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Abstract
Human activities threaten the integrity of watersheds. We aimed to investigate the impact of land use on water quality, adopting 
a multiscale approach. We collected water samples from twelve streams in Southern Brazil and conducted limnological analyses 
(physical, chemical, and biological) during the dry season. We used the water quality index based on the quality standards of 
Canada and Brazil. Land use percentage was measured in two groups (local scale and network scale). Environmental variables 
were summarized through Principal Component Analysis, and we organized them into Linear Models, integrating the percent-
age of land use classes and terrain slope in the Multifit formula. Statistical analyses were performed using the R software. 
Results indicated contamination by lead, chromium, copper, nitrogen, and Escherichia coli in water samples. The Canadian 
Water Quality Guidelines for the Protection of Aquatic Life resulted in an index ranging from 23.3 to 47.3, compared to the 
Brazilian Resolution No. 357/2005 for Class 2, which had an index ranging from 47.5 to 100. This disparity is attributed to the 
more rigorous and sensitive monitoring approach adopted by the Canadian guidelines. Riparian forests which are up to 50 m 
wide are associated with improved water quality. Agricultural and urban activities were the main contributors to water quality 
degradation in an area extending up to 1000 m from the watershed. We emphasize the importance of a multiscale approach 
in watershed management and public policies, considering not only riparian forest preservation, but also human activities 
throughout the watershed. It is crucial to prioritize science-based environmental public policies and strengthen enforcement to 
prevent increasingly pronounced environmental collapses. We have identified the urgency to reformulate CONAMA Resolu-
tion No. 357/2005 with a more conservationist and ecosystem-oriented approach, as well as to propose modifications to the 
Brazilian Forest Code, particularly regarding the buffer zones of permanent preservation areas. Thus, this study can provide 
insights, such as incorporating the “effect scale,” to enhance water resource management in landscapes heavily influenced by 
human action, contributing to the advancement of future research in freshwater ecosystems.
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Cond	� Conductivity
TDS	� Total dissolved solids
ORP	� Oxidation/reduction potential
TN	� Total nitrogen
TP	� Total phosphorus
DO	� Dissolved oxygen
BOD	� Biochemical Oxygen Demand
COD	� Chemical Oxygen Demand
Cd	� Cadmium
Pb	� Lead
Cr	� Chromium
Zn	� Zinc
Ni	� Nickel
Cu	� Copper
TC	� Total coliforms
EC	� Escherichia coli
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Introduction

Economic expansion and increased demand for consumer 
goods are determining factors for environmental degrada-
tion (Hughes et al. 2023). This phenomenon has particu-
larly adverse effects on aquatic ecosystems, as watersheds 
serve as connecting pathways for landscape-wide impacts 
(Cionek et al. 2021; Vieira et al. 2022). Urban areas that 
dump untreated wastewater into rivers and streams cause 
metals and organic substances to build up artificially, which 
leads to eutrophication and bioaccumulation in the ecosys-
tem’s food webs (Singh et al. 2017a; Vieira et al. 2017; Yu 
et al. 2020; Eissa et al. 2022; Kumar et al. 2022). The practice 
of agriculture and cattle farming has been found to have a sig-
nificant impact on nutrient concentrations in soil, which can 
subsequently leak into waterways. This process ultimately 
results in a drop in the amount of dissolved oxygen in water, 
primarily owing to heterotrophic metabolism. This reduction 
in dissolved oxygen levels creates less favorable conditions 
for the majority of aquatic organisms. These findings have 
been supported by studies conducted by Leip et al. (2015) 
and Mills et al. (2017). Furthermore, the combined impact of 
deforestation and climate change has significant implications 
for the hydrologic cycle of watersheds. This is evidenced by 
research conducted by Kumar et al. (2022), which highlights 
the increased presence of impermeable surfaces and the 
resulting structural changes in waterways, including canali-
zation, burial, and rectification. As a result, waterscapes may 
encounter either a shortage of water or instances of excessive 
runoff (Singh and Panda 2017; Xue et al. 2017).

The aforementioned studies conducted by Mello et al. 
(2018), Vieira et al. (2019a,b), Ramião et al. (2020), and 
Ahmad et al. (2021) suggest that the implementation of 

significant alterations is likely to result in a deterioration of 
water quality in streams. Consequently, there is a range of 
endeavors underway to evaluate the caliber of aquatic habi-
tats and their impacts on aquatic organisms (Alexandre et al. 
2010; Cunico and Gubiani 2017; Alvarenga et al. 2021; Raji 
and Packialakshmi 2022; Souza et al. 2023). The utilization 
of water quality indices (WQI) and the integration of remote 
sensing and Geographic Information System (GIS) tools are 
imperative for the surveillance of these ecosystems (Srivas-
tava et al. 2012; Batbayar et al. 2019; Sharma et al. 2019; 
Gonino et al. 2020; Kheswa et al. 2021; Singh et al. 2021; 
Cicilinski and Virgens Filho 2022; Nguyen et al. 2022; Vieira 
et al. 2022). The Water Quality Index (WQI-CCME) devel-
oped by the Canadian Council of Ministers of the Environ-
ment is recognized as one of the most extensively utilized 
indices on a global scale. Its notable attributes include its 
adaptability to diverse local circumstances, as highlighted 
by several studies (Yan et al. 2016; Wagh et al. 2017; INEA 
2019; Olanrewaju et al. 2021).

Water resource management policies are subject to reg-
ulation through the implementation of specific laws and 
recommendations in various countries (Silva et al. 2019). 
Several nations, including Australia, New Zealand, Canada, 
the United States, and the European Union, have established 
noteworthy water quality standards with the objective of safe-
guarding aquatic ecosystems (Nugegoda and Kibria 2013). 
Canada is widely acknowledged as a frontrunner in the field 
of water management, with its Canadian Water Quality 
Guidelines for the Protection of Aquatic Life (CCME 2007) 
being highly regarded as valuable instruments for evaluat-
ing aquatic ecosystems (Rosemond et al. 2009; Theodoro 
et al. 2016). The primary entity tasked with the regulation 
and management of water resources in Brazil is the National 
Council for the Environment (CONAMA) (OECD 2021). 
Water bodies are categorized based on their intended func-
tions, as outlined in Resolution CONAMA No. 357, issued 
on March 17, 2005 (CONAMA 357/2005) (BRASIL 2005). 
Nevertheless, it is important to note that this particular meth-
odology has the potential to expose deficiencies in the overall 
management and preservation of aquatic ecosystems across 
the nation (Silva et al. 2018; Padovesi-Fonseca and Faria 
2022).

