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Abstract Model reduction techniques are simplification
methods based on mathematical approaches employed to
realize reduced models for the original high order systems.
Some existing classical model reduction techniques for mul-
tivariable system are considered and compared for their
performances. Interlacing property and coefficientsmatching
(IPCM) method gives overall minimum integral square error
(ISE), integral absolute error (IAE) and integral time absolute
error (ITAE) values compared to other methods. Though the
IPCMmethod is efficient, it may not guarantee forminimiza-
tion of all objective functions simultaneously. In this paper,
model reduction approach based on objectives like ISE,
IAE and ITAE using multi-objective differential evolution
(MODE)method is proposed for reducing the numerator and
the denominator is reduced by interlacing property. MODE
method minimizes the small, normal and large errors persist-
ing for long time between original and reduced models. This
multi-objective approach is applied for model reduction of
10th order multivariable linear time invariant power system
model. Simulation results are demonstrated for single and
multi-objective model reduction and compared with multi-
objective particle swarm optimization (MOPSO) method to
prove the validity of proposed MODE technique.
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Introduction

There aremanymethods available for analysis of stability and
design of systems. But these methods become computation-
ally tedious when dealt with large scale practical systems like
power systems involving large number of variables. To avoid
these problems, model order reduction techniques are sug-
gested for approximation of higher order models to reduced
ones for a lower computational cost. It is considered that
every physical system can be transformed into mathemati-
cal model and there is possibility of finding the equation of
same type but of lower model. The reduced order model may
reflect or retain physical characteristics of original higher
order systems (HOSs) such as stability, time response, etc.

For a HOS, the most classical way to obtain a low-order
model based controller is to apply model reduction tech-
niques to an accurate HOSmodel. There are several classical
methods in literature for model reduction given by Krishna-
murthy and Seshadri [1], Hutton and Friendland [2], Heydari
and Pedram [3], Soloklo and Farsangi [4], etc., and based on
particle swarm optimization (PSO) [5] and differential evo-
lution (DE) [6].

Multi-objective optimization problems generally repre-
sent an important class of practical real world design and
decisionmaking problems. Soft computing techniques based
on multi-objective non-dominating sorting gives rise to set
of optimal solutions called as non-dominated solutions or
Pareto-optimal solutions. The primary reason to concentrate
these algorithms is to obtain multi Pareto-optimal solutions
in a single run, i.e., evolutionary algorithms are particularly
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suited for the task to process a set of solutions in paral-
lel. Over the past decade, some multi-objective evolutionary
algorithms (MOEA) have been suggested by Horn et al. [7],
Fonseca and Fleming [8], Zitzler and Thiele [9].

The non-dominated sorting genetic algorithm (NSGA)
was one of the earliest such evolutionary algorithms pro-
posed by Srinivas and Deb [10]. An improved version
of NSGA known as NSGA-II [11], multi-objective PSO
(MOPSO) [12], multi-objective gravitational search algo-
rithm (MOGSA) [13] are some of the latest techniques. A
new weighted-sum multi-objective order reduction is sug-
gested by Soloklo and Farsangi [14] by using harmony search
algorithm.

In this paper, algorithms for model reduction based on
multi-objective PSO and DE (MODE and MOPSO) are
developed. Some existing classical model reduction tech-
niques for multi input and multi output (MIMO) systems are
considered. The interlacing property and coefficients match-
ing (IPCM)method [15] when compared with other methods
offered better performances indices like integral square error
(ISE), integral absolute error (IAE), etc. In this method, the
denominator is reduced by interlacing property method and
reduced numerator is obtained by using matching of coeffi-
cients of HOS.

It is observed in classical methods that if one method
satisfies one objective, it may not satisfy other objective.
Multi-objectivemodel reductions usingMODE andMOPSO
are suggested to obtain optimal reduced models to sat-
isfy objectives like ISE, IAE and integral time-weighted
absolute error (ITAE). These methods based on multi objec-
tives are applied to the transfer function matrix of a 10th
order two-input two-output linear time invariant of a power
system model. Simulations results are compared for pro-
posed multi-objective and single variable optimizations to
test the optimality of the proposed techniques. The MODE
and MOPSO algorithms for model reduction are described
in detail in the following sections and the same is applied to
the numerical example.

Problem Formulation of MIMO Systems

Let the transfer function of the HOS of order ‘n’ having ‘p’
inputs and ‘m’ outputs be

[G(s)] = 1

Dn(s)

⎡
⎢⎢⎢⎣

a11(s) a12(s) a13(s) · · · a1p(s)
a21(s) a22(s) a23(s) · · · a2p(s)

...
...

... · · · ...

am1(s) am2(s) am3(s) · · · amp(s)

⎤
⎥⎥⎥⎦ , (1)

or

[G(s)] = [
gi j (s)

]
, i = 1, 2, . . . ,m; j = 1, 2, . . . , p,

where the general form of each gi j (s) of [G(s)] is

gi j (s) = ai j (s)

Dn(s)

= a0 + a1s + a2s2 + · · · + an−1sn−1

b0 + b1s + b2s2 + · · · + bn−1sn−1 + sn
. (2)

Let the transfer function matrix of the lower order system
(LOS) of order ‘r’ having ‘p’ inputs and ‘m’ outputs be:

[R(s)] = 1

Dr (s)

⎡
⎢⎢⎢⎣

c11(s) c12(s) c13(s) · · · c1p(s)
c21(s) c22(s) c23(s) · · · c2p(s)

...
...

