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Abstract We describe here a novel defect classification
system that works in real-time on the images of material run-
ning on the production line, provided by a video-inspection
module. The classifier is constituted of a two-levels hierar-
chical architecture: a set of adequate features are extracted
from the image first; the defect type is then identified from
them. Statistical analysis allows greatly reducing the number
of features, leaving only the most significant ones. A partic-
ular version of multi-class boosting has been developed for
labeling: differently from its original version, it accepts only
one label for each image, the true one, and does not require
the rank for the other classes. Nevertheless, the classifier is
able to produce a valid rank of the defect with respect to all
the classes, information that can be used to achieve an iden-
tification rate of the dangerous defects very close to 100 %
on a real data set.

Keywords Video-inspection systems · Adaptive defect
classification · Boosting · Feature statistical evaluation ·
Real-time image processing

1 Introduction

Quality control of the production is a key element for the suc-
cess on the market in very different fields [1–6] and different
technologies have been adopted according to the peculiarities
of the material and of the defects, ranging fromX-rays [7], to
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laser [8–10], microscopy [11], ultrasound, [12], thermal [13]
or electromagnetic field [13]. In the field of textile industry,
defect identification is carried outmainly byvideo-inspection
systems that analyze in real-time the material passing at high
speed on a production line [14–18] (Fig. 1a). When a pat-
tern different from the clean tissue is detected, its image is
displayed to the operator to make the proper choice (Fig. 3).
Some defects are not dangerous (e.g. small woollen threads,
spots), while few of them must be eliminated: a mother who
finds an insect inside the plastic cover of a pamper of her baby
or a surgeon who finds a metallic staple inside the cellophane
cover of a surgical instrumentmight spur amulti-million dol-
lars suit. A conservative approach is often chosen in which,
most defects are reanalyzed in the packaging room with a
huge loss of time. Automatic real-time identification of dan-
gerous defects is therefore desirable to reduce time loss and
increase reliability as defects identification, in the current
model, depends critically on the skills and status of the human
operator.

As shown here, machine learning allows going one step
further, recognizing automatically the type of the defect. This
is required for several reasons: for instance, identification of
environment contaminants, scheduling of cleaning sessions
of the machines, assessment of the quality of raw material,
identification of weaknesses in the production line. For this
reason, systems for automatic defect classification (ADC)
have been recently introduced. These are usually based on
a hierarchical two-level structure [19,20], in which the first
level extracts a set of features from the image of the potential
defect and the second level classifies the image and, in case of
dangerous defect, triggers a procedure for defect elimination.

Features definition is the stage most dependent on the
application and it capitalizes often on the experience of
a domain expert. In [21] a hybrid approach is pursued
where features are extracted in both the spatial and the
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Fig. 1 A typical video-inspection system from [1] is shown in (a).
When an image contains a defect e sent also to a classification stage (b)
and/or displayed to an operator. The classification stage is constituted of
two hierarchical modules: features extraction and defect classification.

Classification is carried out by a linear combination of weak classifiers.
Each of these is defined by a threshold and a direction (c) and it analyzes
a single feature

frequency domain. Several approaches based on localized
frequency analysis have been proposed. For instance, in
[22,23] wavelets are used to identify the “signature” of the
features in the different sub-bands. These approaches can be
useful when the defect image is sufficiently large and the
image exhibits some invariance properties. This is often not
the case as the available images are usually small and defects
appear with a different orientation and position, come with
different shapes and change their appearance depending on
how the defect is generated. For these reasons, only spatial
features are considered here.

Extracted features are input to the defect classification
module (Fig. 1b). Machine learning techniques have been
recently introduced to achieve a robust classification as
they allow “learning” the correct classification from a set
of example images, collected on the field, called training
set. Moreover, some of these techniques can learn incre-
mentally and adapt to the current defect population. These
techniques can be subdivided into three broad categories:
soft-computing, [24–27], support vector machines [28,29]
and boosting [30–32].

The methods belonging to the first class are based mainly
on soft-clustering possibly combined with Gaussian mix-
ture models and they are aimed at finding sub-regions in the
features space that characterize each class. This approach
can hardly be applied here as the number of features can
be very large and they present large variability; therefore
different approaches have been pursued. Support vector
machines (SVM) identify non-linear boundaries between
classes, by projecting the image features into a high dimen-
sional space where the different classes can be separated
through hyperplanes. This mapping is obtained through non-
linear parametric functions, named kernels. However, the
performance of the classifier depends critically on the para-
meters involved; these are determined through non-linear

optimization that turns out time consuming and not always
converges to the global minumum [29,33]. Moreover, SVMs
do not have the flexibility to add new classes / images as they
need to be retrained from scratch in this case.

Boosting appears a more natural way to approach our
problem. It is based on combining a set of weak classifiers,
each working on a single feature, to obtain a robust classifier
(cf. “Regular defects” section). Moreover, in its multi-label
version, boosting, not only classifies a datum to a class, but
provides also a rank of the datum with respect to the other
classes [34–37]. However, we do not have such rank infor-
mation as the domain expert provides only the label of one
class: that to which the defect belongs.

We show here experimentally that, although this ranking
order is not provided to the classifier, the system is indeed
able to learn by itself a ranking order that reflects the similar-
ity of the defect with the different classes. We take advantage
of this to propose to the human operator, more than one class
whenever the classifier identifies that the score of two classes
is close to each other. We show with examples, that this is
the case when defects have doubtful classification also for
human experts. This classifier is complemented with a care-
ful feature design based on a two-stage procedure: in the first
stage a set of standard features is defined with the help of the
domain expert. These features are then evaluated and pruned.
Afterwards specific and innovative features have been real-
ized to improve classification. Results on a reasonably large
data set show the validity of the methodology and the ability
to reach the detection of all the critical defects on thematerial.

2 Overview of the System

Defect images are sent by the inspection module to the clas-
sification stage shown in Fig. 2. This processes the image
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Fig. 2 The processing
flow-chart inside the
classification stage. In brackets
the issues considered in the
actual example described here

Fig. 3 Examples of defect images identified by the domain expert: regular contaminations (a), irregular contaminations (b), elongated defects (c),
threads (metallic staples or cotton threads d) insects (e), dense spots (f), folds (g). As it can be seen, defects can change largely their appearance,
position and orientation

to extract a set of features and, from them, it provides
the classification of the image and its rank with respect to
the other classes. The “simple” defects characterized by a
single feature or a simple combination of features, identi-
fied through statistics (“Features Evaluation” section), are
detected first while all the other defects are detected through
boosting.

For the particular system described in the Results section,
a total of 295 real images of the defects were made available.
The domain expert identified seven different defect classes:
regular contaminations, irregular contaminations, elongated
defects, threads (metallic staple or cotton thread), insects,
dense spots and folds (Fig. 3). For each image, correct clas-
sification was provided.
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3 Pre-processing

Before extracting the features, image pre-processing is
required to eliminate most intra image luminance variability.
This step is composed of gray level calibration and binariza-
tion (Fig. 2).

