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Abstract
Surface sediments may serve as a metal sink that can release metals to the water body causing negative effects to the 
ecosystems. The analysis of trace-level metals in sediments allows detect pollution that might not be detected in water 
samples. In this study, the distribution and concentration of selected elements in surface sediment samples were determined 
in Pichileufu River in Patagonia, Argentina, to corroborate their pristine characteristic. The surface sediment samples from 
6 points along the river were collected using the method across and throughout the waterway. All of them were analyzing 
first by X-ray fluorescence (XRF) determining the major element concentrations. Then, they were acid digested and the 
selected trace element (V, Cr, Ni, Cu, Mo, Cd and Pb) concentrations were determined by inductively coupled plasma mass 
spectrometer (ICP-MS). The correlation analysis and principal component analysis indicated that the major and minor 
elemental compositions allowed quickly identified specific sample that differ from the rest and understood the reason. The 
obtained results show that all the selected element concentrations were below the PEL of the sediment quality guidelines. 
There were no significant differences between the selected element contents in the surface sediments of the Patagonia 
River among the years. The observed differences in the 3-site samples may be related to that it is a stream of the main river. 
Therefore, this study result could work as reference pristine site. The study highlights the need to make tremendous efforts 
to monitor and control trace elemental pollution in the Pichileufu Patagonia River to avoid their future contamination from 
both anthropogenic and natural sources. Among the natural factors, it is very important to consider the desertification process 
suffered by these steppe areas. In this context, the presented results could be used as background concentrations or as starting 
point for these studies.
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Background and summary

Waterways like rivers are essential to the humanity prosper-
ity, but sometimes they are not given the importance they 
deserve. Because water sources in rivers are constantly flow-
ing, it is necessary continuously monitoring their quality 

and quantity. These control studies are pioneers to find some 
problems that could affect the watersheds in the future. 
Sometimes, the low contaminant concentrations in water 
samples impede the early detection. Furthermore, surface 
sediments have higher precipitated or decanted contaminant 
concentrations and could indicate changes in water column 
(Tomczyk-Wydrych and Swiercz 2021; Nawrot et al. 2021; 
Baldantoni et al. 2005; Protano et al. 2014).

Sediments are considered as free particles of soil found at 
the bottom of a water body. They can be made of clay, sand, 
organic material, or silt (Valentine 2019). Probably, erosion 
and decomposition of natural elements, animals, and plants 
were the origin of them. Their quantities and characteristics 
can affect the physical, chemical and biological integrity of 
aquatic ecosystems because they are a natural part of them 
(Ribeiro Carvalho et al. 2022; U.S. EPA 2006a).
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Surface sediments may serve as a metal sink that can 
release metals to the water body causing negative effects to 
the ecosystems because their toxicity, persistence and non-
degradability in the environment (Pavoni et al. 2021; Rakib 
et al 2022). The analysis of trace level metals allows detect 
pollution that might not be detected in water samples (Chuan 
and Yunus 2019).

Heavy metals in sediments can be present both for 
their geogenic and for anthropogenic origin. The last ones 
enter into rivers as hydrated ions or inorganic complexes 
and they are adsorbed on surface particles constituting 
the labile fraction of sediments (Vukovic et  al. 2014). 
Remobilization of contaminated surface is caused by storms, 
seasonal flooding, turbulences, and changes in pH and in 
redox-potential of water, as some others ecosystem and 
environmental variables (Osakwe et al. 2014). Therefore 
the sediments are considered a potential source of heavy 
metals, as it was demonstrated in previous studies (Wang 
et al. 2011; Sorokina 2021), that 30–98% of heavy metals are 
transported in sediment-associated forms in rivers.

The metal contamination in aquatic environments 
was widely studied due to its toxicity, persistence and 
bioaccumulation characteristics (Ribeiro Carvalho et al. 
2022). The main danger of heavy metals in sediments is 
because of how they travel up the food chain and become 
harmful to animals and humans (Arshad et  al 2023) 
understood the reason (Couto 2022; Sugumaran et al 2023). 
Hence, the distribution and pollution levels of heavy metals 
in sediments have been extensively studied (Pandey and 
Singh 2017; Raju et al. 2012; Salah et al. 2012; Guo and He 
2013; Li et al. 2020; Ferati et al. 2015; Sakan et al. 2020; 
Sakan et al. 2007; Salati and Moore 2010; Varol and Sen 
2012; Shanbehzadeh et al. 2014; Martin and Meybeck 1979; 
Abdusamadzoda et al. 2020; Edokpayi et al. 2016).

