo optimization algorithm

λ ∼ U (0, 1) (8)

ϕ ∼ U (−ω,ω) (9)

where λ ∼ U (0, 1) means that λ is a random number
(uniformly distributed) between 0 and 1. ω is a parame-
ter that constrains the deviation from goal habitat. An ω

of π/6 (rad) seems to be enough for good convergence of
the cuckoo population to global maximum profit. When all
cuckoos immigrated toward goal point and new habitats were
specified, each mature cuckoo is given some eggs. Then con-
sidering the number of eggs dedicated to each bird, an ELR
is calculated for each cuckoo. Afterward new egg laying
process restarts.

Themain steps of COAare presented in Fig. 8 as a pseudo-
code.

3 The Proposed Method

In this research, a three layer MLP neural network was
implemented to construct a predictive model to estimate
the vibration rate in a 25MW gas turbine. To optimize the
connection weights of the neural network, COA was imple-
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mented. The connection weights of the neural network were
chosen as variables of an optimization problem.As discussed
earlier, in COA each individual is called “habitat”. Each indi-
vidual has a profitability value which is defined as ‘profit’ in
COA. As we want to make more accurate predictions, we
have to find individuals which have less MSE when they are
used as weights in the MLP. So, we have used inversed MSE
for our profit function (i.e. the less MSE of our MLP means
the more profit of that individual which is used as weights in
the MLP).

Our profit function is as follows:

prof i t = MSE =
∑n

i=1
(pi − ri )

2 /n (10)

Where n is the number of training samples, pi represents
our prediction of vibration rate with the ith sample as input,
and ri stands for the actual vibration rate. Based on consid-
ered profit function, the best ANN architecture was: 5–10–1
(5 input parameters, 10 hidden neurons, 1 output neuron).
As MLP is a fully connected network, we have 60 connec-
tions in our network ((layer1 × layer2) + (layer2 × layer3)
= 5×10 + 10×1= 60). Each connection has a weight value,
which multiplies the input and transfer it to the next neuron.
A habitat is an array of floating point numbers. Thus, we can
use weight vectors directly as our habitats. As we need to
find 60 optimum weights for our MLP, the habitats look like
the following:

w1 ∈ [−2, 2] w2 ∈ [−2, 2] . . . w59 ∈ [−2, 2] w60 ∈ [−2, 2]

It should be mentioned that in this network each weight
was firstly set in the range of [−2, 2] (initial population
is made completely with random values from −2 to 2 for
weights). Also, bias value in all stages was considered con-
stant value 1. Furthermore, the transfer functions i.e. sigmoid
and linear functions were assigned in hidden and output lay-
ers, respectively. These functions are shown below:

LogSig (x) = 1/ (1 + EX P (−x)) (11)

Lin (x) = x (12)

Also, as orthogonal basis functions of the feed-forward
neural network, Gauss–Hermite activation functions are con-
sidered. The function is shown below [33]:

ψ (x) = [2k� 1
2 k!]Hk(x)e

−x2
2 , k = 0, 1, 2, ... (13)

where Hk(x) are the Hermite orthogonal functions.
As all evolutionary algorithms,COAhas different parame-

ters which needs to be tuned to work best with our situation.
We have set all these parameters as follows.

• Initial Cuckoos count = 20

The population size in the beginning.

• Population size = 30

The population size during each generation.

• Cluster count = 1

Number of clusters that should bemade usingK-Means algo-
rithm.

• Cuckoos minimum eggs = 7

Minimum eggs that each cuckoo could lay.

• Cuckoos maximum eggs = 15

Maximum eggs that each cuckoo could lay.

• Migration coefficient = 0.7

The coefficient which is used in migration formula.