3.1 Gray Level Calibration

Let us call I0 = I0(x, y) the image received from the inspec-
tion module, having dimension N x M and K bits per pixel.
Often this is produced by two different line-scan cameras
and a luminance difference between adjacent lines can be
observed as it is evident in Fig. 4a. This difference is sys-
tematic and it is due to a different gain of the two sensors. It
must be eliminated for making processing more robust. We
adopt here a procedure for real-time gain equalization. The
mean gray level value, Ī , is computed separately for all the
odd and even lines: Ī (I0even) and Ī (I0odd) and the gray level of

the pixels in the odd lines is multiplied by the ratio:
Ī
(
I0even

)

Ī
(
I0odd

)

(gain equalization):

I0odd = I0odd ∗ Δ with Δ = Ī
(
I0even

)

Ī
(
I0odd

) (1)

The second step is the normalization obtained linearly
stretching the image such as to cover the entire range of the
gray levels.

3.2 Background Subtraction (Binarization)

We now extract the defect from the image. Although the
material surface may have a weak texture, algorithms for
texture analysis and identification [38–41], besides their
computational cost, cannot be applied here as texture is often
distorted at the boundaries of the defect. Moreover, some
texture may easily be confounded with the defect itself (cf.
Fig. 3). For this reason, a binarization approach based on
global statistics bas been adopted here: the mean and stan-

Fig. 4 A raw image is displayed on the left. The same image after cal-
ibration is shown on the right: the vertical stripes have been eliminated

Fig. 5 Calibrated image of a dense spot, I0(x,y) (a). The same image
after thresholding, IB(x,y) (b), and after region growing, IE(x,y) (c)

dard deviation of the background gray levels, μo
B and σ o

B ,
is computed on images without defects and the binarization
threshold, T B , is first set to:

T B = μo
B + k ∗ σ o

B (2)

with k is set to the very large value k = 5, that guarantees that
all the background pixels are eliminated. T B is then refined
according to Otsu clustering [42] decreasing k until the vari-
ance between the pixels of the defect and of the background
ismaximized. I0(x, y) is then binarized through T B to obtain
the binarized image, IB(x, y) (cf. Fig. 5b):

I B(x, y) = 1 iff I 0(x, y) ≥ T B

I B(x, y) = 0 iff I 0(x, y) < T B (3)

that contains the pixels of the defect. This procedure has the
advantage of simplicity and it allows tuning binarization to
different lighting conditions producedby a change inmaterial
thickness, flash units and so forth. It should be remarked that
binarization may not produce a perfect separation between
the gray levels of the defect and those of the background
when the two ranges of gray levels partially overlap. This
is critical especially for insects (Figs. 3e, 13) and for dense
spots (Figs. 5, 10).

Isolated background pixels inside the defect body may
hamper feature extraction; for this reason, a second binarized
image is obtained filling the holes in IB through standard
Region Growing [43]. This second image is referred to as
enhanced binarized image, IE (Fig. 5c).

3.3 Orientation Invariance

Defects can show up in any orientation and this has to be
factored out to simplify their classification. To this aim we
apply principal component analysis [43] to determine the
elongation main direction of the defect. This is computed
through the Singular Value Decomposition (SVD) of the data
dispersion matrix, DB:
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Fig. 6 A typical image of an elongated defect is shown in panel (a).
The binarized image, with superimposed the principal directions, is
shown in panel (b). The tight (oriented) rectangular bounding box is
also reported

SVD(DB) = UWV (4)

with:

DB =
[∑

k(xk − x̄)2
∑

k(xk − x̄)(yk − ȳ)∑
k(xk − x̄)(yk − ȳ)

∑
k(y − ȳ)2

]
(5)

where p̄(x̄, ȳ) is the average position of the defect pixels
(overthreshold) IB.U andV are 2× 2 orthonormal matrixes,
andW is a diagonal matrix whose elements contain the sum
of the squared distance of the defect points from the two
principal axes. Applying the matrix VT, IB is rotated so that
the defect major principal axis becomes vertical, making the
image largely insensitive to defect orientation (cf. Fig. 6).
The rotated binary defect image will be referred to as IRB.

4 Feature Extraction

At start, we have identified a basic set of 159 features fol-
lowing the experience of a domain expert. Although they

allow identifyingmost of the defects, the classifier performed
poorly on threads and insects. For this reason, ad-hoc features
for these classes have been developed and features previ-
ously defined have been refined as reported in “Enhanced
Features” section. A total of 221 features were designed.
These have been evaluated a-posteriori, through the statisti-
cal framework described in “Features Evaluation” section, to
assess their discriminative power, their redundancy and effi-
ciency. Through this analysis, the features were reduced to a
total of 71, on which the final classifier operates. In the fol-
lowing the main basic features are described for each class.
We explicitly remark that features were not normalized as the
elementary classifiers adopted here work on single features.
Similar results were obtained for normalized features.

4.1 Regular Defects

These are characterized by a uniform area and by an approx-
imately circular shape. To assess the degree of uniformity,
the image inside BB is clustered into two or three disjointed
regions ([44], cf. Fig. 7), from which the following features
are extracted. The number of blobs, where a blob is a group of
8-connected pixels, is typically two: background and defect
when two clusters are considered or a few for three clus-
ters. The mean gray level of each cluster is usually lower
than in the other classes, as these defects are usually darker.
The variance of the gray levels within each cluster gives
a direct evaluation of the uniformity of each cluster. More-
over, in three-clusters clustering, the l2 norm of the difference
between the mean gray level of the two darkest clusters is
usually smaller than in other classes as these two regions
are associated respectively to the inner defect area and to its
border respectively.

Another feature, characteristic of this class, is the his-
togram profile and, in particular, the horizontal and ver-
tical profile of the minimum gray level, hmgv and vmgv

that have usually a characteristic “U” shape with steep

Fig. 7 The image of a typical regular defect (a). The same image clus-
tered into two (b) or three (c) clusters is shown with a ×4 zoom. The
horizontal profiles of the gray levels is reported in panel (d): upper

curve—minimum gray level; middle curve—mean gray level; lower
curve—maximum gray level. The same curves referred to the vertical
profiles are reported in panel (e)
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Fig. 8 A typical irregular
defect is reported in (a) along
with its vertical profile (b). The
points used to compute the
peaks properties are
evidentiated, see text for details

slopes (cf. Fig. 7d–e). To characterize the profile transi-
tion, we have proceeded as follows. Let us consider the
horizontal profile (the same derivation applies to the ver-
tical profile) and intersect it with the line y = 0.9 ∗
μ̄mgv , where μ̄mgv is the mean gray level of the pro-
file. This produces a set of N intersection points, {IP},
which identify N/2 peaks (Fig. 8b). Let us call IPLj and
IPRj the two IPs associated to the j-th peak and PVj the
point associated to the minimum, xPVj , inside this inter-
val. From these three points, the left base point of the
peak, PPLj is identified by minimizing the following cost
function:

H
(
PPLj

) =
xPPLj−Z

∑

t1=xIPLj

{(
hmgv (t1) − μ1, j

)2}

+
xPVj∑

t2=xIPLj
+1

{(
hmgv (t2) − μ2, j

)2} (6)

where μ1 j and μ2 j are the mean value of the gray levels
computed between IPLj and PPLj and IPLj + 1 and PVj

respectively and Z allows considering several pixels outside
the peak interval, a value Z = 10 is considered here. The
right base point of the peak, PPRj, is identified through an
analogous cost function.