... · · · ...

cm1(s) cm2(s) cm3(s) · · · cmp(s)

⎤
⎥⎥⎥⎦ , (3)

or

[R(s)] = [
ri j (s)

]
, i = 1, 2, . . . ,m; j = 1, 2, . . . , p,

where the general form of each ri j (s) of [R(s)] is

ri j (s) = ci j (s)

Dr (s)

= c0 + c1s + c2s2 + · · · + cr−1sr−1

d0 + d1s + d2s2 + · · · + dr−1sr−1 + sr
. (4)

Performance Indices for Model Order Reduction
Techniques

The performance of model reduction techniques are mea-
sured by some performance indices like ISE, IAE, ITAE,
integral time square error (ITSE), etc. The definitions of ISE,
IAE and ITAE are given below.

Integral Square Error (ISE)

ISE integrates the square of the measured error over time.
It tends to eradicate large errors rapidly, but tolerates small
errors which persist for long period of time.

ISE =
∫ ∞

0
e2(t)dt. (5)

Integral Absolute Error (IAE)

IAE integrates the absolute error and adds equal weights to
the small and large errors. It produces response slower than
ISE but with less sustained oscillations.

IAE =
∫ ∞

0
|e(t)|dt. (6)

123



Intell Ind Syst (2015) 1:313–330 315

Integral Time-Weighted Absolute Error (ITAE)

ITAE integrates the absolute error multiplied by the time
over time. It adds weight to the errors which exist for a long
time much more heavily than that of those at the start of the
response.

ITAE =
∫ ∞

0
t|e(t)|dt, (7)

where error e(t) = (y(t) − yr (t)) and y(t) and yr (t) are the
unit step responses of the original and reduced order systems
respectively.

MIMO Model Reduction

There are many model reduction techniques available in the
literature for single variable systems but there are only few
methods for reduction of multi variable systems. However
the methods related to single variable can be extended to
reduction of linear multi-input and multi-output (MIMO)
systems. Model order reduction for multi variable system
can be solved by using both classical and soft computing
techniques.

Classical Methods

Classical methods for model order reduction are mathe-
matical approaches to find the reduced order model. For
mixed methods of MIMO systems, the reduced order model
is obtained by the combination of methods based on error
minimization and some stability preserving methods. Some
of the existing classical methods for MIMO model reduc-
tion like continued fraction and dominant pole [16], Pade
approximants and dominant eigenvalue concept [17] etc. are
discussed.

Method 1 (Shieh and Wei) [16]

In this model, the method takes the advantages of matrix
continued fraction approach and dominant eigenvalue con-
cept. For the reduced model, the matrix-continued fraction
approach is used to obtain the numerator polynomials and
the common denominator is formulated by dominant eigen-
values. The procedure is simple and the reduced model can
easily be obtained with good approximation. But the disad-
vantage is the method is applicable to the system for only
equal number of inputs and outputs.

Method 2 (Shamash) [17]

The method is the combination of Pade-type approximants
and dominant eigenvalue concept. For the reduced model,

the Pade-type approximants approach is used to obtain the
numerator polynomials and the common denominator is for-
mulated by dominant eigenvalues. Regardless of the above
Shieh technique, this method is applicable to general multi-
variable systems where it is not necessary that the number
of inputs is equal to number of outputs. This method never
fails to produce a model, since there is no restriction that any
matrix be non singular.

Method 3 (Liaw) [18]

The common denominator is obtained by preserving the
dynamic modes with dominant energy contribution and the
coefficients of the numerator are obtained by using the con-
tinued fraction method. The reduced model obtained by this
method is always stable if the original system is stable and
this model gives good approximations in both transient and
steady state responses of the original system.

Method 4 (Prasad et al.) [19]

In this method, the reduced order common denominator is
determined by using modified stability equation method and
numerator matrix polynomial is formulated by using Pade
approximation method. This method is also applicable to
general multivariable system. This method overcomes the
drawback of stability equation method of approximating
the non-dominant poles of original systems. The obtained
reduced model by this method is stable, if the original sys-
tem is stable.

Method 5 (Viswakarma and Prasad) [20]

In this method, differentiation method is used to determine
the denominator polynomial and factor division method is
used to obtain the numerator polynomial of the reduced order
model. The reduced model is stable if the original model
is stable for linear time invariant system. Also this method
avoids errors between the initial or final values of the time
responses of original and reduced order systems.

Method 6 (Habib and Prasad) [21]

This method has combined advantage of the differentiation
and the modified Cauer continued fraction method to find
biased reduced order models for linear time dynamic sys-
tems. This method is computationally simple. The poles are
determinedby the biaseddifferentiationmethod and zeros are
synthesized by matching the coefficients of reduced denom-
inator using modified Routh array.
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Method 7 (Agarwal and Mittal) [22]

This method is a combination of eigen spectrum analysis
and Cauer second form. The denominator of the reduced
order model is determined by eigen spectrum analysis and
the numerator is found by Cauer second form. The reduced
order model retains the steady state value and stability of the
original system.