The impact of landscape composition and structure on 
water quality (Shi et al. 2017) and the structure of aquatic 
biota can manifest across several scales, encompassing both 
localized stream segments and large watersheds (Garofolo 
and Rodriguez 2022). Nevertheless, it is well acknowledged 
that the most noteworthy consequences typically manifest 
themselves within a distinct scale referred to as the “effect 
scale” (Jackson and Fahrig 2012; Miguet et al. 2016; Fletcher 
and Fortin 2018; Huais 2018). The escalating disagreements 
surrounding these features show that the relationship between 
biological response and the landscape has been a subject of 
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growing contention within the field of ecology (Miguet et al. 
2016; Huais 2018; With 2019; Tomchenko et al. 2022).

According to Shi et al. (2017), the existence of riparian 
forests adjacent to waterways can serve as a filtration mecha-
nism, leading to a decrease in surface runoff, the retention of 
sediments, and the processing of nutrients, ultimately result-
ing in an enhancement of water quality. Hence, the extent of 
the vegetation strip adjacent to riverbanks assumes a pivotal 
role in the conservation of aquatic ecosystems. Recent studies 
by Wang et al. (2020) and Shi et al. (2022) have found evi-
dence that suggests a positive correlation between the width 
of this strip and its capacity to support conservation efforts. 
Due to the prevalence of landscape alteration in many places, 
there is significant variation in riparian width and length, as 
well as their ability to mitigate any adverse impacts resulting 
from changes in land use. According to Guidotti et al. (2020), 
it has been shown that narrow riparian buffers do not provide 
significant protection against erosion and the entry of silt 
into waterways. This deficiency has a detrimental impact on 
the physical, chemical, and biological attributes of streams.

One way to make sure that riparian forests and human land 
use activities can live together peacefully is to protect these 
forests within buffer zones that are big enough to protect 
and keep the aquatic environment working properly (Hilary 
et al. 2021). Several countries, including Brazil, Mexico, the 
United States, Germany, and Australia, have implemented 
legislation with the objective of safeguarding riverbanks 
within designated areas. Various economic interests fre-
quently have an impact on the design of these zones (McDer-
mott et al. 2009; Miguel and Velho 2013; Chiavari and Lopes 
2017). Consequently, such circumstances may give rise to 
distortions and insufficient interpretations among decision-
makers (Monte et al. 2021).

Regardless of significant efforts to comprehend the effect 
of the landscape on water quality, there are several voids in 
identifying the most appropriate criteria for monitoring and 
preserving watershed quality. Jackson and Fahrig (2012), 
Holland and Yang (2016), Miguet et al. (2016), to name a 
few, have all examined the influence of scale on biological 
communities in terrestrial ecosystems. In addition to employ-
ing a limited number of spatial scales, however, the effects of 
a multiscale approach on water quality are rarely examined 
in a majority of studies. Consequently, the findings of this 
study have considerable potential to guide and encourage the 
revision of public policies. Incorporating the scale of effect 
to prevent pollution impacts and assure the structure and 
function of neotropical aquatic ecosystems, particularly at 
the headwaters of watersheds, is one example of the informa-
tion provided by these findings. These areas provide essen-
tial ecosystem services to human populations and are home 
to numerous species that, by carrying out their functions in 
the ecosystem (i.e., feeding and nutrient cycling), contribute 
to the provision of water of adequate quality and quantity 

(Sá et al. 2013; Hilary et al. 2021). Thus, it is feasible to 
prevent future mass extinctions and water crises. This work 
contributes directly to the four Sustainable Development 
Goals (SDGs) established by the United Nations: (11) Sus-
tainable Cities and Communities, (13) Climate Action, (14) 
Life Below Water, and (15) Life on Land.

The main goal of this research is to examine the impact of 
land utilization on water quality using a multiscale method-
ology. The objectives outlined are as follows: (i) to evaluate 
and compare the efficacy of various quality standards in the 
assessment of stream conditions, (ii) to examine the corre-
lation between landscape characteristics and water quality, 
and (iii) to analyze the impact of several spatial scales on 
water quality. The paper posits the following hypotheses: (i) 
the efficacy of the CCME, 2007 guidelines in safeguarding 
aquatic ecosystems surpasses that of Resolution CONAMA 
357/2005; (ii) the existence of forest vegetation within stream 
ecosystems exhibits a positive correlation with water qual-
ity, whereas areas characterized by agricultural and urban 
activities demonstrate a negative association with water qual-
ity; and (iii) the local scale exerts a greater influence on the 
enhancement of water quality.

Materials and methods

Study area

The study was conducted in 12 first- and second-order 
streams (Strahler 1952) that are part of the Pirapó and Ivaí 
River basins (Fig. 1). These streams are located in the urban 
and peri-urban areas of Maringá municipality, in the north-
west region of the state of Paraná, South Brazil (Fig. 1). Mar-
ingá city is situated in the Third Paraná Plateau, between 
the coordinates 23º 25′ S and 51º 57′ W, with an average 
altitude of 555 m (IBGE 2021). With a population of just 
over 400,000 inhabitants and an area of 487,012 km2 (IBGE 
2021), Maringá stands out as the third largest city in the state 
of Paraná in terms of urbanization and demographic growth 
and has been recognized as one of the main agricultural cent-
ers in the country (Rodrigues 2004; Macedo 2011). Accord-
ing to Carfan et al. (2005), the area has a subtropical climate 
with an average annual precipitation of more than 1500 mm 
and an average annual temperature of between 18 and 22 °C. 
The local vegetation belongs to the Atlantic Forest biome, 
specifically the Seasonal Semideciduous Forest (IAT 2022a). 
According to Ghisi et al. (2016), the Pirapó River basin sup-
plies the Maringá region and is in danger of deforestation 
because of the growth of agriculture and urban development 
(Rigon and Passos 2014; Cunico and Gubiani 2017). Simi-
larly, the Ivaí River basin encompasses various anthropo-
genic landscapes and is primarily affected by increased land 
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occupation, with agriculture being the main economic activ-
ity (Meurer et al. 2010; IAT 2022b).