The properties of each peak are then evaluated inside the
segment between the two points PPLj and PPRj through the
following features: mean and standard deviation of the gray
levels profile and variability of the first and second deriva-
tive inside the histogram segment associated to the peak. The
latter are measures of uniformity inside the defect area. The
variability of the derivatives is computed with the l1 norm to
penalize possible outliers. An additional feature is the num-
ber of peaks, which is usually equal to one for the regular
defects.

4.2 Irregular Defects

No specific processing has been developed for this class as
the defects in this class are those which cannot be classified
in the other classes.

4.3 Elongated Defects

Elongation is evaluated as the ratio between perimeter and
area. To this aim, themajor and minor singular values,wi i in
(4), are normalized and assumed as features along with their
ratio. The occupancy rate, that is the percentage of defect
pixels inside the bounding box tight, BRB , is also considered,
as the defects of this class tend to better fill their bounding
box (cf. Fig. 6b).

4.4 Threads

Threads come usually from packaging and they are charac-
terized by a small almost constant width and some variability
in the local orientation (cf. Figs. 3d, 9). They are identified
analyzing the statistics of the local thickness and orientation
determined from all the points, p*, of the defect.

A voting scheme has been implemented. Eight orienta-
tions, equally spaced by π/8, {l j , j = 1..8} are considered
for each point p*: the local thickness in p* in the direction l j
is estimated as the number of white pixels,Wp∗;l j , measured
along that direction. To get a metric measure wemultiply this
value for the length of l j inside each pixel, that is by

√
5/2, for

l j = π/8, 3/8π, 5/8π, 7/8π and by
√
2 for l j = π/4, 3/4π .

The minimum of the eight Wp∗;l j is assumed as the absolute
local thickness in p*, Wp∗ , and the distribution of the Wp∗s
over the whole image is evaluated through the mean, the
standard deviation and the maximum thickness. These fea-
tures tend to assume values lower in threads than in the other
classes.
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Fig. 9 Typical threads images:
in a the distribution of local
thickness is highlighted in a
gray levels scale. In b a loop in
the upper portion of the defect is
identified

Another characteristic of threads is local orientation. In
fact, they may have few preferred directions (cf. Fig. 3d),
especially when they are metallic staples. Defect orientation
can be assessed by using the distribution of the Wp∗;l j in a
somehow complementary way. First the eightWp∗;l j are nor-
malized to obtain a vote, Vp∗;l j , between 0 and 1, associated
to each direction:

Vp∗
j
= Wp∗;l j

8∑

j=1
Wp∗;l j

(7)

the larger is the vote, the more the defect is elongated in that
direction. The votes collected from each point p* for each
direction, j, is added in an accumulator, A j , one for each
direction. When all the p* have been examined, the A j are
normalized again between 0 and 1, to allow comparison of
defects that have different dimension and occupy a different
number of pixels in the image.

A j = A j

8∑

j=1
A j

(8)

A j represents therefore a vote for each of the eight directions
for the whole defect. The A j s are then sorted in decreasing
order, such that A0 is associated with the preferred defect

orientation. The following features are then computed: the
sum of the first two votes, that is higher the more the defect
assumes a predominant direction, and the sum of the votes
of the last three and the last two directions, that indicate the
presence of one or more predominant directions. Additional
information is conveyed by the orientation standard devia-
tion computed on the A j with the rationale that the lower the
standard deviation the more isotropic is the defect.

4.5 Insects

Insects fly by the running material and may become trapped
and stamped on the tissue. They can be described as a body
with legs and/or wings. The body is usually uniform and can
be assimilated to an elongated or regular defect. Wings tend
to assume a light gray colour and they could be identified
by intra-cluster variability (cf. “Regular defects” section).
Legs are usually constituted of small line segments which
can be highlighted by high-pass spatial filtering, for instance
through Sobel operator. Features aimed at determining the
dispersion of the defect in the image help in the identification
of the insects too. Therefore, the following two additional
features are considered: the ratio between the mean defect
thickness and its perimeter and its connected component.
The latter is defined as the set of all the dark (defect) pixels
connected to at least another dark pixel.
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Fig. 10 A dense spot (a). Its
binarized image, IB,(b). The
image of the pale gray area
detected through (9), IW: the
“white” area is shown as dark
pixels here (c). Three-clusters
clustering carried out on the
enlarged bounding box, BBE ,
considering the pixels over
threshold in both IW and IB(d)

4.6 Dense Spots

These defects occur when stretched fibers pile up and appear
on the image as a dark nucleus surrounded by a characteristic
pale gray / white shadow (cf. Fig. 10a). This pale gray area
is almost unique of this type of defect as all the other defects
produce pixels darker than the background. To search for pale
areas, we observe that the binarization produce an image IB

containing only the nucleus of the dense spot (Fig. 10b). A
second binarized image containing only the pale gray pix-
els, IW, can be created thresholding I0 with the following
threshold value, TW (Fig. 10c), lower than T B in “Back-
ground subtraction (binarization)” section:

TW = μ0
B − KD ∗ σ 0

B (9)

with KD empirically set to 4 with a procedure similar to that
described in “Background subtraction (binarization)” sec-
tion. A bounding box enlarged by 50 %, BBE, is created
around IB (cf. Fig. 10d) and the following features are com-
puted inside BBE : the ratio berween the amplitude of the core
area, measured as the number of the defect pixels in IB, and
the overall dense area, measured as the number of pixels in
IW; and the mean plus standard deviation of the gray levels
computed for all the pixels belonging to IW and lie inside
BBE.

4.7 Folds

Folds are introduced by an error in the control of the tensing
mechanism that drives the smooth motion of the tissue on
the assembly line. They appear as dark stripes as large as the
entire image (Fig. 11a). Therefore a first feature considered
is the height of their bounding box, which is as large as the
image for this type of defects. A second feature is derived
from the observation that in the first few rows of the image, on
the top and on the bottom, the standard deviation of the gray
levels with respect to the clean image increases, while the
mean gray value remains almost constant. This is captured

Fig. 11 A typical fold defect is shown in (a). It extends over the whole
vertical dimension of the image. The vertical extension of the defect is
evident in the binarized image shown in (b)

by the mean value less the standard deviation of the gray
levels of the first few rows of I0.