Method 8 (Rama Jaya Lakshmi et al.) [15]

The numerator of the lower order reduced model is obtained
bymatching the coefficients of HOSwith those of denomina-
tor of the LOS. The denominator of the reduced order model
is obtained by using interlacing property. Thismethod is flex-
ible and simple and LOS retains stability. The steps involved
in the method are discussed below
Step-1 the denominator is given by

Dn(s) = b0 + b1s + b2s
2 + · · · + bn−1s

n−1 + sn . (8)

The denominator polynomial is separated into even and odd
parts.

For n is even

Deven(s) = b0 + b2s
2 + b4s

4 + · · · + bns
n,

Dodd(s)

s
= b1 + b3s

2 + b5s
4 + · · · + bn−1s

n−2. (9)

For n is odd

Deven(s) = b0 + b2s
2 + b4s

4 + · · · + bn−1s
n−1,

Dodd(s)

s
= b1 + b3s

2 + b5s
4 + · · · + bns

n−1. (10)

Let (0 ± ωd
e,i ) and (0 ± ωd

o,i ) denotes the roots of D
even(s)

and Dodd (s)
s , respectively. Then it can be observed that

0 < ωe
d,1 < ωo

d,1 < ωe
d,2 < ωo

d,2 < ωe
d,3 · · · (11)

Step-2 the even and odd polynomial can be written as,
For r is even

Deven
r (s) =

(
s2 + ω2

e,1

) (
s2 + ω2

e,2

)
· · ·

(
s2 + ω2

e, r2

)
,

Dodd
r (s)

s
=

(
s2 + ω2

o,1

) (
s2 + ω2

o,2

)
· · ·

(
s2 + ω2

o, r2−1

)
.

(12)

For r is odd

Deven
r (s) =

(
s2 + ω2

e,1

) (
s2 + ω2

e,2

)
· · ·

(
s2 + ω2

e, r−1
2

)

Dodd
r (s)

s
=

(
s2 + ω2

o,1

) (
s2 + ω2

o,2

)
· · ·

(
s2 + ω2

o, r−1
2

)
.

(13)

Modified reduced denominators are

Deven
m (s) = I1 ∗ Deven

r (s); Dodd
m (s) = I2 ∗ Dodd

r (s). (14)

Now Dr (s) = Deven
m (s) + Dodd

m (s) where I1 is the ratio of
the constants of Deven(s) and Deven

r (s) and I2 is the ratio of
the constants of Dodd(s) and Dodd

r (s) polynomials.
Step-3 the coefficients ci of each ci j (s) of the numerator
polynomial of the reduced order model is obtained by using
the equation

ci = ai
bi
di for 0 ≤ i ≤ r − 1. (15)

Step-4 the r th order reduced order model is obtained in the
form of Eq. (4).

Drawbacks of Classical Methods

Though the IPCM method is efficient, it may not guarantee
for minimization of all the objective functions simultane-
ously. The following are drawbacks of classical methods
observed for the model reduction of MIMO power system
model.

• If one method offers less ISE value, it may not guarantee
for less ITAE value.

• Classical methods are not that much case-specific. The
method that gives better result for one problem may not
do the same for another application.

• There is uncertainty for classical methods that which
method is the best suited for objectives like minimum
ISE, IAE, ITAE values, etc.

Soft Computing Techniques

Recently soft computing techniques like GA [23], modified
GA [24], PSO [5] are popular in solving optimization prob-
lems. Soft computing techniques are combinedwith classical
methods for model reduction to address real world appli-
cations which are having thousand of parameters. There is
a choice of making best decisions by using soft comput-
ing techniques which can be based on minimization of any
objective at the beginning of the problem. The denominator
coefficients are reducedby some stability preservingmethods
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like Routh approximation methods, Routh stability criterion,
etc.

Here the numerator coefficients are determined by soft
computing techniques [25–27] based onminimization of ISE
between original and reduced order. In ISE, large errors are
magnified and small errors (<1) become still smaller because
it involves squaring. But there are other performances indices
(objectives) for model reduction like IAE, ITAE, etc., related
to small, large and long time persisting errors. The character-
istics of ISE, IAE and ITAE are discussed in “Performance
Indices forModelOrderReductionTechniques” section. Soft
computing techniques are not onlymeant for single-objective
optimization but also for multi-objective model reduction
problems.

Multi-objective Optimization

Many real world problems of decisionmaking involve simul-
taneous optimization of several challenging objectives to
solve up to required point of satisfaction. In the multi-
objective optimization, there exists a set of solutions known
as non-dominated solutions or Pareto optimal solutions
where every solution may be an acceptable one and have
information of alternative optimal solutions. The set of Pareto
optimal solutions are superior to rest of solutions when all
objectives are considered but these are inferior to other solu-
tions when single-objective is considered.

Problem Formulation

To apply the optimization techniques to any problem, basi-
cally objective function and limitations are to be formulated
[28]. A general form of the multi-objective optimization
problem (MOOP) subjected to set of equality and inequality
constraints is given as follows

Minimize/maximize fk(x) k = 1, 2, . . . , K , (16)

Subjected to pi (x) ≥ 0 i = 0, 1, 2, . . . , I, (17)

q j (x) = 0 j = 0, 1, 2, . . . , J, (18)

where fk is kth objective function, parameter x is a design
or decision vector that represents a solution: K , I and J
are number of objective functions, equality and inequality
constraints respectively.

Let x1 and x2 are two solutions of MOOP, a solution x1 is
said to dominates x2 if it satisfies the following two condi-
tions.