Sampling procedures and laboratory analysis

Field sampling was conducted during the dry season in Sep-
tember 2021 for 6 days. During this period, we recorded 
37.20 mm of accumulated precipitation (SIMEPAR 2021). 
This period was selected to minimize interferences caused 
by variations in precipitation and water flow during the sam-
pling activities (Rosa et al. 2020). In each of the 12 streams 
(Figure 1), we selected a 50-m section (hereafter, referred 
to as the “sampling site”), where three measurements of 
each limnological variable were obtained. From these meas-
urements, a representative average was calculated for each 
parameter. The variables of temperature (ºC), pH, electrical 
conductivity (μS/cm), turbidity (NTU), ORP—Oxidation/
Reduction Potential (mV), and dissolved oxygen (% and 
mg/L) were collected at a sampling point using a HORIBA 

multiparameter probe (model U-50). Subsurface water sam-
ples (at a depth of 20 cm) were collected manually with (i) 
polyethylene bottles of 500 ml, (ii) falcon tubes of 50 ml, 
and (iii) previously labeled, sterilized, and preserved glass 
bottles of 200 ml. Samples were kept below 6 °C in ther-
mal boxes and sent to the LASAM Laboratories at the State 
University of Maringá (UEM, Maringá/PR) and MERIEUX 
- NutriSciences (Curitiba/PR) for analysis.

Thirteen water quality parameters were selected as they 
are widely recognized and employed as indicators of pol-
lution, resulting from agricultural, industrial, and urban 
activities practiced in the Pirapó and Ivaí river basins 
(Alves et al. 2008; Santos et al. 2008; Freire et al. 2012). 
The analyses of Total Nitrogen (TN), Total Phosphorus 
(TP), Biochemical Oxygen Demand (BOD), Chemical 
Oxygen Demand (COD), Cadmium (Cd), Lead (Pb), Chro-
mium (Cr), Zinc (Zn), Nickel (Ni), Copper (Cu), and Total 
Dissolved Solids (TDS) were conducted at the MERIEUX 
laboratory. The concentrations of Total Coliforms (TC) and 

Fig. 1   Location of sampling points in the study area, covering 
the Pirapó (North) and Ivaí (South) River basins. Legend: (Pn): 
Pirapó basin streams, and (In): Ivaí basin streams. P1—Alto Alegre 
(23° 13′ 55.2′′ S; 52° 03′ 13.0′′ W); P2—Jaborandi (23° 17′ 06.6′′ S; 
52° 04′ 42.8′′ W); P3—Atlântico (23° 19′ 58.3′′ S; 52° 00′ 20.9′′ W); 
P4—Maringá (23° 23′ 44.3′′ S; 51° 57′ 52.8′′ W); P5—Morangueira 
(23° 23′ 51.6′′ S; 51° 54′ 19.7′′ W); P6—Guaiapó (23° 24′ 53.0′′ S; 

51° 51′ 43.0′′ W); I1—Colombo (23° 26′ 21.7′′ S; 52° 06′ 31.6′′ W); 
I2—Jaçanã (23°  31′  35.8′′  S; 51°  54′  01.5′′  W); I3—Jaguaruna 
(23° 31′ 40.5′′ S; 51° 55′ 57.0"W); I4—Borba Gato (23° 27′ 56.4′′ S; 
51° 58′ 10.2′′ W); I5—Moscados (23° 27′ 18.7′′ S; 51° 55′ 52.8"W); 
I6—Pinguim (23°  27′  15.2′′  S; 51°  53′  55.6′′  W). Digital Elevation 
Model—NASA DEM, EPSG: 4674—SIRGAS 2000 DATUM, Trans-
verse Mercator Projection
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Escherichia coli (EC) were determined at the LASAM lab-
oratory. All analyses followed the methodologies described 
in the Standard Methods for Examination of Water and 
Wastewater, 22nd and 23rd edition—AWWA/APHA/
WEF, EPA—Environmental Protection Agency methods 
(SW 846 series and others), NBR standards—Brazilian 
Association of Technical Standards (ABNT), and methods 
from the Environmental Company of the State of São Paulo 
(CETESB).

Water quality index (WQI‑CCME)

We used the Water Quality Index (WQI-CCME) developed 
specifically by the Canadian Council of Ministers of the 
Environment (CCME) and adopted by the Water Resources 
Management Division of the Department of Environment 
and Climate Change of Newfoundland & Labrador (CWQI 
2022). The WQI-CCME index numerically classifies the 
quality of a specific water body by comparing the analy-
sis results with established limits for each parameter. For 
this study, we were interested in analyzing the outcomes 
of water quality results from two guidelines: (i) the Cana-
dian Water Quality Guidelines for the Protection of Aquatic 
Life (CCME 2007) for freshwater and (ii) the Resolution 
CONAMA No. 357/2005 for freshwater/Class 2, which 
encompasses various water uses such as drinking water 
supply, protection of aquatic communities, recreation, irri-
gation, aquaculture, and fishing (CONAMA 2005). The 
classification procedure provides a response that reflects 
the environmental condition of the assessed environment 
(CWQI 2022). To calculate the WQI-CCME, three main 
factors were considered (F1, F2, F3):

Scope F1 represents the percentage of parameters that 
failed to meet the objectives of the limnological parameters 
during the period of interest, relative to the total number of 
parameters evaluated (CCME 2017):

Frequency F2 represents the percentage of individual 
tests that did not meet the objectives, relative to the total 
number of tests (CCME 2017):

Amplitude F3 is the extent to which the values of failed 
tests did not meet the objectives of the parameters. F3 was 
calculated in three steps (CCME 2017):

	 (i)	  The number of times an individual concentration 
exceeded (or fell below, when the objective is a 

(1)F
1
=

(

Number of failed parameters

Total number of parameters

)

∗ 100.