5 Adaptive Labelling Through Boosting

Classification is based on boosting [32]. This linearly com-
bines a set of elementary binary classifiers, h f,ϑ (I0), each
working on a single feature, to obtain a global robust clas-
sifier. h f,ϑ (I0) maps a defect image, I0, into a binary value,
±1, depending on the comparison of the value assumed by a
feature f , computed from I0, with a threshold ϑ :

h( f,ϑ)

(
I0

)
=

{−1 if f < ϑ

+1 if f ≥ ϑ
ϑ ∈ R (10)

The elementary classifiers do not produce alone a satisfactory
result. For instance, an elementary binary classifier working
on the best feature (the sum of the first two votes, “Threads”
section) is able to correctly classify no more than 16 % of
thread defects. However, a robust classifier of I0, H(I0), can
be obtained by linearly combining a set of T elementary
classifiers into what is usually called a committee of weak
classifiers [34]:
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H
(
I0

)
= sign

T∑

t=1

αt h f (t),ϑ(t),t

(
I0

)
(11)

with αt ∈ R. The global classifier is built incrementally: at
each iteration a new binary classifier is added in three steps:
choice of the feature (and therefore of the binary classifier and
of its threshold), computation of its associated coefficient and
update of the weight of all the images. The choice is such that
the maximum reduction of the classification error is obtained
at each iteration for the given data set (DS) [31,32].

When more than one class is defined, as in this case, a
multi-label version of boosting, named AdaBoost.MR [34–
37], has been proposed. InAdaBoost.MRnot only the correct
label of an item has to be provided but also the rank of the
image with respect to the different classes. Once trained, the
global classifier is able to provide the rank of any new image
with respect to each of the L different classes: l1, l2. . .lL . In
this case, the output of the classifier would be a function of
both the current image, I0, and the class label, lk :

H
(
I0, lk

)
=

T∑

t=1

αt h f (t),ϑ(t),t

(
I0, lk

)
=Ck (12)

with Ck ∈ R and C j > Ci holds if the image I0 is more
likely to belong to class j than to class i . Each elementary
classifier, h(.), outputs a different value for each class, lk , and
the performance of the global classifier, H(.), can be evalu-
ated counting the number of ordering errors, called ranking
loss, rloss .

Such ranking information is not present here as the domain
expert assigns only the true defect label to each image and,
as far as we know, training results in this situation have not
been examined so far. As only the defect class is given, we
consider only the crucial ordering errors that occur when the
first ranked class is not the true one and compute, rloss as:

rloss =
∑

i

(
l̂I0i

: l̂I0i �= Max
lk

H
(
I0i , lk

))
(13)

where l̂I0i
is the highest ranked class, provided by H(.) for

image I0i .
The classifier behaviour is uniquely determined by the

parameters in (12), that is the number of elementary clas-
sifiers in the committee, T , the feature on which each of
them operates, f (t), the associated threshold, ϑ(t) and the
coefficient αt . The minimization of Eq. (13), with respect
to these parameters, cannot be achieved in closed form and
an iterative procedure is usually adopted [34]. At each step,
all the images in the data set are examined and an elemen-
tary classifier is added to the committee, such that (13) can
be maximally reduced. To this aim, the following weighted

error, rt , is minimized at each step, t , by comparing the clas-
sifier output for class l j to the output of the classifier for the
true class l∗:

rt =
∑

i,l j �= l∗
Dt

(
I0i , l j , l

∗) e
1
2αt

(
ht

(
I0i ,l j

)−ht
(
I0i ,l

∗))
(14)

We observe that ht
(
I0i , l j

) − ht
(
I0i , l

∗) gives a negative
contribution if ranking is correct, a positive one otherwise.
Therefore, if the image I0i is correctly classified to the class
l∗, rt is decreased, while it is increased otherwise. The role
of D(.) is to give a larger emphasis to those images for which
the correct classification is most problematic at step t.

The first step of each boosting iteration, is to identify the
weak classifier, ht (.), that is to find the feature-threshold pair:
{ ft , ϑt}, which minimizes (14), and to add it to the global
classifier, H(.) in (12). Following [34], to reduce thememory
storage required in (13) from N 2 to N x L , D(.) is split into
the following product:

Dt

(
I0, l j , l∗

)
= vt

(
I0, l j

)
vt

(
I0, l∗

)
(15)

Plugging (13) and (15) into (14), we obtain the expression
of the ranking loss, rt , as:

rt =
∑

i,lk

v
(
I0i , lk

)
e
1
2

[
Yi (lk )ht

(
I0i ,lk

)]
(16)

with Yi [lk] = +1 if the image I0i belongs to class lk , that is
lk = l∗,Yi [lk] = −1, otherwise. Therefore, at each step, we
identify the ht (.) that miminizes (16).

The second step of each iteration is the computation of the
linear coefficient, αt in (12) that according to [32,34,35] is
obtained as:

αt = 1

2
ln

(
1 + rt
1 − rt

)
(17)

with

r =
∑

i,k

d
(
I0i , lk

)
Yi [lk]h

(
I0i , lk

)
(18)

and

d
(
I0i , lk

)
= 1

2
v

(
I0i , lk

) ∑

l j :Yi [l j ]�=Yi [lk ]
v

(
I0i , l j

)
(19)

The last step is the update of the weighting function:
v(.),according to [32]:

vt+1

(
I0i , l

)
= vt

(
I0i , l

)
e− 1

2

(
Yi [l]h

(
I0i ,l

))

√
Zt

(20)
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where
√
Zt is a normalization factor which makes vt+1 a

distribution and it is equal to:

Zt =
∑

i,l

vt

(
I0i , l

)
e
1
2

∣
∣at ht

(
I0i ,l

)∣∣
(21)

vt(.) is set equal for all the images, and all the labels pairs at
start. Taking into account that only the true label is consid-
ered in the ranking loss function (13), Zt is set here equal to√
L(N − 1).

6 Enhanced Features

As shown in the next Section, the classifier employing basic
features does not exhibit good performances on defects such
as “Insects” or “Threads”.Although in upper panel of Fig. 13,
the insect is indeed clearly different from other defects, in
most of the cases (e.g. lower panel of Fig. 13), insects tend
to get confused with other classes (cf. Fig. 21). Similar prob-
lems are observed with threads. To improve classification
performance we had to design a set of enhanced features.