• Egg laying radius = 0.8

Maximum distance that all eggs should be laid within.
These values are obtained by performing different exper-

iments, even though COA is almost stable against slight
variation in these parameters. In each generation, we have
kept the top 30 suitable individuals as the population of the
next generation. Additionally, the modeling and predicting
were progressed by using the 161 samples. There are dif-
ferent parameters which influence vibration on the bearing
#2. In this paper, we have chosen the most important ones
under the supervision of experts, such as rotor speed, bearing
#2 differential pressure, oil tank temperature, oil tank pres-
sure, and fuel consumption inside the turbine enclosure. The
flowchart of proposed method is depicted in Fig. 9.

3.1 Dataset and Data Normalization

In this paper, a total number of 161 data samples were accu-
mulated during one year from a 25MW double shaft gas
turbine andobtained fromsupervisory control anddata acqui-
sition system located in a gas pressure booster station, Iran.
Fig. 10 depicts position of all materials that are considered
in this research and have obtained from Supervisory Control
and Data Acquisition System (SCADA)-embedded Human-
Machine Interface (HMI). Indeed, in order to maintain the
statistical consistency, the dataset was divided into training
and testing parts. It should be mentioned that to establish a
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Fig. 9 The proposed method

comparable analysis the same datasets were used for the pro-
posed model and other predictive models. Data samples for
training and testing were adopted randomly. So, 129 and 32
data sampleswere used in training and testing phases, respec-
tively. Table 1 shows 11 samples out of 161 samples from the
dataset. The dataset contains all turbine related parameters
with vibration rate in a real world turbine. Also, Table 2
shows the domain of variation for each input and output
parameters.

In the process of MLP-COA, raw data may not be suitable
to be utilized, when values of input and output parameters
are extremely low or high. Thus, raw data need to be pre-
processed and scaled. One approach to scale the data is by
using the following formula (min–max method) which nor-
malizes the data to values between 0 and 1 [34,35]:

X ′
i = Xi − Xmin/Xmax − Xmin (14)

Where Xi is original value of parameter, X′
i is normalized

value of Xi, Xmin and Xmax are minimum and maximum
values of parameter that is related to Xi.

3.2 Evaluation Criteria

To assess performance of designed models to predict vibra-
tion rate, two most famous statistical indicators such root
mean square error (RMSE), and X2 (chi-squared distribu-
tion) were applied through this research. The description to
evaluate the above parameters and also the relating explana-
tion are as follows. The first performance index is the RMSE.
As known in statistical analysis, the value indicating the per-
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Fig. 10 Position of all
equipments in a real double
shaft 25MW gas turbine (inputs
and output) in HMI system

Table 1 11 data samples out of 161 accumulated during one year, consists of five inputs and an output

No. Rotor speed Fuel
consumption

Bearing #2 Differen-
tial pressure (DP)

Oil tank
temperature

Oil tank
pressure

Vibration rate

1 8909 29.1 173 60 544 1.5

2 8770 26.8 175 59 544 1.6

3 8888 27.9 191 61 530 2.8

4 8750 28 194 59 531 2.9

5 8794 28 174 59 544 1.7

6 8882 27 175 59 544 1.8

7 8850 28 173 60 544 1.7

8 8922 28.2 204 59 529 3

9 8862 27.2 192 59 530 2.9

10 8836 28.6 191 60 531 2.9

11 8862 25.1 220 60 531 3.2

Table 2 Input and output parameters used for vibration prediction modeling and their ranges

No. Parameters Type Unit Range (min–max)