Mainly human waste disposal sites, such as sewage 
treatment plants, sanitary sewers, storm-water drains, 
and waste industry discharge sites, are the sources of 
anthropogenic origin (Meybeck 2013; Couto 2022; Ribeiro 
Carvalho et al 2022; Decena et al. 2018). But other important 
contaminations sources are storm-water runoff, mining and 
manufacturing runoff, and atmospheric pollutant spread, and 
they cannot easily trace back their origin (Niu et al. 2021; 
Baubekova et al. 2021; Ribeiro Carvalho et al 2022).

Numerous sediment quality guidelines (SQGs) have 
been established since the 1980s, each incorporating 
different criteria, factors and approaches to try and account 
for the varied conditions in which sediment contamination 
occurs (Smith et  al. 1996; Batley and Simpson 2013; 
Frančišković-Bilinski 2007; Gashi et al. 2011). Generally, 
these approaches predict adverse ecological effects from 
sediment contamination by the response of benthic 
organisms, which live on or in the sediments and are 
used as an indicator of a toxic environment because of 

their function as an important food chain link and food 
source for fish, birds, and mammals residing in the same 
ecosystem (Hübner et al. 2009).

The Pichileufu Patagonia River is one of the most 
important rivers in the steppe area that is introduced 
as a source of biodiversity. The surrounded soil of the 
river is characterized of water and wind erosion and 
has an extensive ovine breeding making necessary the 
desertification control (Panigatti 2010). These natural 
processes (such as weathering, erosion and dissolution 
of water-soluble salts) constitute the background level 
of the elemental composition in sediments, but if the 
desertification proceeds this level could increase and 
become dangerous (IPCC 2019).

In addition, there is a lack of information on the 
concentrations and distributions of heavy metals in 
water and sediments of all Patagonian area watersheds. 
Therefore, it is necessary to investigate the spatial 
distributions of these elements and their ecological risks to 
provide data for maintenance water quality and to prevent 
ecosystem contamination.

Materials and methods

Study area description

The Pichileufu Patagonia River is located in the steppe 
area of Rio Negro province (Argentina) with approximately 
70 km of length and discharges into a freshwater dam. It is 
generated from thaw and mallines and it is characterized by 
a large daily temperature range. The location and difficult 
access in determined places of the River protect and preserve 
naturally this waterway. The main activities are the small-
scale ranching and sport fishing. Surface sediments were 
collected from six sites along the river (Fig. 1).

Fig. 1   Location of the study area in Patagonia River showing sam-
pling points
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Collection of sediment samples

The sediment collection procedure was made taken a 
portion of the sediments along the river stretch (longitudinal 
samples—L) and a portion across the river (transversal 
samples—T) with a depth of 10 cm. The sediment samples 
were air dried at 60 °C, well-mixed and passed through 
a 500 µm sieves (USS #10). Sampling was carried out 
annually between 2016 and 2019 in six sampling sites along 
an important river in north Patagonia, Argentina. 3 samples 
were collected from each location at the same time of the 
year.

The identification of the sediment samples is listened in 
Table 1, which is composed of the year of sampling, the 
number site and the type of sampling procedure.

The river flows from sampling site 0 to 5 distanced 14 km. 
The sampling site 3 is located in a tributary.

Organic matter content in sediments

The sediment samples were dried at 65 °C for 24 h in an 
oven and were weighted to determine the humidity. This 
procedure was done up to a constant weight loss (differences 
below 1%). Then the samples were calcined at 450 °C for 
1 h in a muffle and the weight losses were determined. An 
additional calcination period was done to corroborate the 
constant weight (differences below 1%). The mass difference 
between before and after calcination represents the organic 
matter content (calculation in dry basis).

Major elemental composition analysis

Elemental analysis of the sediment samples was done with a 
wavelength dispersive X-ray fluorescence (WDXRF) spec-
trometry (S8 Tiger—Bruker) for triplicate. This study was 

essential to the geochemical characterization of the region 
and to construct the elemental composition background of 
the river sediments. The crystalline structures of the sedi-
ments were identified by X-ray Diffraction (D8 Advance- 
Bruker) with Cu Kα (λ = 1.54184 Å) radiation in a single 
Silisium crystall sampler.