6.1 Enhanced Features for Threads

One of the main problems with threads is that, after binariza-
tion, the border of the defect becomes discontinuous and local
thickness can be underestimated, producing a thickness vari-
ability larger than the true one. To avoid this, a more robust
identification of the local width is achieved filling in the
possible holes in the defect. Morphological operators have
been avoided as they would blur dense spots making them
unrecognizable. Instead, to this aim, the pixels are analyzed
in rows and columns and filling in is carried out when up to
Q consecutive white pixels are limited by two defect (black)
pixels by turning into black (defect) the pixels in between (cf.
Fig. 12). Q depends on image resolution and it was exper-
imentally set equal to 4. The following features, similar to
those defined in “Threads” section, are added: mean, stan-
dard deviation and maximum local width.

6.2 Enhanced Features for Insects

Because of background inhomogeneity and texture, and
because legs tend to assume gray levels close to the back-
ground, legs and sometimes wings are filtered out during
binarization (Fig. 13b) and insects gets easily confounded
with regular or irregular defects. To avoid this, specific
processing has been developed to locally tune the bina-
rization threshold around the insect body. Algorithms for
structure detection like anisotropic diffusion [45], Sobel fil-
tering [43], adaptive thresholding [46] have not been able to
give reliable results, because of the limited area occupied by

Fig. 12 In (a) the local width of a defect, computed with the method
described in “Regular defects” section, is written inside each pixel. The
local width after filling in rows and columns of pixels is reported in
(b). The pixels for which the local defect width is different are shown
in black, those for which it does not in light gray. Notice how the true
local defect width is better approximated in (b)

the defect itself. This tricky problem shares some similarities
with vessel tracking in digital angiography [47], plants roots
tracking in biology [48], or fibre tracking [49,50] in MRI for
which different approaches have been proposed.

However, as insect legs do not have a high contrast with
the background these algorithms do not show reliable results
and an ad-hoc solution to “recover” insect legs from the
image has been developed. This is based on an adequate set
of matched filters associated with an a-posteriori evaluation
of the filtering result, combined with adaptive thresholding.
The procedure is illustrated with the help of Fig. 13. We
start from IB(Fig. 13b) and consider a rectangular bound-
ing box, enlarged by 50 %, centred in the defect, BBE . The
image inside BBE is processed by two banks of matched fil-
ters [43], targeted to highlight small linear segments. Each
bank has a different resolution: the first bank extracts seg-
ments 1.5 pixels wide and 5 pixels long, while the second
one slightly larger segments: 2 pixels wide and 6 pixels long
(Fig. 13c). Thefilters in each bankhave different orientations,
equally spaced by π/12. The final filtered image, IMF(x, y),
is obtained, considering, for each pixel, the maximum gray
level obtained after applying the whole set of 24 filters. The
gray levels are then stretched between 0 and 2K−1 for improv-
ing visibility of the filtering result (Fig. 13c).

We can now further refine the binarization threshold. From
IMF, the co-occurrence matrix, CR, [51], is created as fol-
lows. For each pixel belonging to IMF,pMF, the mean and
standard deviation, μMF and σMF, of the gray levels inside
a 3 × 3 window centred in pMF, is computed and μMF and
σMF are then truncated to the closest integer. A histogram
of the number of pixels for each pair (μMF , σ MF ) is then
created. This has the typical shape shown in Fig. 14a. As
can be seen, CR is a sparse matrix with values larger than
zero concentrated along the main diagonal: for a given gray
level, the variability around it is similar in different areas of
the defect image and increases with the gray level. We also
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Fig. 13 The original image, I0, of a large insect in the upper row and of
a small insect in the lower row (a). The same image after binarization,
IB (b); notice that legs are almost missing in both cases. The image,
after the application of the two banks of matched filters (c). Notice that

in the case of large insect, the enlarged bounding box, BL, is almost
coincident with the defect image itself. The final defect shape extracted
by the enhanced processing described here (d): notice the recovered
parts, in black

Fig. 14 The co-occurrence matrix associated to the defect in the lower
row of Fig.14 (a). Its elements contain the number of co-occurrences of
a given mean gray level (on the abscissa) and a given standard deviation

(on the ordinate), for all the 3 × 3 windows extracted from IMF. The
profile of the co-occurrence matrix computed along the best-fitting line
is shown in (b) with superimposed its fitting by a Gaussian
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remark that a 3 × 3 matrix around pMF will contain mainly
background. This suggests some regularity in the background
pattern. A linear regression is performed to determine the
straight line, sMF, which best fits the matrix entries. To the
scope, the entries of CR are regarded as points in a 2D space
(μMF, σMF), eachweightedwith the inverse of the associated
co-occurrence count. The co-occurrence count measured on
sMF constitutes the co-occurrence profile of IMF whose typ-
ical shape is plotted in Fig. 14b. This profile is fitted with a
Gaussian, whose standard deviation, σHB, represents a more
robust estimate of the local background statistics. Therefore
it can be used to obtain a tighter threshold, THB for local
background subtraction (cf. Eq. (2):

THB = μ − KT ∗ σHB (22)

with KT experimentally set to 2.5, but smaller values work as
well. An enhanced defect image, IHB, can now be obtained
thresholding I0 with THB. Such an image does contain legs,
wings but it may contain also spurious elements. To filter
them out, the over-threshold pixels in IHB are first grouped
into blobs. These are then analyzed and only those blobs
similar to legs or wings are maintained. To the scope, the
statistics of the defect local width and local orientation is
computed as described for threads in “Threads” section (Eqs.
(7, 8). In particular, the mean and standard deviation of the
local defect width, μS and σS , allow determining a degree of
compactness, c, of the blob:

c = (μs + gs ∗ σs)
2/n (23)

with n, number of pixels of the blob. In the present system, gs
was set to 0.25 but we have experimentally verified that the
output of the classifier was robust with respect to variations
in the coefficient gs . If the blob has a small width and it
is uniform, μs and σs assume small values and c, in turns,
assumes a small value, too. To be considered a leg the blob
should also be oriented along a preferred direction. This is
evaluated through themean value of the standard deviation of
the votes assigned to each direction (7),μσV and the standard
deviation of the votes assigned to the eight equally spaced
directions, {A j} in (8), σv. These considerations are lumped
as follows:

b = (μσV + gs ∗ σv)/c (24)

b turns out to be a reliable estimate of the spatial distribution
of the blob: the larger is its value, themore the blob is close to
a segment, and therefore close to a leg or a wing. Therefore
spurious parts can be filtered out if b > T SP .T SP was set
to 0.75, considering that the matched filters were aimed in
finding structures not larger than 2 pixels. This is a very

conservative value as we prefer to loose part of a leg rather
than consider a spurious part as an insect leg or wing.

At the end of this processing, we extracted the Number of
additional parts, their mean width and standard deviation.
Although these features are robust for insects they are not
sufficient to discriminate them from the other classes and in
particular from threads and irregular defects.

7 Features Evaluation

A statistical framework has been developed to evaluate the
features in relationship to their capability of correctly clas-
sifying the defects. To this aim, the mean, the standard
deviation, the minimum and the maximum value of each fea-
ture is computed for each class.