(i) The solution x1 is not worst than x2 for all objectives i.e.,

for all i ∈ {1, 2, . . . , K }: fi (x1) ≤ fi (x2) . (19)

(ii) The solution x1is firmly better than x2 for at least one
objective, i.e.,

there exists j ∈ {1, 2, . . . , K }: f j (x1) < f j (x2) . (20)

Reduced Order Modeling Using Proposed
Multi-objective Optimization: MOPSO and MODE

The algorithms for PSO and DE based on multi-objective
optimization (MOPSO and MODE) are developed. These
algorithms incorporate elitism and no sharing parameter
needs to be chosen and the population is initialized as
usual. Then the population is sorted normally based on
non-domination into each front being the first front totally
non-dominant set in the current population. The second front
is dominated only by the individuals of the first front and the
front goes on. In first front, individuals are assigned a fitness
value of 1 and individuals of second front are given a fitness
value of 2 and so on.

In addition to the fitness value, a new parameter known
as crowding distance is determined for each individual. The
crowding distance is a measure for an individual how close
it is to its neighbours. Average crowding distance of large
magnitude will end result in better diversity in population.
Parents are selected by using binary tournament based on
the crowding distance and rank. The selected population is
updated using PSO and DE operators. For N population size,
the current population and its offspring based on non dom-
ination is sorted again and only the N best individuals are
selected.

DetailedDescription of ProposedMODEandMOPSOAlgo-
rithm

This section describes application of DE and PSO for solving
multi-objective model order reduction problem. The flow-
chart for MOPSO and MODE for order reduction is shown
in Fig. 1.

TheFollowing StepsDescribe theDetailed Procedure of Pro-
posed Methods

Step-1 generate randomly initial population for the coeffi-
cients of numerator of the reduced model with Npop × N
size across the problem domain and store them in X as given
below.

Where N = r − 1, for r th reduced order model.

X =
[
X1 X2 . . . , XNpop

]T
, (21)
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Fig. 1 Flow chart of
multi-objective order reduction START 

Generate initial population 

Evaluate performance of each individual 

Sort the initial population using non-dominated sorting 

Based on non-dominated sorting and crowding distance, search for  
non-dominated solution and store them in distance Xsort

Set the iteration counter k = 0 

Select ‘ ’ among the set of non-dominated solution with best 
performance from Xsort for PSO and DE operation. 

Generate offsprings of selected set  pop size 

Recalculate the performance of new set 

Produce a new generation. The individuals that satisfy better 
 non-dominated sorting and less crowding distance 

Generate Pareto optimal memory set 

Is k= Max. iter? 

Obtain compromise solution using fuzzy membership functions

END 

Yes 

k  k+1 

No 

where

Xi =
[
ci0, c

i
1, . . . , c

i
r−1

]
. (22)

All elements of Xi is set of decision variables.

Step-2 handle the set of constraint violations as shown in the
Eq. 23:

Xi
min < Xi < Xi

max.

If Xi > Xi
max then Xi = Xi

max and

If Xi < Xi
min then Xi = Xi

min. (23)
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Step-3 for each decision variable, the constraints are to be
satisfied. That means the decision variables which are the
coefficients of the reduced order numerator are to be put in
the given limits.
Step-4 find the objective functions for the initial population.
Step-5 model order reduction techniques by soft computing
techniques are based on some objective functions like ISE,
IAE and ITAE.
Step-6 basing on non dominated sorting and the crowding
distance described [11], the population is sorted.
Step-7 set iteration count k = 0.
Step-8 k = k + 1.
Step-9 select the best population Ns of set of decision vari-
ables which gives non-dominated solution in the archive Xn

and store them in an archive XBest for PSOandDEoperation.

For PSO operation
Step-10 the decision variables are considered as particles.
For each iteration, the velocities of all particles are updated
as given in the equation below.

vn+1
id = wvnid + c1r

n
1

(
Pn
id − xnid

) + c2r
n
2

(
Pn
id − xnid

)
, (24)

where w is inertia weight, c1, c2 are cognitive and social
acceleration respectively, r1, r2 are random numbers uni-
formly distributed in the range (0, 1).

The i th particle in the swarm population is represented
by a d-dimensional vector Xi = (xi1, xi2, . . . , xid). Its
velocity is denoted by another d-dimensional vector Vi =
(vi1, vi2, . . . , vid). The best previously visited position of
the i th particle is represented by Pi = (pi1, pi2, . . . , pid).
Step-11 the positions of all particles are updated as given in
the equation below for each iteration.

xn+1
id = xnid + vn+1

id . (25)

Step-12 compare particle’s performance evaluation with par-
ticle’s pbest . Set pbest value and location equal to the current
value and its current location if current value is better than
pbest , otherwise pbest will remain the same and overall best
is gbest .

For DE operation
Step-10 the mutation operation is performed for each indi-
vidual target vector xGi for obtaining a mutant vector VG+1

i
given by

VG+1
i = XG

r1 + F ·
(
XG
r2 − XG

r3

)
. (26)

The randomly chosen indexes r1, r2, r3 ∈ [1, NP ] are
integers andmutually different from each other from the run-
ning index i and mutation factor F > 0, is a real constant
∈ [0, 2] which controls the amplification of the differential
variation (XG

r2 − XG
r3).