Preparation of sediment samples

The sediment samples were digested using microwave 
digestion system (Milestone, Ethos One microwave oven) 
in accordance with US Environmental Protection Agency 
5051A (USEPA 1996, 1998, 2006b, 2007). This method is 
not a total digestion technique, but it is a very strong acid 
digestion that will dissolve almost all elements that could 
become environmental available (CCME 2001).

A well-mixed sediment sample of 0.5 g was placed in a 
fluoropolymer digestion vessel and 10 ml of concentrated 
nitric acid was added in a fume hood. The concentrated 
nitric acid was sub-boiling distilled before use. The vessel 
was sealed, and the temperature reached 175 ± 5  °C in 
approximately 15 ± 0.25 min and remained at 175 ± 5 °C 
for 15 min. Then, the sample was filtered through a 0.45-
μm filter into a volumetric ware and the digest was diluted 
to a volume of 100 ml with deionized water. The final nitric 
acid concentration was approximately 5% (v/v) that allows 
maintaining appropriate sample solution acidity and stability 
of the elements. The solution was transferred in a polyester 
container ready for analysis for elements of interest.

Selected minor element composition analysis

Sediment digests were analyzed by iCAP Q ICP-MS 
Thermo Scientific in accordance with standard method US 
Environmental Protection Agency 6020A. The selected 
minor elements were V, Cr, Ni, Cu, Mo, Cd and Pb because 
of their toxicity and persistent in the sediments. Calibration 
curves were performed with pattern solutions of each 
element. Internal patterns (IP) were used to evaluate the 
matrix effect. Bi was used as IP for Pb, In as IP for Mo 
and Cd. For lighter elements, the 45Sc was not used as IP, 
because samples contained significant native amounts of it. 
A multi element ICP standard solution in 5% HNO3 was 
used as reference standard (provided by Chem-Lab).

Quality control for preparation and analysis

Concentrated nitric acid (HNO3) was employed, but 
previously it was sub-boiling distilled. A blank of HNO3 
was prepared and analyzed in each batch to track potential 
contamination of samples during the extraction and analysis 
processes (method blank). Three types of blanks were 
required: the calibration blank was used in establishing the 

Table 1   Identification of surface sediment samples taken from the 6 
sites from 0 to 5 in spring of the years 2016, 2017, 2018 and 2019

L: longitudinal-sampling; T: transversal-sampling; ns: not sampling

Sampling sites 2016 2017 2018 2019

0L ns 17-0L 18-0L 19-0L
0T ns ns ns 19-0T
1L 16-1L 17-1L 18-1L 19-1L
1T 16-1T 17-1T ns 19-1T
2L 16-2L 17-2L ns 19-2L
2T 16-2T 17-2T 18-2T 19-2T
3 16–3 17–3 18–3 19–3
4L 16-4L 17-4L 18-4L 19-4L
4T 16-4T 17-4T 18-4T 19-4T
5L 16-5L ns 18-5L 19-5L
5T 16-5T ns 18-5T 19-5T
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calibration curve; the method blank was used to monitor for 
possible contamination resulting from reagents or equipment 
used during sample preparation; and the rinse blank was 
used to flush the system.

The effect of the matrix included the analysis of one 
matrix spike and one duplicate unspiked sample per 
analytical digestion batch. The analyte to be spiked was 
selected randomly in each batch assuring different sampling 
site. A laboratory control sample (LCS) was included with 
each analytical batch. It consisted of a clean (control) 
matrix similar to the sample matrix and of the same volume. 
The LCS was spiked with the same analyte at similar 
concentrations as the matrix spike.

The concentrations determined in the digest were reported 
on the basis of the dry weight of the sample. Total solid 
levels were below 0.2% (2000 mg/L) and were determined 
separately. The appropriate interference corrections, 
internal-standard normalization and the summation of 
signals at 206, 207 and 208 m/z for lead were included.

To generate acceptable accuracy and precision data, the 
LCS, the spiked sample and the duplicate recoveries were 
within ± 25% of the actual value. When the analyte had 
less recovery, the batch samples were discarded, and a new 
digestion process was applied for these sediment samples. 
No additional reference materials were used in theses 
determinations.

If the percent recovery of the internal standard in a 
sample was less than 80% or greater than 120% the intensity 
of that IS in the initial calibration standard, then a significant 
matrix effect must be suspected, and it can be removed by 
dilution of the affected sample.