We first verify if any feature is able, alone, to distinguish
one class from all the others (Fig. 2). Two features: bounding
box height and mean less standard deviation of the first rows
assume values in folds images that are significantly different
from those assumed in all the other classes. The bounding box
height is always equal to themaximum imageheight, 200 pix-
els, with zero standard deviation for folds, while for the other
classes it assumes a value of 29 pixels± 25 pixels (Fig. 15a).
The mean less standard deviation of the first rows has less
discriminative power: it assumes an average value of 103 ±
7 pixels for folds, and of 123 ± 10 pixels for all the other
classes (Fig. 15b). Therefore, using a combination of the two
binary classifiers working on these two features, the system
is able to classify fold defects always correctly (Fig. 16).

The same result was obtained through boosting. The
global classifier in (11) was able to achieve a 100 % detec-
tion rate on the fold defects by automatically selecting the
two binary classifiers with these two features with an equal
weight: αt = 0.5 each.

There are no separating features for dense spots; the two
best features: the ratio of the amplitude of the core and the
dense area and the mean plus standard deviation of the gray
levels computed for all the pixels belonging to the dense
or defect areas (cf. “Dense Spots” section) produce an error
rate of 1.5 and 2.3% respectively. However, a single classifier
constituted of twobinary classifiersworkingon these features
linearly combined throughboostingdoes allowseparating the
spots defects from all the others.

No features,with such a discriminative power, can be iden-
tified for the other classes (cf. Fig. 17) and we have to resort
to multi-label boosting for all the other classes.

To reduce the processing time and avoid overfitting, the
number of features used by boosting should be limited. To
this aim, the capability of each feature in separating one class
from the others is assessed through statistical analysis [52].
We first evaluate the spread of the pth feature, f p, for each
class k, through the intra-class variance, which is defined as:
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Fig. 15 Features able to
identify fold defects univocally.
In a the mean value (dark gray)
and standard deviation (light
gray) of the bounding box
height is reported for the seven
classes; in b the mean gray
value less the standard deviation
of the first rows is reported

Fig. 16 The value assumed for
the seven classes by the two best
features for dense spots.
Combining, through boosting,
these two features a dedicated
classifier for dense spots is
obtained. The mean value is
plotted in dark gray, the
standard deviation in light gray

σ 2
IC

(
f pk

) = σ 2
(
f pk

)

〈
σ 2 ( f p)

〉 (25)

the smaller is σ 2
IC

(
f pk

)
, the more concentrated are the values

of f p for the k-th class and therefore the more the feature
f p is able to characterize that class. Another statistical index
introduced to evaluate the discriminative power of a feature

is the correlation between two features, f q and f p, for each
class, k. This is computed as:

ρk( f
p, f q) =

1
Nk

Nk∑

i=1

(
f qi − μ

(
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)) (
f pi − μ

(
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)
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)

(26)
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Fig. 17 The statistics of the following features: percentage of occu-
pancy of the bounding box tight (a, cf. “Elongated Defects” section),
mean value of the horizontal profile (b, cf. “Regular Defects” section),
ratio between the defect perimeter and area (c) and mean residual error

of clustering with two-clusters (d, cf. “Regular defects” section). The
mean value is reported in dark gray, and the standard deviation in light
gray. As it can be seen the features assume values which partially over-
lap among the different classes

Lastly, to evaluate the distance between the values
assumed by the p-th feature in the two classes, the inter-class
variability, ircv( f pk ), has been computed as:

ircv
(
f pk

) =
L∑

l=1

∣∣μ
(
f pk

) − μ
(
f pl

)∣∣
√

σ 2
(
f pk

) + σ 2
(
f pl

) (27)

The larger is the inter-class variability, the better the two
classes can be distinguished. Eqs. (25–27) are used as fol-
lows. First, when two features have a high correlation value,
ρk( f p, f q) > 0.9 for all the classes, the one with the larger
inter-class variability is discarded. Then, all the possible
feature-class pairs are analyzed to discard those features with
the least discriminative power. To this aim, for each feature,
we evaluate the following conditions:

a) σ 2( f pk ) > 3 && ircv(f pk ) < 8 (28a)

b) ircv
(
f pk

)
< 1.5 (28b)

If a feature satisfies both conditions for all the classes, that
feature is discarded. Thresholds in Eq. (28) were set experi-
mentally considering the images in the whole dataset without
any optimization, and results are robust against variations of
their values. As such Eq. (28) are general and could be used
with other feature sets to evaluate correlation and discrimi-
native power: parameters may make the choice more or less
strict.

After the statistical analysis the number of features was
reduced from 221 to 71.

8 Results

The defect images considered here were acquired through a
FlexinTM video-inspection module [14] from five different
plants, from material running at speeds up to 2m/s. Light-
ing was adjusted such that defects appear as a dark shadow
on a light background and that no defect goes undetected.
The system compares in real-time the mean gray level of the
current image with that of a reference clean image. When
the difference is over a given threshold, the image contains
a defect and it is sent to the classification module. Although
more refined approaches can be used to detect when a defect
is present on the material (e.g. [38,39]), this solution is very
reliable in the present domain.

From the whole set of 295 defect images available, for
each experiment, a balanced sub-set of images, IDS , was
randomly extracted. This set is constituted of 215 images: 40
images of regular defects, 40 of irregular defects, 40 of elon-
gated defects, 50 of threads and45of insects.A larger number
of thread and insect imageswas inserted because of the intrin-
sic difficulties of these two classes. As expected classification
error goes to zero in a finite number of iterations (42 in
Fig. 18). However, this does not guarantee that the classifier
is able to correctly classify any other defect image. To eval-
uate accuracy in a robust way, cross-validation [52] has been
implemented. To this aim, in each experiment, the images in
IDS were randomly partitioned into two sets: a training set,
IDR , constituted of 172 images (80 % of the defect images)
and a test set, IDT , constituted of 43 images. The training set
was used to compute the parameters of the classifier (Eq. 12),
while classifier accuracywas computed only on the images of
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Fig. 18 The classification error for the training (discontinuous line)
and test (continuous line) sets is reported for a typical set of experiments
in which only basic features were considered. As it can be seen while
the training error approaches zero quite fast, the test error saturates and
does not fall below 15 %

the test set. Reported results are obtained averaging the output
of 10 experiments in each of which the images were shuf-
fled 5 times randomly. The maximum number of iterations
for boosting was set to 100 as no significant improvement is
obtained beyond this value; on the contrary, the number of
binary classifiers would increase unnecessarily.

We have first implemented single class boosting (11) with
the basic set of features. As it can be expected (Fig. 18) the
training error on IDR goes to zero quite fast: it is zero already
at the 42th iteration on the average. The test error decays
also rapidly until the 30th iteration, but afterwards it starts
decreasing very little approaching a 15.2 % error at the 100th
iteration.