1 Rotor speed (S) Input Round per minute (.RPM) 0–9770

2 Oil tank temperature (T) Input Centigrade (C) 0–150

3 Oil tank pressure (P) Input Kilo Pascal (kPa) 0–600

4 Bearing #2 differential pressure (D) Input Kilo Pascal (kPa) 0–300

5 Fuel consumption (F) Input Mega Joule per second (MJ/S) 0–70

6 Vibration rate (Rate) Output Millimeter per second (mm/s) 0–11
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Fig. 11 Cross-correlation graphs between the predicted and target vibration rate for: a RBFmodel, bMLPmodel, cMLP-COAmodel, dGH-MLP
model and e LM model (Training & Validating Phase)
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Fig. 12 Comparison of target vibration rate with predicted vibration rate for: a RBF model, b MLP model, c, MLP-COA model, d GH-MLP
model and e LM model (training & validating phase)
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Fig. 13 Cross-correlation graphs between the predicted and actual vibration rate for: a RBFmodel, bMLPmodel, cMLP-COAmodel, dGH-MLP
model and e LM model (testing phase)
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Fig. 14 Residual error along with MAE for all of the predictive models (testing phase)

fect prediction performance for RMSE is 0.0. In other words,
model performance increases as RMSE decrease. RMSE is
described by the following equations:

RMSE =
√√√√1/n

(
n∑

i=1

vibrationMi − vibrationpi

)2

(15)

In the above equations, n is the samples number. In the
above equation, the lowest RMSE belongs to the most suc-
cessful model among others.

Furthermore, a chi-square test (X2) for independence
compares two variables in a contingency table to see if
they are related. In a more general sense, it test to see
whether distributions of categorical variables differ from
each another. A very small chi square test statistic means
that your observed data fits your expected data extremely
well. In other words, there is a relationship. The formula
for the chi-square statistic used in the chi square test is as
follow:

X2 = E(Yi , Ŷi )Cov(Yi , Ŷi )
[
E(Yi , Ŷi )

]T
, i = 1, 2, ..., n

(16)

In the above equation, E is the residual vector and Yi , Ŷi
the actual and expected values, respectively.

4 Results and Discussion

Furthermore, the obtained results from hybrid predictive
model based on MLP and COA along with other predic-
tive models are investigated. To do this, first, the results of
applying the training samples to the all models is individu-
ally examined in training and validating phase. Then, after

determining best structure of each model, the testing sam-
ples are fed to them. Details are given in each section. At the
end, the results of the proposed model will be compared with
other presented methods.

Figures 11a to 11e show the plots of target values of tur-
bine vibration rate versus predicted values in training and
validating phase, calculated byRBF (Radial Basis Function),
MLP andMLP-COA,GH-COA (Gauss–Hermite-COA), and
LM (Levenberg–Marquardt) respectively. Also, for more
comprehension the amount of overlap in all of the models
Fig. 12a–e have been shown.

In addition, the coefficient of determination of testing
phase are shown in Fig. 13a–e.

Figure 14 shows the residual errors for 32 testing samples
applied for all of themodels. It canbe seen that theMLP-COA
model yielded in less residual error than the other predic-
tive models. In other words, the deviation from the predicted
vibration rates byMLP-COA is less than the other predictive
models. This low deviation obtained by MLP-COA model
also proves that the prediction capability ofMLP-COAmodel
is better than the other.

Also, Fig. 15 depicts the convergence procedure (learn-
ing rate) for MLP-COA model. It can be seen that the
model has been converged after 800th iteration. Further-
more, the calculated evaluation criteria i.e. RMSE and X2

of the identified models for testing phase are presented in
Table 3. As can be seen from Table 3, the high perfor-
mance of the models for testing set can be considered as
an indication of good generalization capabilities of the mod-
els. Irrespective of the data set the lowest RMSE and the
highest, X2, belong to MLP-COA model indicating that
this model gives better prediction performance than the
other models. Obviously, it can be seen that MLP-COA
demonstrates superiority over widely used vibration rate pre-
dictors.
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Fig. 15 The convergence diagram for the proposed intelligent model
(COA-MLP)

Table 3 Comparison of the obtained values for evaluation criteria in
testing phase for all predictive models