(2)F
2
=

(

Number of failed tests

Total number of tests

)

∗ 100.

minimum) the target is called an “excursion” and is 
expressed as follows:

		    When the test value exceeded the parameter objec-
tive:

		    For cases where the test value was below the 
parameter objective:

	 (ii)	  The collective value by which individual tests did not 
meet the objectives, which is calculated as the sum 
of excursions of individual tests divided by the total 
number of tests (including both those that meet and 
those that do not meet these objectives), is referred to 
as the Normalized Sum of Excursions (nse) and was 
calculated as follows:

	 (iii)	  The F3 amplitude was calculated using an asymp-
totic function that scales the nse to provide a range 
between 0 and 100.

Finally, the WQI-CCME was obtained (CCME 2017):

This index provides a numerical classification of water 
quality on a scale of 0 to 100, where 0 represents the poor-
est quality and 100 represents the best quality. This scale is 
divided into five classification categories, each associated 
with a specific color (red, orange, yellow, green, and blue), 
as presented in Table 1.

The WQI-CCME index used in this study incorporated 
14 parameters (pH, Turbidity, Dissolved Oxygen, Nitrogen, 
Phosphorus, Biochemical Oxygen Demand, E. coli, Cad-
mium, Lead, Chromium, Zinc, Nickel, Copper, and Total 
Dissolved Solids). The Ivaí and Pirapó river basins were 
classified as Class 2 according to SUREHMA Ordinances 
No. 019/92 and 004/91.

(3a)Excursioni =

(

Failed test value

objective

)

− 1.

(3b)Excursioni =

(

Objective

Failed test value

)

− 1.

(4)nse =

∑n

i=1
excursioni

≠ of tests
.

(5)F
3
=

(

nse

0.01nse + 0.01

)

.

(6)WQI − CCME = 100 −

�
√

F12 + F22 + F32

1.732

�

.
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Landscape analysis

The Geographic Information System (GIS) was used for the 
manipulation and processing of geographic data. Through 
GIS, we mapped the water network and delineated the 
watersheds, then calculated the average percentage of ter-
rain slope. Topographic information was obtained from the 
Shuttle Radar Topography Mission (SRTM) Digital Eleva-
tion Model (DEM) with a resolution of 30 m, using the 
Global Mapper software (Global Mapper 2017). Land use 
classes were delineated and processed using QGIS (QGIS 
Development Team 2020). High-resolution georeferenced 
images from 2018 were obtained from the BING Satel-
lite (2020) and downloaded from the SAS. Planet software 
(2019) with a resolution of 2.5 meters. The technical land 
use manual from IBGE (2013) was used as a reference to 
classify land use types in the study area as forest, farming, 
and urban areas.

The average percentage of area for the three land use 
categories was calculated at five distinct scales (i.e., 30-, 
50-, 100-, 200-, and 500-m buffers). These scales were 
defined based on the sampled stream reach (local scale). 
The average percentage of land use was also determined 
along the drainage basin upstream of the sampling point 
(network scale). In this case, six buffers of 30, 50, 100, 
200, 500, and 1000 m were adopted (see explanation below, 
Fig. 2).

The buffers were initiated at 30 m, following the envi-
ronmental protection limit established by the Brazilian For-
est Code, Federal Law No. 12.651/2012 (BRASIL 2012), 
for waterways with a width smaller than 10 m. For the 
local scale, we established a buffer of up to 500 m in order 
to avoid exceeding the boundaries of the watersheds. For 
the network scale, on the other hand, we used a buffer of 
up to 1000 m, considering the upstream extension of the 
watershed from the collection point. The local slope was 
determined within the 500-m buffer, exclusively consider-
ing the geographical boundaries of the drainage basin. In 
turn, the slope of the basin was evaluated within a 1000-m 
buffer area.

Data analysis

To summarize the environmental variables (Appendix 1), 
Principal Component Analysis (PCA) was employed using the 
“prcomp” function. The variables were transformed to have 
zero mean and unit variance using the “decostand” function 
with the standardize method. Next, the significant PCA axes 
were selected using the broken stick method. These axes were 
used as dependent variables, while the percentage of land use 
classes and terrain slope (i.e., local and network) were used as 
independent variables in the Multifit function formula (Huais 
2018). This function allows for the simultaneous execution of 
multiple statistical models to analyze a biological response in 
relation to different spatial scales, automating the multiscale 
analysis process (Huais 2018).

All independent variables and their interactions were 
considered for each scale group separately (i.e., local and 
network). Stepwise model selection was performed using 
backward and forward methods, and the model with the 
lowest Akaike Information Criterion (AIC) value that was 
statistically significant (p < 0.05) was selected. Model vali-
dation was conducted using the gvlma package (Pena and 
Slate 2019). The statistical analyses were conducted using 
R software, version 4.0.5 (R Core Team 2021), with vegan 
package (Oksanen et al. 2022) and MASS package (Venables 
and Ripley 2002).

Results

Water quality of streams

The investigated streams showed turbidity (Turb) above the 
limit established by the CCME 2007 (Table 2; Appendix 1). 
The concentrations of total nitrogen (TN) and total phos-
phorus (TP) exceeded the reference limits set by the CCME, 
2007 and CONAMA 357/2005. High biochemical oxygen 
demand (BOD) was observed in the streams, surpassing 
the values established by the CCME 2007 and CONAMA 
357/2005.

Table 1   Water quality classification categories (WQI-CCME)

Fonte: CCME (2017)

Categories Index WQI-CCME Description

Excellent 95–100 Water quality is protected with virtually no threat or harm; conditions very close to natural or pristine levels
Good 80–94 Water quality is protected only with a lesser degree of threat or impairment; conditions rarely deviate from 

natural or desirable levels
Fair 65–79 Water quality is generally protected but occasionally threatened or impaired; conditions sometimes deviate 

from natural or desirable levels
Marginal 45–64 Water quality is frequently threatened or impaired; conditions often deviate from natural or desirable levels
Poor 0–44 The condition of water quality is almost always threatened or impaired; conditions generally deviate from 

natural or desirable levels
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Fig. 2   Spatial scales generated from the study area grouped as fol-
lows: Local Scale (A), 30, 50, 100, 200, and 500-m buffers from the 
sampled stream reach, and Network Scale (B), 30, 50, 100, 200, 500, 

and 1000-m buffers corresponding to extensions created from the 
upstream drainage basin of the sampling points