The errors are distributed among the different classes as
shown in Table 1. As it can be seen, most of the errors are
due to the miss-classification of threads, insects and irregular
defects; for each of this class the error is around a few per-
cent, ranging from 2.64 % for irregular defects to 2.88 % for

insects. For instance, insects are miss-classified as irregular
defects 1.3 % of the times; this means that, on the average,
0.56 images (over the 43 images of the test set) are misclas-
sified as irregular defects, over all the 10 repetitions with
5 different distributions of training and test set images. We
explicitly remark that differently from classical applications
of boosting, we do not have here false positives, as all the
images sent to the classifier by the inspection module con-
tain a defect and only misclassification errors are considered.

Although the misclassification rate is very small for each
class, the overall number of errors committed, on the average,
over the test dataset is of 15.2 %. Moreover, misclassifica-
tion of the critical classes, namely that of the insects and
that of the threads, has to be avoided completely. No errors,
instead, are committed on folds and on dense spots both in
training and test images: 100 % of these defects are correctly
identified.

A closer analysis of Table 1 shows that the classifier
tends to confound insects and threads, mainly with irregular
defects. This suggests that the basic set of features assume
too close values for these classes to be able to discriminate
them. This has prompted us to design improved features for
insects and threads (“Enhanced Features” section).

With the new set of features and after pruning (Section 7.2)
the overall error drops to 13.6%as shown in Table 2. Classifi-
cation errors larger than 1%are found for the elongated class,
where few images are erroneously classified as threads or
insects; and in threads, that can bemiss-classified as irregular
defects. False negatives on insects have been halved decreas-
ing to 1.95 % while they decreased only slightly on threads.
This is not sufficient yet to operate the classification system
safely.

Another 1.5 % of improvement was obtained applying
the enhanced multi-label version of boosting reported in
“Adaptive Labelling Through Boosting” section. As shown
in Fig. 19 the overall testing error drops to 11.9 %. This is
mainly due to the fact that during training the classifier is
forced at the same time, to assign an image to the correct
class and not to classify it to the other (wrong) classes.

Table 1 Confusion matrix

Basic features single class boosting Class #1 Class #2 Class #3 Class #4 Class #5

# % # % # % # % # %

Confusion with #1 0.0 0.0 0.640 1.488 0.040 0.093 0.0 0.0 0.360 0.837

Confusion with #2 0.48 1.116 0.0 0.0 0.280 0.651 0.480 1.116 0.560 1.302

Confusion with #3 0.16 0.372 0.200 0.465 0.0 0.0 0.480 1.116 0.0 0.0

Confusion with #4 0.0 0.0 1.120 2.605 0.560 1.302 0.0 0.0 0.320 0.744

Confusion with #5 0.0 0.0 0.680 1.581 0.0 0.0 0.200 0.465 0.0 0.0

Total classification errors 0.64 1.488 2.640 6.140 0.880 2.047 1.160 2.698 1.240 2.884

An error average number equal to 1.49, 6.14, 2.05, 2.70 and 2.88 % was obtained for the five classes using basic features only with a total average
error of 15.2 %
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Table 2 Confusion matrix

Enhanced features Class #1 Class #2 Class #3 Class #4 Class #5

# % # % # % # % # %

Confusion with #1 0.000 0.000 0.520 1.209 0.000 0.000 0.000 0.000 0.320 0.744

Confusion with #2 0.360 0.837 0.000 0.000 0.240 0.558 0.520 1.209 0.320 0.744

Confusion with #3 0.000 0.000 0.160 0.372 0.000 0.000 0.360 0.837 0.000 0.000

Confusion with #4 0.040 0.093 0.600 1.395 0.520 1.209 0.000 0.000 0.200 0.465

Confusion with #5 0.040 0.093 0.680 1.581 0.760 1.767 0.200 0.465 0.000 0.000

Total 0.440 1.023 1.960 4.558 1.520 3.535 1.080 2.512 0.840 1.953

The error rate obtained using the enhanced features is reported; a total average error of 13.6 % is obtained
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Fig. 19 The classification error on training (discontinuous line) and
test (continuous line) sets is reported for a typical set of experiments
in which enhanced features and multi-label boosting are considered.
Notice that the error is reduced down to 11.9 % on the average

Although the error could be further reduced designing a
second improved set of features, we have chosen here to
take advantage of the ability of the classifier to automatically
rank the defect images. In fact, a closer view of the clas-
sification errors (cf. Figs. 21 and 22) reveals that also the
human expert may experience some difficulty in correctly
labelling some images; we may regard these images as con-
taining defects that lie ideally at the boundary between two
classes. This analysis is supported by the output of the classi-
fier (Fig. 21) that produces similar values for these images. To
obtain a robust labelling that guarantees avoiding false neg-
atives especially for the most critical classes, we consider
both the first and the second label output by the classifier
when their distance is much smaller than that between the
second and the third label. This brings the overall error down
to 2.33 % on the average (Fig. 20); the error goes to zero
for the elongated defects, and almost to zero for all the other
classes (Table 3). For instance, only 0.093%of the insects are
erroneously classified as irregular, that means that one image
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Fig. 20 The classification error for the training (discontinuous line)
and test (continuous line) images is reported for a typical set of exper-
iments in which enhanced features, enhanced multi-label boosting and
the first two labels are considered

over 129 has been miss-classified. As test sets are constituted
of 43 images, randomly extracted at each experiment from
the whole data set, this means that one insect image was
wrongly classified in a few experiments.

The overall processing time required by the classification
module is less than 1s (upper bound), using not optimized
code on an old Pentium IV, 2Gbyte of memory, 1.7Ghz. This
time is compatible with the requirement of on-line real-time
defect classification. We remark here that most of this time
is consumed by enhanced feature extraction designed specif-
ically for insect legs and thread identification, which, alone,
requires 0.8s. The processing time required by the video-
inspectionmodule to extract the defect images is negligible as
it requires only computing a difference between two images.

9 Discussion

The system presented here is aimed at Zero Defect Tolerance
that, since its introduction in [53], has become the goal of last
generation quality control systems. The simplest systems are
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Table 3 Confusion matrix

First two classes Class #1 Class #2 Class #3 Class #4 Class #5

# % # % # % # % # %

Confusion with #1 0.000 0.000 0.040 0.093 0.000 0.000 0.000 0.000 0.000 0.000

Confusion with #2 0.000 0.000 0.000 0.000 0.000 0.000 0.080 0.186 0.040 0.093

Confusion with #3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Confusion with #4 0.040 0.093 0.200 0.465 0.000 0.000 0.000 0.000 0.160 0.372

Confusion with #5 0.000 0.000 0.160 0.372 0.000 0.000 0.080 0.186 0.000 0.000

Total of false negative 0.040 0.093 0.400 0.930 0.000 0.000 0.160 0.372 0.200 0.465

The error rate obtained using enhanced features, enhanced multi-label boosting and the first two ranked classes is reported; a total average error of
2.33 % is produced

based on the identification of specific features on the images
[5,10,54–56]. This is not always feasible and combination of
features have to be considered to achieve a good classification
as in the approach presented here based on boosting.