Pearson correlation analysis was employed to assess 
linearity in relationship between variables. The analysis 
and interpretation of the obtained data were made using 

Principal Component Analysis (PCA), which is the most 
used lineal technique to reduce variables (Malinowski 1991; 
Kadhum et al. 2020; Li et al. 2020). PCA was employed 
to identify the cause of element concentration differences. 
Because the concentrations of the sediment elements varied 
greatly, the raw data were standardized before PCA (Wold 
1987).

Results and discussion

Review of initial results

The chemical analysis results for sediment samples taken 
since 2016 to 2019 from 6 sampling sites of the study area 
are summarized in Tables 2 and 3. The values of maximum, 
minimum, median, mean and standard deviation for all of 
the selected elements are delineated there.

The main elemental composition of the sediment 
samples was Si, Fe and Al and the presence of Na, K and Ca 
indicating the salinity characteristic of the soil. Calcium and 
sodium aluminum silicate and silicon oxide were identified 
by XRD. No significant differences were presented in the 
different station samples showing the same sediment origin.

Generally, concentrations of selected elements in the sedi-
ment samples followed the order V > Cu > Cr > Ni > Mo > Cd 
in all the station except 3-station. In that site the concentra-
tion of Cu is higher than the concentration of Cr but Ni var-
ies between these concentrations depended on the year. The 
Pb concentration has not a regular behavior in any sampling 
stations, but in the 3-station it had the lower value. The high-
est contents for Cr, Ni and Mo were found at the 3-station 

Table 2   Summary statistics of major elements from 6 sampling stations in the years 2016 to 2019 (% wt. dry weight)

Maximum, minimum, median, mean and SD are % wt. dry weight for sediments
BDL, below detection limit

Na Mg Al Si P S K

Max 3.880 3.192 16.490 60.110 0.860 0.550 5.820
Min 2.355 1.230 13.580 44.176 0.511 0.045 1.926
Median 3.154 1.870 15.051 51.374 0.651 0.130 4.014
Mean 3.180 1.924 14.994 51.286 0.654 0.148 4.067
SD 0.398 0.326 0.777 3.052 0.095 0.102 0.970

Ca Ti Mn Fe Cu Zn

Max 10.302 2.139 0.742 19.070 0.030 0.080
Min 4.450 0.900 0.250 8.380 BDL BDL
Median 6.099 1.547 0.355 14.764 0.012 0.030
Mean 6.269 1.568 0.416 14.768 0.013 0.035
SD 1.275 0.300 0.129 2.514 0.008 0.015
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showing a different element distribution than in the other 
stations (Fig. 2).

Table 4 shows the comparison of the Pichileufu Patagonia 
sediment element concentrations with threshold effect level 
(TEL) and probable effect level (PEL) above which negative 
effects should be expected in aquatic ecosystem.

As can be seen in Table  4, all the selected element 
concentrations were below the PEL of the sediment quality 
guidelines, but Ni, Cu and Cd were slightly above the TEL, 
but only the 3% of samples exceeded the TEL value.

In the following Table 5, there is a comparison of aver-
age concentration of the three metals that presented values 
above the TEL in sediment of Pichileufu Patagonia River 
with other world rivers and with pristine-river estimations 
(Chen and Wang 1995; Savenko 2006). These values show 

that the sediment samples in the present study had concen-
tration significantly below the others indicating that the 
Pichileufu Patagonia River can be consider as a background 
level of the studied elements (pristine place). Also, it can 
be used as a level to compare sediment samples from other 
part of the world.

Mean concentration of Ni, Cu and Cd are mg/kg dry 
weight for sediments. All concentrations were obtained 
before the same digestion process.

Organic matter content in sediments

In general, the annually organic matter average was increased 
from 2.15%wt. to 6.11%wt. Analyzing site-specific data, it 
can be mentioned that station 0 and 2 had the highest values 

Table 3   Summary statistics 
of selected minor elements 
from 6 sampling stations in the 
years 2016 to 2019 (mg/kg dry 
weight)

Maximum, minimum, median, mean and SD are mg/kg dry weight for sediments

V Cr Ni Cu Mo Cd Pb

Max 76.235 17.464 21.987 35.821 1.129 2.249 28.692
Min 23.068 6.791 4.379 6.419 0.038 0.047 1.891
Median 39.044 10.051 8.531 13.964 0.398 0.106 5.905
Mean 42.537 10.853 9.160 15.866 0.427 0.178 8.051
SD 13.826 2.916 3.169 7.317 0.278 0.310 7.056

Fig. 2   Spatial and temporal 
distribution of selected elements 
in sediments of the Pichileufu 
Patagonia River
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of organic content, 12.2 and 11.76%wt., respectively, due 
to the small population living around these points (Fig. 3).