Table 2   Minimum (Min), 
maximum (Max), mean/
standard deviation (SD), 
Canadian Water Quality 
Guidelines of the Protection 
of Aquatic Life (CCME, 
2007), and Resolution 
CONAMA N° 357/2005 
(CONAMA 357/2005) values 
for the evaluated limnological 
parameters in neotropical 
streams

Temperature (Temp), Turbidity (Turb), Conductivity (Cond), Total Dissolved Solids (TDS), Oxidation/
Reduction Potential (ORP), pH, Total Nitrogen (TN), Total Phosphorus (TP), Dissolved Oxygen (DO), 
Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Cadmium (Cd), Lead (Pb), 
Chromium (Cr), Zinc (Zn), Nickel (Ni), Copper (Cu), Total Coliforms (TC), Escherichia coli (EC)

Parameters Unit Min–Max Mean ± SD CCME 2007 CONAMA 
357/2005

Temp °C 22.19–26.31 24.02 ± 1.33 – –
Turb NTU 1.80–51.67 14.83 ± 15.30 5 100
Cond μS/cm2 0.03–0.25 0.14 ± 0.08 – –
TDS mg/L 0.02–0.17 0.09 ± 0.05 500 500
ORP mV 152.67–312.67 255.53 ± 41.79 – –
pH – 6.86–7.82 7.40 ± 0.24 6.5–9.0 6.0–9.0
TN mg/L 0.92–10.30 3.94 ± 2.85 0.1 2.18
TP mg/L 0.00–0.56 0.13 ± 0.14 0.1 0.1
DO mg/L 8.15–10.96 9.41 ± 0.90  > 5.5  > 5
BOD mg/L 0.00–31.00 4.37 ± 8.65 4 5
COD mg/L 3.10–107.00 15.30 ± 29.20 – –
Cd mg/L 0.00–0.00 0.00 ± 0.00 0.00002 0.001
Pb mg/L 0.00–0.03 0.00 ± 0.01 0.001 0.01
Cr mg/L 0.00–0.09 0.01 ± 0.03 0.002 0.05
Zn mg/L 0.00–0.16 0.03 ± 0.04 0.03 0.18
Ni mg/L 0.00–0.03 0.00 ± 0.01 0.025 0.025
Cu mg/L 0.00–0.32 0.03 ± 0.09 0.002 0.009
TC NMP/ml  > 2419.6 2419.6 ± 0 – –
EC NMP/ml 66.30–2419.60 817.43 ± 896.87 0 1.000
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The levels of total coliforms (TC) showed high concentra-
tions exceeding 2419.6 MPN/mL. The presence of Escher-
ichia coli (EC) bacteria was identified in all the analyzed 
streams. As a result, the streams do not comply with the lim-
its set by both the CCME 2007 and CONAMA 357/2005.

Cadmium (Cd) was not detected in the streams. Zinc (Zn) 
(0.16 mg/l) exceeded only the limits of the CCME 2007. The 
maximum concentrations of lead (Pb) (0.03 mg/l), chromium 
(Cr) (0.09 mg/l), and nickel (Ni) (0.16 mg/l) exceeded both 
regulation limits. Copper (Cu) reached up to 0.32 mg/L.

Application and evaluation of the water quality 
index (WQI‑CCME)

Considering the CCME 2007 guidelines, the water qual-
ity index ranged from 23.3 to 47.3 (Table  3; Fig.  3). 
Eleven streams were classified with “poor” water quality 
(23.3–43.5), and one stream with “marginal” water quality 

(47.3). The concentration parameters of NT, Pb, Cr, Cu, and 
Escherichia coli were the ones that most influenced the IQA-
CCME, with failures in the tests that exceeded the objective 
by more than 25 times. Scope and frequency were the same 
for each sample and did not vary. However, amplitude was 
consistently higher compared to other factors (Table 3).

Considering the CONAMA 357/2005 guidelines, the 
water quality index ranged from 47.5 to 100 (Table 3 and 
Fig. 3), with seven streams classified with “good” water qual-
ity (81.4–94.1), one stream with “excellent” water quality 
(100), three streams with “fair” water quality (66.1–79.5), 
and one stream with “marginal” water quality (47.5) 
(Table 1). Scope and frequency were equal, while amplitude 
was frequently higher, with only copper exerting the greatest 
influence in decreasing the index (Table 3). Lastly, stream 
I1 (Colombo; Fig. 1) exhibited the most critical levels in 
the index for both CCME 2007 and CONAMA 357/2005 
standards.

Table 3   Scope (F1), Frequency 
(F2), Amplitude (F3), and 
WQI-CCME index values for 
neotropical streams according 
to the Canadian Water Quality 
Guidelines of the Protection 
of Aquatic Life (CCME 2007) 
and CONAMA Resolution 
No. 357/2005 (CONAMA 
357/2005)

Pn = streams in the Pirapó River basin; In = streams in the Ivaí River basin

CCME 2007 CONAMA 357/2005

Points F1 F2 F3 WQI-CCME F1 F2 F3 WQI-CCME

P1 42.9 42.9 90.2 37.3 7.1 7.1 6.0 93.2
P2 28.6 28.6 93.9 41.0 143 14.3 3.3 88.2
P3 28.6 28.6 93.0 41.5 7.1 7.1 2.3 94.0
P4 14.3 14.3 89.0 47.3 7.1 7.1 7.9 92.6
P5 35.7 35.7 99.4 35.6 21.4 21.4 22.0 78.4
P6 21.4 21.4 99.3 40.0 14.3 14.3 25.2 81.4
I1 64.3 64.3 96.8 23.3 35.7 35.7 75.5 47.5
I2 28.6 28.6 94.0 40.9 7.1 7.1 1.3 94.1
I3 50.0 50.0 99.1 29.7 28.6 28.6 42.6 66.1
I4 21.4 21.4 93.1 43.5 7.1 7.1 7.7 92.7
I5 28.6 28.6 99.3 38.1 21.4 21.4 18.6 79.5
I6 21.4 21.4 98.6 40.4 0.0 0.0 0.0 100.0

Fig. 3   Water Quality Index 
(WQI-CCME) according to 
the Canadian Water Quality 
Guidelines of the Protection of 
Aquatic Life (CCME, 2007) 
and CONAMA Resolution 
No. 357/2005 (CONAMA 
357/2005)
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Limnological variables

The first two principal component analysis (PCA) axes were 
retained for interpretation, explaining 67.7% of the varia-
tion in the limnological data (Graph 1). The first axis (PC1) 
explained 46% of the total variation.