Step-11 the crossover operation is performed to obtain the
trial vector

UG+1
i = (UG+1

1,i , UG+1
2,i , . . . ,UG+1

D,i ) is formed where

UG+1
j,i =

{
VG+1
j,i if rand( j) ≤ CR or j = rn(i),

XG
j,i if rand( j) > CR and j �= rn(i),

(27)

where rand( j) ∈ [0, 1] is the j th evaluation of a uniform
random number generator. CR is the crossover constant ∈
[0, 1].
Step-12 the target vector xGi is to be compared with the trial
vector VG+1

i in the selection operation. The one with the
better fitness value is admitted in the next generation and the
algorithm is repeated for the given iterations.

For PSO or DE operation
Step-13 recalculate the affinity of all best particles sorted
again based on non-dominated sorting method and crowding
distance [11].
Step-14 check for the stopping criterion. If the number of
iterations reaches the maximum then go to the next step,
otherwise go to step 8.
Step-15 acquire the set of Pareto optimal solutions from the
final iteration.
Step-16 the best compromised solution set is obtained from
Pareto optimal front which satisfies all objectives.

The best compromised solution in the model reduction is
the coefficients of reduced model which gives the optimal
solution.

Best Compromise Solution

Once the Pareto optimal set of non dominated solution is
obtained, the best compromise solution can be offered to
the decision maker with fuzzy membership function. In this
paper, fuzzy membership approach [13] is used to find a best
compromise solution. For the i th objective function fi of
individual j can be represented by a membership function
μ

j
i defined as:

μ
j
i =

⎧⎪⎨
⎪⎩

1 fi ≤ f min
i ,

f max
i − fi

f max
i − f min

i
f min
i ≤ fi ≤ f max

i ,

0 fi ≥ f max
i ,

where f min
i and f max

i are theminimum andmaximum values
of ith objective function among all non-dominated solutions.
For every non-dominated solution j, the normalized mem-
bership function μ j calculated as:

μ j =
∑N

i=1 μ
j
i∑P

j=1
∑N

i=1 μ
j
i

,
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Fig. 2 Block diagram of Phillips–Heffron model of single-machine infinite bus (SMIB) power system

where p is the total number of non-dominated solutions. The
best compromise solution is that having maximum value of
μ j .

Numerical Example

The Phillips–Heffron model of single-machine infinite bus
(SMIB) power system is shown in Fig. 2 [23]. The system
consists of a three phase 160-MVA synchronous machine
with automatic excitation control system i.e. a standard IEEE
type-I exciter with rate feedback and power system stabi-
lizer (PSS). The numerical values of the parameters which
define the total operating systems as well as the operating
point are given in [23]. Based on the state variables, para-
meters values and the operating point of the system (without
accounting for the limiters) may be described in the form of
state space as:

ẋ = Ax + Bu, (28)

y = Cx, (29)

where state matrix

xT =
[
E ′
q ω δ v1 v2 v3 v4 v5 vR EFD

]
.

Control matrix

uT = [
ΔVRef ΔTm

]
.

Output matrix

yT = [δ Vt ] .

State space equations describing each individual block of
Fig. 2 in terms of state variables are shown in Appendix and
organized in the vector matrix form as given in Eqs. (28) and
(29). The matrices A and B are defined below:
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
K3τ

′
do

0 − K4

τ
′
do

0 0 0 0 0 0 1
τ ′
do

− K2
6H 0 − K1

6H 0 0 0 0 0 0 0
0 ωR 0 0 0 0 0 0 0 0

KRK6
τR

0 KRK5
τR

− 1
τR

0 0 0 0 0 0

0 0 0 0 − 1
τF

0 0 0 KF
τE τF

− KF (KF+SE )

τE τF

− K2τ3
6Hτ4

1
τ4

− K1τ3
6Hτ4

0 0 − 1
τ4

0 0 0 0

− K2τ1τ3
6Hτ2τ4

τ1
τ2τ4

− K1τ1τ3
6Hτ2τ4

0 0 τ4−τ1
τ2τ4

− 1
τ2

0 0 0

− K0K2τ1τ3
6Hτ2τ4

K0τ1
τ2τ4

− K0K1τ1τ3
6Hτ2τ4

0 0 K0(τ4−τ1)
τ2τ4

K0
τ2

− 1
τ0

0 0

0 0 0 − KA
τA

− KA
τA

0 0 KA
τA

− 1
τA

0

0 0 0 0 0 0 0 0 1
τE

− KE
τE

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

BT =
[
0 0 0 0 0 0 0 0 KA

τA
0

0 1
2H 0 0 0 τ3

2Hτ4

τ1τ3
2Hτ2τ4

Koτ1τ3
2Hτ2τ4

0 0

]
.

The numerical values of the state space matrices A, B and C
are obtained by substituting the data given in [23]. The trans-
fer function matrix of the 10th order two-input two-output
of linear time invariant power system model after converting
state space matrices is given by

[G(s)] = 1

D(s)

[
a11(s) a12(s)
a21(s) a22(s)

]
, (30)

where the common denominator D(s) is given by

D(s) = s10 + 64.21s9 + 1596s8 + 1.947 × 104s7

+ 1.268 × 105s6 + 5.036 × 105s5 + 1.569

× 106s4 + 3.24 × 106s3 + 4.061 × 106s2

+ 2.095 × 106s + 2.531 × 105

and

a11(s) = 0 · s8 + 0 · s7 + 0 · s6 − 2298s5

− 9.85 × 104s4 − 1.38 × 106s3

− 6.838 × 106s2 − 6.1 × 106s − 5.43 × 105

a12(s) = 29.09s8 + 1868s7 + 4.61 × 104s6

+ 5.459 × 105s5 + 3.185 × 106s4

+ 8.702 × 106s3 + 1.206 × 107s2

+ 7.606 × 106s + 6.483 × 105

a21(s) = 0 · s8 + 85.23s7 + 3651s6 + 5.208 × 104s5

+ 2.98 × 105s4 + 8.471 × 105s3 + 3.105

× 106s2 + 2.752 × 106s + 2.45 × 105

a22(s) = −1.26s8 − 85.18s7 − 2089s6 − 2.568 × 104s5

− 1.909 × 105s4 − 7.123 × 105s3 − 1.084

× 106s2 − 2.972 × 105s − 1.942 × 104.