Model name

Index RBF MLP MLP-COA LM GH-COA

RMSE 4.067506 0.508225 0.4763252 1.396914 1.126101

X2 3.1893 0.3204 0.2568 0.5248 0.4797

4.1 Sensitivity Analysis Using Cosine Amplitude
Method (CAM)

There are several methods in order to extract the strength
of relationships between the vibration rate as single output
and the five input parameters. Thus, we applied the CAM
as a good technique for evaluating the relations. As can be

seen in Fig. 16, sensitivity analysis was done for all the 5
input parameters to understand the relative significance of
each parameter on vibration rate. To apply this method, by
considering n data samples in the dataset, we specify an array
namely X:

X = {x1, x2, ..., xi , ..., xn} (17)

Which each data sample have m dimension as follows:

xi = {xi1, xi2, xi3, ..., xim} (18)

So that each dimension of xi j have a strength of rela-
tionship with another dimension of x jk . Consequently, the
strength of the relation between the dimension of xi j and
dimension of x jk is given by the following equation:

Si j =
[

n∑

k=1

xi j,n × x jk,n

]
/

√√√√
n∑

k=1

(xi j,n)2 ×
n∑

k=1

(x jk,n)2

(19)

In this paper, n data samples and dimension numbers are
161 and 6 respectively. Figure 16 shows that vibration rate is
mainly influenced by bearing #2 DP, fuel consumption, and
rotor speed whereas, oil temperature and oil pressure are the
least effective parameter in this regard.

5 Conclusion

It is obvious to use gas turbines in gas pressure booster sta-
tions in order tomeet the requirements of compressors. In the

Fig. 16 Sensitivity analysis of
vibration rate
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meantime, as the cost of purchasing and maintaining such an
equipment are very high, it is very important to keep them
far from any damage. The most significant risks that threaten
mentioned equipment and as a result the overall pressure
booster system are incident of internal vibrations of gas tur-
bines, because the failure of a turbine, results in disrupting
the compressor and all its associated equipment and undergo-
ing huge cost to the whole system. Vibrations up to a certain
threshold could be ignored, but in the case of resonance vibra-
tions we will face unpleasant and even irreparable events.

In this paper, the most important motivations to establish
of a precise predictor model and a correct analysis of a gas
turbine vibration consists of:

1. Online usage of prediction model to increase the system
reliability (comparing with the output of installed vibra-
tion sensors or using as an alternative equipment in case
of sensors failure.)

2. Informing the operator of control room about the effect
of parameters on the vibration by varying their operation
range (discovering the main factor of vibration among all
effective factors and controlling it).

3. Calculating lifetime of blades in an unpredicted condi-
tions by analyzing their vibration frequency (using the
predictive model).

4. To prevent turbine blades from damage and erosion,
so that their lifetime could be increased (increasing the
working performance of the turbine).

5. To prevent from turbine emergency shutdown (ESD).
6. Economizing the time and cost of repairing damages

resulted from vibration (such as blades cracking).
7. Using theproposedmodel to predict steam turbines vibra-

tion by considering proper operational parameters.

Also, we applied a hybrid intelligent and practical model
with a low computational complexity and acceptable preci-
sion in order to predict gas turbine vibration using effective
input parameters such rotor speed, bearing #2 oil differen-
tial pressure, oil tank pressure, oil tank temperature, and fuel
consumption. Four criteria of X2, RMSE, and were adopted
to evaluate the proposed hybrid method and their values
were obtained as much as 0.25 and 0.47, respectively. The
obtained results were compared with predicted values from
other predictivemethods such RBF,MLP, GH-MLP and LM.
Accordingly, the superiority of the proposed method was
proved. Indeed, we applied cosine amplitude technique in
order to determine the effect of each effective parameters
on the vibration (sensitivity analysis). Based on this analy-
sis importance of each parameter obtained and among all of
the inputs was specified that the bearing #2 DP is influenc-
ing factor on vibration rate. It should be noted that to make
this model, we have considered input parameters in an ideal
environment and free of any excess solidmaterial in the inner

space of turbine (isolate environment). Also it is assumed that
the turbine blades are free from any kind of damage.
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