On the negative side, the variables that contributed the 
most were oxidation-reduction potential (ORP), total dis-
solved solids (TDS), and electrical conductivity (Cond). 
On the positive side, the significant contributors were 
chemical oxygen demand (COD), biochemical oxygen 
demand (BOD), and zinc level (Zn). The second axis (PC2) 
explained more than 21.7% of the variation, and the vari-
ables that most contributed to the variability of the streams 
were the levels of dissolved oxygen (OD), ORP, and pH on 
the negative side, and total nitrogen (TN), Escherichia coli 
(EC), and temperature (Temp) on the positive side.

Analysis of land use at multiple scales

The local scale buffer with the narrowest widths (30, 50, and 
100 m) were those with higher forest cover (up to 97.43%) 
(Graph 2; Figs. 4 and 5; Appendix 2). In all buffers, there 
was a negative relationship between the percentage of forest 
and the PCA axes. This means that streams with higher for-
est cover had higher values for variables such as ORP, TDS, 
Cond, OD, and pH. The effect of forest cover on the PC1 and 
PC2 axes was significant in the 50-m buffer (p = 0.002) and 
100-m buffer (p = 0.01) (Appendices 3 and 4). 

The local scale buffer with the wider buffers (200 and 500 
m) presented higher occupation of farming, reaching up to 
50.31%. All buffers showed a positive relationship between 
the PCA axes and the percentage of agriculture. This indi-
cates that streams with higher agricultural use had higher 
values of DQO, DBO, Zn, NT, EC, and temperature. The 
effect of agriculture on the PC1 and PC2 axes was significant 
in the 50-meter buffer (p = 0.004) and 100-meter buffer (p = 
0.02). The average percentage of slope ranged from 7.08 to 
9.67% for the local scale (Appendix 2).

Graph 1   Biplot graph (PCA) based on environmental variables 
(temp = temperature; turb = turbidity; cond = conductivity; tds = total 
dissolved solids; orp = oxidation–reduction potential; ph; nt = total 
nitrogen; pt = total phosphorus; od = dissolved oxygen; dbo = bio-
chemical oxygen demand; dqo = chemical oxygen demand; zn = zinc; 
cu = copper; ec = Escherichia coli) in 12 neotropical streams (symbols 
in black)

Graph 2   Average percentage (%) of land use in streams measured at 
the local scale (i.e., buffers of 30, 50, 100, 200, and 500 m)

Graph 3   Average percentage (%) of land use in streams measured at 
the stream network scale (i.e., buffers of 30, 50, 100, 200, 500, and 
1000 m)



	 Sustainable Water Resources Management (2023) 9:192

1 3

192  Page 10 of 24

On the stream network scale, wider buffers (500 and 1000 
m) were mostly occupied by farming, reaching up to 47.95% 
(Graph 3; Figs. 4 and 5; Appendix 2). In all buffers, there 
was a positive relationship between PC1 and the percentage 
of agricultural land use, indicating that streams with higher 
agricultural use had higher values of DQO, DBO, and Zn. 
The effect of agricultural land use on PC1 was considered 
significant in the 500-m buffer (p = 0.01). However, all buff-
ers showed a negative relationship between PC2 and the per-
centage of agricultural land use, indicating that streams with 
higher agricultural use had higher values of OD, ORP, and 
pH. The effect of agricultural land use on PC2 was consid-
ered significant in the 30-m buffer (p = 0.0003) (Appendices 
3 and 4).

The wider buffers (500 and 1000 m) were also mainly 
occupied by urban areas, reaching 42.87%. In all buffers, 
there was a negative relationship between PC1 and the per-
centage of urban areas, indicating that streams with higher 
urban usage had higher values of ORP, TDS, and conduc-
tivity. The effect of urban areas on PC1 was significant in 
the 1000-m buffer (p = 0.01). However, all buffers showed 
a positive relationship between PC2 and the percentage of 
urban areas, indicating that streams with higher urban usage 
had higher values of NT, EC, and temperature. The effect of 
urban areas on PC2 was significant in the 500-m buffer (p = 
0.04). The average percentage of slope ranged from 3.98 to 
7.81% for the water network scale (Appendix 2).

Fig. 4   Land use in the watershed of six peri-urban neotropical streams
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Discussion

The alteration of land use has exerted a substantial impact 
on the water quality of streams across several levels of 
analysis (Singh et al. 2017b). The inclusion of forested 
areas in small-scale buffer zones plays a significant role 
in preserving and enhancing water quality; whereas, agri-
cultural activities have adverse effects on both local-scale 
environments and the overall water network. In contrast, it 
was shown that metropolitan areas had a negative influence 
solely on the watershed area. The water quality within a 
given region exhibits variations based on factors such as 
geographical location, temporal dynamics, weather patterns, 
degree of urban development, agricultural practices, types 

of pollution sources, and the implementation of treatment 
protocols (Camara et al. 2019). Numerous studies have dem-
onstrated that alterations at the catchment scale exert a more 
substantial influence on water quality (Mello et al. 2018; 
Puczko and Jekatierynczuk-Rudczyk 2020). The impact of 
land use and land cover (LULC) on water quality exhibits 
a scale-dependent nature, as observed in previous studies 
conducted by Pratt and Chang (2012) and Wilson (2015). 
According to Ngoye and Machiwa (2004), the utilization of 
agricultural land has been found to have detrimental impacts 
on the quality of river water due to the extensive applica-
tion of fertilizers and irrigation practices. In their study, 
Bhattarai and Parajuli (2023) conducted an assessment to 
evaluate the efficacy of ponds, wetlands, riparian buffers, 
and their combined implementation as best management 

Fig. 5   Land use in the watershed of six urban neotropical streams
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practices (BMPs). The researchers determined that ponds 
and wetlands are effective in reducing total suspended sol-
ids, while riparian buffers are effective in reducing mineral 
phosphorus levels. In their study, Wang et al. (2023) exam-
ined the influence of seasonal variations on water quality. 
Their findings indicated that forested and grassland areas 
exhibited a positive effect on water quality; whereas, farm-
land and developed land had a negative impact on water 
quality in different seasons within the Huai River region of 
China. According to Wang et al. (2023), the primary sources 
of anthropogenic pollution are agricultural inputs and point 
sources. The activities occurring in upland areas play a sig-
nificant role in influencing the water quality within their 
corresponding catchment areas and downstream streams (Li 
et al. 2023). According to Zou et al. (2023), the effects of 
severe events, such as floods and droughts, on river water 
quality exhibit variations. Specifically, floods are found to 
have a more pronounced adverse influence on water quality 
compared to droughts. In urbanized river basins, the pol-
lutant load during the dry season is elevated as a result of 
the diminished dilution effect, as noted by Liu et al. (2017).