The reduced order transfer functionmatrix for the original
order two-input two-output is given by

[R(s)] = 1

D̃(s)

[
b11(s) b12(s)
b21(s) b22(s)

]
. (31)

All methods are applied to the 10th order transfer function
matrix of two-input two-output of linear time invariant power
system model to obtain the reduced 3rd order model.

Results and Discussions

The obtained reduced order models for all the eight classical
methods are shown in the Table 1. In the table, b11(s) and
b12(s) indicates the reduced models for step change in input
�VRef and disturbance �Tm respectively for torque angle
(δ) output. Similarly b21(s) and b22(s) indicates the reduced
models for the same step changes respectively for terminal
voltage (Vt ) output. The objective functions like ISE, IAE,
ITAE and magnitude of stability responses like settling time,
overshoot and undershoot of reduced order models are spec-
ified in Table 2 for the different eight multivariable classical
methods.

Each classical method gives single solution where deci-
sion making for alternative solutions of minimization of
absolute error, square error etc. becomes difficult. It has been
observed that for the denominator reduced by interlacing
property for the four output responses has overall minimum
ISE, IAE and ITAE values when compared to the other seven
classical methods. The reduced order models where denom-
inator is reduced by dominant pole retention method offers
settling time, overshoot, undershoot responses very close to
that of the original model

However the values of ISE, IAE and ITAE (which are good
measures to find the efficiency of model reduction methods)
for dominant pole retention method are not that much mini-
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2 mum as that of interlacing property. The reduced models for

interlacing property and dominant pole retention method are
tested for the adequacy by comparing the δ and Vt output
time responses of the original 10th order multi-variable sys-
tem and those of 3rd order reduced models as shown in the
Figs. 3 and 4 respectively.

From the comparisons in the Table 2, it is observed that
if one method offers less ISE value, it may not guarantee for
less ITAE value. Though interlacing property is proposed
as the efficient method, this classical method does not sat-
isfy all objective functions. So multi-objective optimization
using MOPSO and MODE algorithms are implemented for
reduced order modeling of higher order multi-variable sys-
tem (Figs. 3 and 4).

These methods are based on minimization of multi objec-
tives like ISE, IAE and ITAE to eliminate small, normal and
large errors persisting for long time between original and
reduced order models. Figures 5 and 6 represent the Pareto
optimal front obtained byMODE andMOPSO for b11(s) and
b12(s) reduced models respectively for the three objectives.
Similarly Figs. 7 and 8 represent the Pareto optimal front by
MODE and MOPSO for b21(s) and b22(s) reduced models
respectively. These Pareto fronts consist of a set of non dom-
inant solutions. The interactive fuzzy membership approach
is used in deciding the compromise solution among the non
dominated solutions [13].

The parameters considered for PSO and DE are shown in
the Table 3. Reduced models by DE and PSO model reduc-
tion based on single and multi-objectives are shown in the
Table 4. The corresponding ISE, IAE and ITAE values are
compared. It is observed that for each DE or PSO method
based on minimization of any objective satisfy only that par-
ticular objective and based on multi-objectives minimizes all
objectives. DE based on single and multi objectives offered
optimal results compared to PSO.

From the Pareto optimal front in the Figs. 5, 6, 7 and
8, reduced models are chosen from non-dominant solu-
tions based on single(solution from extreme points) and
multi objectives(compromise solution) and their correspond-
ing ISE, IAE and ITAE values are tabulated in the Table 5.
The corresponding ISE, IAE and ITAE values are com-
pared and the same observations from the Table 4 have
been seen in the Table 5 i.e., for each MODE or MOPSO
method for minimization of any objective satisfy only that
particular objective. For example ‘minimum ISE’ satisfies
only ISE and other objectives like IAE and ITAE are not
minimized but methods based on multi-objective satisfy all
objectives.