Major elemental composition of sediments

In this section, the principal component analysis is presented 
to characterize differences between the sediment samples in 
the major elemental compositions.

The Pearson correlation coefficient matrix of 20 element 
concentrations in 36 sediment samples was obtained using 
Mathlab software, but no important correlations between the 
variables were observed.

The PCA were done with the 13 elements which had a 
concentration upper that the limit of quantification. The 
eigenvalues to determine the principal components are 
shown in Table 6A and the eigenvectors or loadings are 
plotted in Fig. 4A.

PCA results suggested three principal components 
controlling major elements variability in sediments 
(Table 6A), which accounted for 37.73% (factor 1), 26.29% 
(factor 2) and 12.21% (factor 3) of the total variance.

Table 4   Comparison between 
sediment quality guidelines 
(SQGs) and selected elements 
in the present study (mg/kg 
dry weight) with percentage of 
sample in each guideline

TEL: threshold effect level (Smith et al. 1996)
PEL: probable effect level (Smith et al. 1996)
Range, mean, TEL and PEL are mg per kg dry weight for sediments

Zn Cr Ni Cu Cd Pb

In this study
 Range 0–80 6.8–17.5 4.4–22.0 6.4–35.8 0.005–2.25 1.9–28.7
 Mean 35 10.9 9.2 7.3 0.18 8.1

SQGs
 TEL 123 37.3 18 35.7 0.596 35
 PEL 315 90 36 90 3.53 91.3

Compared with TEL and PEL
 %samples < TEL 100 100 97 97 97 100
 %samples between TEL-PEL 0 0 3 3 3 0
 %samples > PEL 0 0 0 0 0 0

Table 5   Comparison of average 
concentration of selected metals 
in sediment of Patagonia River 
with other world rivers

Sediment of Country Mean concentration Reference

Ni Cu Cd

Patagonia river Argentina 9.2 7.3 0.18 Present study
Trepça and Sitnica rivers Kosovo 113.7 124.7 432 Ferati et al. (2015)
Khoshk river Iran 107.6 42.25 1.23 Salati and Moore (2010)
Tigris river Turkey 284.0 1257.76 3.02 Varol and Sen (2012)
Tembi river Iran 150 100 40 Shanbehzadeh et al. (2014)
World average World rivers 102.1 122.9 1.4 Martin and Meybeck (1979)
Suspended sediments average World rivers 74.5 75.9 1.55 Viers et al. (2009)
Pristine-river estimation World rivers 50 0.2 Chen and Wang (1995)
Pristine-river estimation World rivers 50 45 0.5 Savenko (2006)
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Fig. 3   Organic matter contents in sediments samples
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The sediment sample corresponding to the sampling site 
¨0¨ with transversal-sampling method (19-0T) was seg-
regated from the rest, because of their higher PC2 value 
(Fig. 5A). The major variable that contributed to PC2 was 
the S concentration. Unfortunately, it was not possible to 
take sediment sample of that site in other year, so we dis-
carded it from the next PCA. The new eigenvalues and eigen-
vectors are shown in Table 6B and Fig. 4B, respectively.

PCA results suggested also three principal components 
controlling major elements variability in sediments 
(Table 6B), which accounted for 39.35% (factor 1), 23.56% 
(factor 2) and 12.61% (factor 3) of the total variance. These 
results do not differ significantly with those of the previous 
analysis with considering of the 19-0T sample.

Figure 5B shows clearly the separation of the sampling 
station ¨3¨ from the rest. This result is consistent with the 

fact that the 3-site is a sampling station in a stream that flow 
into the main river. So, it is not expected that the major 
composition of these sediments is similar to those of the 
main river.

The main phases determined by DRX of the sediment 
samples from Pichileufu Patagonia River corresponded 
to the presence of silicon oxide and calcium and sodium 
aluminum silicate phases. The diagrams of all the sediment 
samples were similar despite the differences observed in the 
major elemental compositions.

Selected minor elemental composition of sediments

In this section, the principal component analysis is presented 
to identify differences between the sediment samples despite 
the low trace element concentrations.