As an overall pattern for these urban and periurban 
streams, the water quality of the streams did not comply 
with the parameters established by the Canadian standards, 
indicating interference in the quality and considerable dam-
age to aquatic ecosystems, fauna, and human populations. 
The initial hypothesis was confirmed with the finding that 
the CCME 2007 methodology is more rigorous and sensi-
tive, leading to a classification of “poor and marginal.” The 
CONAMA Resolution 357/2005 proved to be more flexible 
and tolerant, resulting mainly in classifications of “good” and 
“fair,” indicating that the water is still considered suitable for 
the conservation of the aquatic ecosystem.

Water quality standards

The water quality of the streams has been determined to be 
impaired based on the criteria outlined in the Canadian Council 
of Ministers of the Environment (CCME) standards of 2007. 
This compromised water quality poses a significant risk to the 
survival of aquatic biota. The presence of metals is a signifi-
cant contributing element to the decline in water quality index, 
as it signifies the bioavailability of these compounds (Souza 
et al. 2013). Multiple studies have demonstrated that the exist-
ence of metallic elements has played a role in the decline of 
the water quality index (WQI-CCME), particularly in relation 
to the preservation of aquatic organisms (Lumb et al. 2006; 
Al-Janabi et al. 2015). This issue has been notably apparent 
in watersheds that are subject to significant human-induced 
disturbances. Furthermore, it was noted that the amounts of 
lead and chromium were beyond the permissible thresholds as 
outlined in the Canadian standard. The presence of these metals 
has been found to have adverse impacts on the regulatory and 

metabolic processes in fish, with a particular emphasis on their 
effects on embryonic development and reproductive capabilities 
(Jezierska et al. 2009).

The findings of Pekey et al. (2004) suggest that the elevated 
amounts of metals in the streams are indicative of a direct 
influx of pollutants from several sources. Streams play a sig-
nificant role in the formation of watersheds and subsequent 
surface runoff, hence impacting the water quality of bigger 
rivers. The potential for bioaccumulation and biomagnification 
in aquatic ecosystems allows these elements to have harm-
ful effects across long distances from their emission source 
(Weber et al. 2013; Lee et al. 2019). Hence, the presence of 
elevated levels of metals in aquatic environments has emerged 
as a significant concern for both aquatic organisms and human 
communities in contemporary times (Souza-Araujo et al. 2016; 
Collin et al. 2022; Noor et al. 2023).

The study conducted by Vieira et al. (2022) examined 
water quality in an agricultural watershed in Paraná and 
reported an elevation in the amounts of nitrogen and E. coli. 
These findings were shown to be significant factors contrib-
uting to the increase in the Water Quality Index-Canadian 
Council of Ministers of the Environment (WQI-CCME). The 
aforementioned studies conducted by Rovani et al. (2019) 
and Martíni et al. (2021) provide further evidence to sup-
port the notion that intensive farming practices are having 
a detrimental impact on the water quality within water-
sheds located in the southern region of Brazil. Research 
undertaken in regions characterized by elevated nitrogen 
concentrations and a significant presence of E. coli bacte-
ria has yielded empirical evidence indicating detrimental 
impacts on the overall well-being of aquatic ecosystems. 
The observed consequences encompass a reduction in the 
variety of macroinvertebrates and aquatic microbial com-
munities, alongside the discovery of indicator species that 
exhibit tolerance towards these unfavorable circumstances 
(Paruch et al. 2019; Rico-Sánchez et al. 2022).

The findings of the quantitative and qualitative assessments 
indicate that the water quality in the majority of the streams 
adheres to the requirements outlined in CONAMA Resolution 
357/2005. This suggests a minimal level of risk and the capac-
ity to safeguard aquatic organisms. The observation indicated 
that the sole presence of copper was the causal factor for the 
reduction in the index (WQI-CCME), a finding that was further 
validated in the study conducted in accordance with the Cana-
dian requirements. The results presented in this study align 
with the research undertaken by Alves et al. (2013), wherein 
an evaluation of the water quality of Ribeirão Preto stream 
revealed that the levels of metals detected were in accord-
ance with the guidelines set forth by CONAMA Resolution 
357/2005, despite the notable impact of human activities. In a 
study conducted by Godoy et al. (2021), it was found that the 
Piquiri River basin maintained satisfactory water quality lev-
els, as defined by CONAMA Resolution 357/2005, despite the 
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presence of extensive agricultural practices across a monitoring 
period spanning two decades.

The adoption of a human-centered perspective as an 
environmental indicator in CONAMA Resolution 357/2005 
imposes limitations on the evaluation of aquatic ecotoxicol-
ogy, as discussed by Odum (1988) and Bertoletti (2012). The 
aforementioned restrictions are readily apparent in the diverse 
applications of classes 2 through 4. Moreover, it is imperative 
to acknowledge that a restricted range of chemical, physical, 
and biological indicators fails to provide a thorough evalu-
ation of water quality (Silva et al. 2018; Padovesi-Fonseca 
2022). From this perspective, adopting a solely anthropocen-
tric strategy may lead to ecological imbalance and inadequate 
monitoring of aquatic ecosystems.