Features are designed starting from the knowledge of the
domain expert who suggests typical characteristics of the
different defects. Most relevant features are selected on the
basis of their discriminative power: this has allowed discard-
ing here a large number of features: 150 features over 221.
We have implemented here a framework based on classical
statistics, but any other method suitable to identify the dis-
criminative power of a feature in a statistical framework, like
for instanceLinearDiscriminantAnalysis [57], could be used
as well.

The analysis of the discriminative power of features has
prompted us to design new advanced features targeted to
classes difficult to disambiguate, here insects and threads:
the first ones get confused with elongated non dangerous
defects while the second ones get confused with the other
classes as described in Section 6. A more refined consensus
based strategy [58] has been introduced to characterize the
local thickness and orientation of threads greatly reducing
the false negatives on this class. Insects are more complex as
they exhibit a large variability. Analysis of binarized images
(Fig. 13) has suggested to develop algorithms to better detect
their legs. The use of matched filters in combination with
the co-occurrence matrix has provided the new features that
allow a more robust classification of insects. These novel
complex features can be of interest for domains different
from the one for which they have been designed.

However, in a few cases, the feature detectors are not able
to recover completely the characteristic for which they were
designed. For instance, in Fig. 22a, the continuous thread has
been captured as two distinct pieces; in Fig. 21e the entire
insect wing is not found, due to the closeness of its gray
levels to that of the background and in Fig. 22b, the frontal
curved small segments could not be found by thematched fil-
ters. Although new features could be developed (e.g. curved

matched filters), we have explored here a different solution:
we accept that, in some cases, the classifier outputs similar
values for two classes. In this case, both labels are consid-
ered. This is equivalent to hypothesizing that the classifier
finds hard to classify an image to either one class or the other.
Although the conditions on the features that guarantee this
have still to be investigated, it has been verified experimen-
tally that such approach allows dealing with situations that
can be considered borderline (Figs. 21, 22). We remark that
in these situations also the domain expert was not completely
sure on which the correct classification was.

We have implemented classical boosting machinery here
using only one label for each image and no ranking infor-
mation. Enhanced mechanisms, recently proposed [59,60],
implement explicit mechanisms to further enhance the output
associated to the winning class, modifying the exponential
loss function (15). However these implementations would
increase artificially the distance between two classes, some-
how distorting the similarity measure underlying ranking.
The simple squashing function in (10) could be substituted
with a continuous function like Gaussians or logistic [61,62].
However, such functions are more suitable to multi-variate
regression problems and have been largely adopted in these
domains, in which a continuous function is incrementally
approximated (cf. also [63]), and simple binary functions
have been used here.

We remark that other multi-class labeling procedures
could produce a ranking that is proportional to the distance
of the classifier output associated to two classes. Such classi-
fiers can be based on soft-classification and be implemented
through neural networks, discriminative or statistical meth-
ods. Nevertheless, boosting retains the simplicity of adding
one feature at a time to the classifier while all other systems
usually require that the features are all evaluated in parallel.

In the presentwork,we suppose that the inspectionmodule
does not fail in detecting defects.One of the reasons is that the
production line considered are indoor in controlled environ-
ments: no variations in illumination are present and optimal
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(a) (b)

(c) (d)

 
(e) (f)

Irregular = 8,35
Insect = 6.22 True class

Irregular = 9.76
Insect = 7.21 True class

Thread = 7.33
Elongated = 6.12 True class

Elongated = 6.02
Thread = 5.15 True class

Insect = 6.56
Irregular= 4.36 True class

Insect = 6.75
Irregular = 4.82 True class

Fig. 21 Pairs of defect images for which the second label is the true one: on the left the original one, on the right the image after binarization. The
rank value associated to the first two classes is over imposed. Notice that the value attributed to the first two classes is very close

lighting for a given material can be set. Such module is con-
sidered an external module that provides only and all the
defect images to the classification stage. If this were not the
case, features should be designed also taking into account that
false positives may be produced by the inspection module.

Furthermore, the classification system does not depend
on the acquisition modality. Whenever line cameras are
employed, as it is often the case to work at high speed with
reduced costs, gray level calibration is required (“Gray Level
Calibration” section).

The system described here can also be easily maintained.
When the number of irregular defects increases over average,
the presence of new defects, a change in the defect type or
issues with the plant can be hypothesized. This could be due
to the presence of new insects, of new type of tissue damage
besides white spots and folds and so forth. This makes the
system able also to provide some form of supervision of the
plant.

Updating of the system with new classes is very simple
as boosting can be continuously adapted every time a new
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(a) (b)

Irregular = 8.04
Thread = 7.61 True class

Thread = 6.98
Irregular = 4.15
Insect = 0.713 True class

Fig. 22 Twoother pairs of critical defect images: on the left the original
one, on the right the image after binarization. The rank value associated
to the first two classes is over imposed. Notice that in the thread image
in panel a part of the thread body is missing; this produces the label-
ing of the defect as irregular. In panel b the possible insect antennas

are missing in the binarized image; this produces the labeling of the
defect as irregular or threads. We remark here that the domain expert,
reconsidering these images, was not anymore sure about the true class
of these defects

difficult image or a new class, with a new label, is defined.
This feature makes boosting particularly appealing for being
early deployed in the field in parallel to the human operator,
so that it can be trained incrementally from the operator him-
self who can judge when the system is able to work alone.
This makes boosting more flexible for instance than soft-
computing approaches based on clustering or mixtures of
Gaussians, or SVM classifiers, for which re-learning is often
required when new classes are added.

The working hypothesis underlying such system is that
defects are rare. If this were not the case, the produced mate-
rial would be of very poor quality and the production line
would have better be cleaned. In this respect, the response
time of less than 1s can be compatible with real-time oper-
ation for a plant with a defect rate < 1defect/s [14]. We
remark here that most processing time is devoted to features
identification that can be drastically reduced using modern
parallel computing architectures, essentially based onCUDA
architectures [64,65].

Overall, the system presented here can be considered an
evolution of the expert systems popular in the seventies
and eighties based on explicit reasoning or fuzzy systems.
Those systems had the limitation that explicit knowledge
had to be provided and were not able to generalize to new
cases or to learn from examples. The integration of such
methodology with methods based on machine learning tech-
niques that can “learn” from the examples and are able
to generalize does produce a much higher quality in the
results.

10 Conclusion

We have presented here a framework to design an effec-
tive defect classification system to be used in conjunction
with modern video-inspection modules. Its key elements are
robust features design and the use of ranking of an adaptive
multi-label classifier trained without specifying ranking. For
these reasons such a system can be adopted in new generation
inspection systems in the most different industrial environ-
ments.
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