Inmulti-objective approach based on non-dominated sort-
ing, there exists a set of solutions which are superior to other
solutions when all objectives are considered and are infe-
rior to rest of solutions when single objective is considered.
From Tables 4 and 5, it is observed that the ISE, IAE and
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Table 2 Comparison of some objective functions for the various classical model reduction methods

S. no. Method Reduced
numerator

Objective functions

ISE IAE ITAE Settling time Over shoot Under shoot

Original system b11(s) – – – 13.54 76.860 0.000

b12(s) – – – 15.77 117.89 0.000

b21(s) – – – 6.150 40.240 0.000

b22(s) – – – 14.03 545.20 93.63

1 Shieh & Wei [16] b11(s) 11.22 7.730 33.26 16.80 107.11 33.33

b12(s) 6.130 5.770 23.62 16.50 103.18 0.000

b21(s) 1.650 2.940 12.58 15.90 97.350 22.23

b22(s) 0.930 2.230 9.100 16.27 877.20 580.8

2 Shamash [17] b11(s) 10.89 7.580 32.51 16.76 102.40 27.97

b12(s) 7.390 6.340 25.95 16.47 107.55 0.000

b21(s) 1.730 3.030 12.98 15.91 100.92 26.39

b22(s) 1.150 2.490 10.13 16.23 1004.0 689.7

3 Liaw [18] b11(s) 10.87 7.570 32.48 16.76 102.28 27.87

b12(s) 7.390 6.350 25.97 16.48 107.61 0.000

b21(s) 1.720 3.020 12.94 15.91 100.97 26.39

b22(s) 1.088 2.420 9.869 16.24 974.99 664.6

4 Prasad et al. [19] b11(s) 7.014 6.730 35.45 31.65 67.030 0.000

b12(s) 23.43 11.95 55.04 31.29 74.910 0.000

b21(s) 1.080 2.700 14.32 30.95 69.390 0.000

b22(s) 0.190 1.030 5.240 32.34 325.03 126.0

5 Vishwakarma & Prasad [20] b11(s) 2.980 3.480 12.80 3.990 5.6100 14.39

b12(s) 11.23 7.600 29.78 1.300 48.340 0.000

b21(s) 0.200 0.810 2.470 3.620 4.7900 9.490

b22(s) 0.210 0.880 2.950 2.960 631.09 0.000

6 Habib & Prasad [21] b11(s) 3.440 3.700 13.12 1.600 2.2900 0.000

b12(s) 8.730 6.750 28.86 7.330 14.710 0.000

b21(s) 0.260 0.870 2.490 1.570 2.2500 0.000

b22(s) 0.110 0.690 2.780 13.17 108.12 0.000

7 Agarwal & Mittal [22] b11(s) 3.710 3.790 13.28 0.730 0.2700 11.72

b12(s) 13.15 7.930 30.20 0.840 74.410 0.000

b21(s) 0.300 0.910 2.570 0.730 0.2400 10.51

b22(s) 0.300 0.960 3.050 0.860 1060.0 0.000

8 Rama Jaya Lakshmi et al. [15] b11(s) 2.330 3.220 12.39 5.120 14.940 0.000

b12(s) 11.16 7.360 30.31 6.880 31.510 0.000

b21(s) 0.110 0.690 2.480 5.110 15.080 0.000

b22(s) 0.100 0.680 2.760 7.830 179.79 0.000

ITAE values of reduced models obtained by DE method is
less compared to PSO based on single and multi-objectives.
The best solutions obtained in a single run by using MODE
are compared with those obtained using MOPSO based
on three objectives. These observations are supported from
Figs. 5, 6, 7 and 8, where the set of Pareto optimal points
(each representing different combinations of ISE, IAE and
ITAE values) are greater than that of MOPSO methods.

Moreover, MODE is very easy to implement using few con-
trol parameters compared to MOPSO method. On the other
hand, PSO is more sensitive to parameter changes than the
other algorithms. When changing the problem, one probably
needs to change parameters as well to sustain optimal per-
formance. As a result, PSO must be executed several times
to ensure good results, whereas one run of DE usually suf-
fices. MOPSO outperforms other evolutionary algorithms
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Fig. 3 Torque angle response for input step change. a �Vref = 0.05 p.u. and �Tm = 0 p.u. b �Vref = 0 p.u. and �Tm = 0.05 p.u
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Fig. 4 Terminal voltage response for input step change. a �Vre f = 0.05 p.u. and �Tm = 0 p.u. b �Vref = 0 p.u. and �Tm = 0.05 p.u
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Fig. 5 Pareto front of b11 (s) reduced model with ISE, IAE & ITAE objectives. a MODE. b MOPSO

with computational time less than 10 min. This technique
works well in model reduction with optimum proximity.

MOPSO suffers with less convergence speed more than
7 min whereas MODE converges for less than 5 min. The
results demonstrate that the MODE algorithm is well com-
petent to find the non-dominated solutions for the model

reduction problem.These algorithms have been implemented
in MATLAB 7.10 on a Intel core processor. The time
responses of δ for methods based on multi-objective com-
pared with single objective based on only ISE, IAE and ITAE
objectives are shown in the Figs. 9 and 10 for step change
conditions�Vre f = 0.05 p.u.;�Tm = 0 p.u and�Vre f = 0
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Fig. 6 Pareto front of b12 (s) reduced model with ISE, IAE & ITAE objectives. a MODE. bMOPSO
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Fig. 7 Pareto front of b21 (s) reduced model with ISE, IAE & ITAE objectives. a MODE. b MOPSO
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Fig. 8 Pareto front of b22 (s) reduced model with ISE, IAE & ITAE objectives. a MODE. bMOPSO

Table 3 Parameters used for PSO and DE Algorithms

PSO DE

Parameters Value Parameters Value

Population size 50 Population size 50

Generations 100 Generations 100

c1, c2 2, 2 F 0.5

wstart , wend 0.9, 0.4 CR 0.9

p.u.; �Tm = 0.05 p.u respectively. Similarly the same com-
parisons are shown for Vt output response in the Figs. 11
and 12 for the same step changes.