Table 6   Eigenvalues of the PCA 
considering: (A) 13 elements 
and 36 sediment samples; 
and (B) 13 elements and 35 
sediment samples

(A) Eigenvalues (B) Eigenvalues

Total % of variance Cumulative (%) Total % of variance Cumulative (%)

4.905 37.73 37.73 5.116 39.35 39.35
3.417 26.29 64.02 3.063 23.56 62.91
1.588 12.21 76.23 1.639 12.61 75.52
1.023 7.87 84.11 1.046 8.05 83.57
0.805 6.19 90.30 0.826 6.35 89.93
0.446 3.43 93.73 0.520 4.00 93.93
0.337 2.59 96.32 0.336 2.58 96.51
0.169 1.30 97.62 0.146 1.12 97.64
0.108 0.83 98.46 0.112 0.86 98.50
0.076 0.58 99.04 0.091 0.70 99.19
0.058 0.45 99.49 0.054 0.42 99.61
0.050 0.38 99.87 0.034 0.26 99.87
0.017 0.13 100.00 0.017 0.13 100.00
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Table 7   Eigenvalues of the 
PCA considering: (A) 7 minor 
elements and 36 sediment 
samples; and (B) 7 minor 
element concentrations and 35 
sediment samples

(A) Eigenvalues (B) Eigenvalues

Total % of variance Cumulative (%) Total % of variance Cumulative (%)

3.404 48.62 48.62 3.956 56.52 56.52
2.046 29.22 77.85 2.166 30.94 87.46
0.850 12.14 89.98 0.349 4.99 92.45
0.347 4.95 94.93 0.258 3.68 96.13
0.254 3.63 98.56 0.196 2.80 98.93
0.065 0.93 99.50 0.044 0.64 99.56
0.035 0.50 100.00 0.031 0.44 100.00
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Fig. 6   Loadings of the PCs considering: A 7 minor elements and 36 sediment samples; and B 7 minor element concentrations and 35 sediment 
samples
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The PCA for the ICP-MS results were analyzed consid-
ering the 7 selected minor elements (V, Cr, Ni, Cu, Mo, 
Cd, Pb). Table 7A contains the eigenvalues and Fig. 6A 
shows the loadings of the PCs.

PCA results suggested three principal components 
controlling trace elements variability in sediments 
(Table  7A), which accounted for 48.62% (factor 1), 
29.22% (factor 2) and 12.14% (factor3) of the total 
variance.

In Fig.  7A the separation of the sample 17-1T is 
shown, because it had atypically the highest Cd concen-
tration. Compared with the 17-1L and the samples of the 
same site in others sampling years, it can be considered 
as an outlier.

Not considering the 17-1T sample, PCA results 
suggested two principal components controlling trace 
elements variability in sediments, which accounted for 
56.5% (factor 1: V, Cr, Ni, Cu, Mo, Cd and Pb) and 
30.9% (factor 2: -V, -Cr, -Ni, Mo, Cd and Pb) of the total 
variance. The eigenvalues are shown in Table 7B and the 
eigenvectors o loading of the PCs are plotted in Fig. 6B.

Figure 7B shows differences in all the samples of the 
site ¨0¨ and in the sample 19-2L, because they presented 
the highest concentrations of the selected elements. Also, 
the samples of the site ¨3¨ had little differences from the 
rest, because they had the highest Ni concentrations. 
The site ¨0¨ showed higher differences from the rest 
of the sites in minor element concentrations, because 
their samples contained higher concentration of all the 
elements in comparison from the pool of samples.

Conclusions

Despite the likeness in the diffractograms, the elemental 
analysis by XRF and ICP-MS allowed to clearly identify the 
tributary of the 3-station samples that does not correspond 
to the main stream of Pichileufu Patagonia River sediments.

No correlation between the analyzed minor and major 
element concentrations was found indicating that these 
elements could have different origins or controlling factor 
in the analyzed samples.

The PCA of the major element concentration allows 
identifying the origin of the samples differentiating the 
sediment samples coming from the main river from those 
of the tributary.

The overall results of this study show that selected minor 
element concentrations in river sediments are below the 
sediment quality guidelines and below the reported world 
rivers values of pristine rivers. Furthermore, no significant 
temporally variations were observed. This fact converts the 
Patagonia River in a pristine area that can be considered as 
background levels of trace elements for steppe areas. The 
minor elemental concentrations in this study can be used 
as pre-industrial level references or concentrations in a free 
contaminant area to calculate the ecological risk assessments 
in other rivers.

Future analysis will consider seasonal variations of the 
content of selected elements, specially analyzing the water 
periods of the river and more monitoring will be required 
in the site ¨0¨because of its observed minor elemental 
differences.
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