It is clear from the simulation results shown in the
Figs. 9, 10, 11 and 12, the reduced order models obtained
by the proposed MODE algorithm is adequate because its
output time responses coincides relatively well with those of
the original system for the same input step change.
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Table 5 Comparison of ISE,
IAE and ITAE values using
MODE and MOPSO

S. no. Methods Reduced
model

MODE MOPSO

ISE IAE ITAE ISE IAE ITAE

01 Minimum
ISE

b11(s) 2.2070 3.2300 12.283 2.20720 3.2327 12.3060

b12(s) 10.385 7.2840 31.375 10.5379 7.3210 31.2146

b21(s) 0.0931 0.6492 2.2799 0.09360 0.6684 2.42510

b22(s) 0.0931 0.6672 2.8134 0.09890 0.6738 2.75950

02 Minimum
IAE

b11(s) 2.2630 3.2140 12.296 2.26580 3.2153 2.3163

b12(s) 10.563 7.2190 30.516 10.6775 7.2701 30.5131

b21(s) 0.0946 0.6259 2.1347 0.09470 0.6654 2.36550

b22(s) 0.0942 0.6640 2.7642 0.09920 0.6725 2.73890

03 Minimum
ITAE

b11(s) 2.2130 3.2240 12.264 2.21400 3.2228 12.2977

b12(s) 11.095 7.3460 30.128 11.3073 7.3974 30.2702

b21(s) 0.0942 0.6262 2.1324 0.09470 0.6658 2.36330

b22(s) 0.1007 0.6747 2.7346 0.10090 0.6750 2.73450

04 Compromise
solution

b11(s) 2.2260 3.2172 12.282 2.23340 3.2173 12.3021

b12(s) 10.457 7.228 30.733 10.5614 7.2872 30.8392

b21(s) 0.0936 0.6325 2.1676 0.09400 0.6660 2.38310

b22(s) 0.0935 0.6647 2.7819 0.09910 0.6727 2.74420
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Fig. 9 Torque angle response for �Vref = 0.05 p.u and �Tm = 0 p.u. a MODE. bMOPSO
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Fig. 10 Torque angle response for �Vre f = 0 p.u and �Tm = 0.05 p.u. a MODE. b MOPSO
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Fig. 11 Terminal voltage response for �Vref = 0.05 p.u and �Tm = 0 p.u. a MODE. bMOPSO
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Fig. 12 Terminal voltage response for �Vref = 0 p.u and �Tm = 0.05 p.u. a MODE. bMOPSO

Conclusions

In the paper, MODE method based on non dominated sort-
ing approach is suggested formulti objective order reduction.
Initially some existing classical model reductionmethods are
applied to a multi-variable system compared for the settling
time, overshoot and undershoot responses to that of the orig-
inal system model and also for the performance indices like
ISE, IAE and ITAE values. It is observed that IPCM method
offered better performance indices compared to other clas-
sical methods. Classical approaches for model reduction are
mathematical methods and are not based on minimization of
any objective and if one method gives less ISE value, it may
not offer less ITAE value. Further there exists no method
which satisfies all objective functions.

Multi-objective model reduction approach is used to
reduce the numerator coefficients and the denominator is
reduced by interlacing property method. The multi objec-
tives considered for model reduction are ISE, IAE and ITAE
to minimize the small and large errors persisting for long

time between full order and reduced order models. A choice
can be made from the set of non dominant solutions to get
the desired solutions. The adequacy of lower order mod-
els obtained by proposed methods are judged by comparing
their output time responses with that of original model. It is
observed that the MODE method is simple, robust and finds
the optimum in almost every run. It has few parameters to set,
and the same settings can be used for many different prob-
lems. It outperforms MOPSO with more convergence speed
and less computational time.

Appendix

The state space equations are obtained as following given in
equations below.

For block 1:

x1 = E ′
q =

[
k3

1 + k3τ ′
d0s

]
[x10 − x4x3]
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ẋ1 = k3 [x10 − x4x3] − x1
k3τ

′
do

For block 2:

x2 = ω = 1

2Hs
Ta

ẋ2 = 3�Tm − (k1x3 + k2x1)

6Hs

For block 3:

x3 = δ = ωR

s
x2

ẋ3 = ωRx2

For block 4:

x4 = V1 =
[

kR
1 + τRs

]
Vt

ẋ4 = kR [k6x1 + k5x3] − x4
τR

For block 5:

x5 = V2 = skF
1 + τFs

x10

ẋ5 = kF [x9 − SE − x10kE ] − τE x5
τFτE

For block 6:

x6 = V3 =
[
1 + τ3s

1 + τ4s

]
x2

ẋ6 = x2 + ẋ2τ3 − x6
τ4

For block 7:

x7 = V4 =
[
1 + τ1s

1 + τ2s

]
x6

ẋ7 = x6 + τ1 ẋ6 − x7
τ2

For block 8:

x8 = V5 =
[

k0τ0s

1 + τ0s

]
x7

ẋ8 = ẋ7k0τ0 − x8
τ0

For block 9:

x9 = VR =
[

kA
1 + τAs

]
VR

x9 =
[

kR
1 + τAs

] [
�Vre f − x4 + x8 − x5

]

ẋ9 = kR
[
�Vref − x4 + x8 − x5

] − x9
τA

For block 10:

x10 = EFD = 1

kE + τEs + SE
x9

ẋ10 = x9 − x10 (kE + SE )

τE
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