While it is feasible to utilize the CCME 2007 guidelines in 
Brazil for the purpose of achieving a more effective analysis 
and comprehensive understanding of aquatic ecosystems, it 
is crucial to bear in mind that the nation possesses the largest 
reserve of freshwater globally. Moreover, Brazil encompasses 
diverse biomes, each characterized by distinct features per-
taining to biodiversity, soil composition, vegetation, climate 
patterns, and water resources (Passos et al. 2018). The com-
prehensive evaluation of water quality should not exclusively 
consider human needs, but should also incorporate the dis-
tinct characteristics of individual aquatic ecosystems and their 
interactions with the surrounding environment to facilitate the 
implementation of efficient conservation strategies. Hence, it 
is imperative to align the quality objectives by including perti-
nent local studies to effectively preserve this natural asset and 
ensure its sustainable utilization (CCME 2007).

Landscape dynamics in water quality: a multiscale 
analysis

As the scale expanded, there was an observed decline in for-
est cover over time. The observed phenomenon was concomi-
tant with a rise in anthropogenic activity, such as agriculture 
and urbanization, suggesting a tendency towards landscape 
homogenization (Ribeiro et al. 2021). Deforestation of the 
Atlantic Forest in the state of Paraná has significantly esca-
lated in recent decades, leading to the substantial depletion of 
forested regions. This phenomenon may be primarily attrib-
uted to the increase of agricultural activities and animal hus-
bandry (Mohebalian et al. 2022). The potential consequences 
of environmental degradation outlined in this forecast pose a 
significant threat to water quality, aquatic ecosystems, and the 
availability of water resources for human populations (Mello 
et al. 2020).

Multiple studies have provided evidence regarding the sig-
nificance of forests in relation to water quality in streams, with 
a specific focus on their role in sustaining appropriate amounts 
of dissolved oxygen (Wang et al. 1997; Fernandes et al. 2014; 
Shen et al. 2015; Mello et al. 2018). The findings of this study 

provide further support for the notion that there exists a clear 
correlation between an expansion in forested areas and elevated 
concentrations of dissolved oxygen in aquatic environments. 
This link is of utmost importance as dissolved oxygen plays a 
critical role in facilitating the metabolic and respiratory pro-
cesses of aquatic organisms, as highlighted in the works of 
Oliveira et al. (2019) and Piffer et al. (2021). Nonetheless, the 
observed elevation in many parameters including oxidation-
reduction potential (ORP), pH, conductivity, and total dis-
solved solids (TDS) signifies the existence of ions within the 
water, originating from the leaching of nutrients from vegeta-
tion (Arcos et al. 2022). Forest harvesting, in conjunction with 
drainage, has been found to have significant effects on various 
scientific disciplines such as chemistry, physics, and ecology. 
These activities contribute to an increase in the accumulation 
of organic carbon, leading to the phenomenon known as brown-
ing, and, subsequently, causing detrimental changes in aquatic 
ecosystems (Härkönen et al. 2023). According to Härkönen 
et al. (2023), the process of browning in water bodies has det-
rimental effects on their recreational value and increases the 
costs associated with treating drinking water.

The principal driver of environmental change has been 
attributed to human activities (Ding et al. 2016; Mello et al. 
2018, 2020; Shi et al. 2022). The results obtained in our study 
provide support for the notion that water quality degradation 
is mostly attributed to the presence of agriculture and urban 
areas. Nevertheless, the issue can be further worsened by 
agricultural practices, as the findings suggest a correlation 
between these activities and a decline in oxygen levels and 
an increase in organic matter in the water. This is supported 
by the observed rise in biochemical oxygen demand (BOD) 
and chemical oxygen demand (COD). The exacerbation of this 
situation is attributed to the escalation of pollutants, namely 
nitrogen and zinc, which originate from the excessive appli-
cation of fertilizers and pesticides, as well as the outflow of 
sewage (McGrane 2016; Xiaojing et al. 2021). Moreover, the 
escalation in Escherichia coli can be attributed to regions with-
out adequate sanitary infrastructure, as well as the presence 
of livestock-derived manure or its application in agricultural 
settings (Hubbard et al. 2004; Lim et al. 2022). A positive 
correlation was identified between the decrease in native 
vegetation cover and the increase in water temperature. The 
aforementioned discovery aligns with the outcomes reported 
by Santos et al. (2017). The investigation reveals a significant 
correlation between the various interactions and the inclusion 
of local terrain slope as a covariate. Slopes with a higher gradi-
ent possess a heightened capacity to detrimentally affect water 
quality as a result of amplified water flow velocity. In the given 
circumstances, water possesses the capability to convey greater 
quantities of sediment, nutrients, and contaminants (Schmidt 
et al. 2019; Liu et al. 2021; Lei et al. 2021).

The study revealed a positive correlation between the exist-
ence of forests within a local area spanning 50–100 m and a 
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notable enhancement in water quality. Conversely, agricultural 
activities at the same scale were found to have a detrimental 
effect on water quality. The findings of Turunen et al. (2021) 
and Shah et al. (2022) underscore the susceptibility of the 
aquatic ecosystem to land use disputes. Another significant 
element that contributes to the deterioration of water qual-
ity is the growth of urban and agricultural regions within the 
watershed. The observable impacts of this expansion can be 
detected within a radius of 500–1000 m in the river network 
scale. The aforementioned results are consistent with the find-
ings of a recent investigation conducted by Shi et al. (2022). 
This study revealed that extensive land use practices, such as 
deforestation and urbanization, have a detrimental impact on 
water quality within a specific watershed in China. Conversely, 
the presence of vegetation cover at smaller scales, particularly 
along individual streams, was found to facilitate improvements 
in water quality. In their study, Cheng et al. (2023) found that 
landscape metrics associated with urban areas were the pri-
mary factor contributing to the deterioration of water quality 
in both dry and wet seasons. This degradation was mostly due 
to the expansion of urban land. Additionally, metrics connected 
to farmland were identified as a secondary contributor to water 
quality degradation in the agricultural basin of the Longxi 
River basin in western China. Irrespective of their spatial and 
temporal heterogeneity, the landscape metrics, namely patch 
density, landscape form index, and splitting index, exerted a 
notable influence on the quality of the river water, as demon-
strated by Li et al. (2023). The significance of landscape pat-
terns on water quality is essential, both in terms of the riparian 
zone and the sub-basin, as highlighted by Xu et al. (2023). 
According to Xu et al. (2023), the landscape metrics provide 
a significant ability to forecast the variability in total nitrogen 
in relation to total phosphorus.

The incorporation of a multiscale approach in watershed 
management and public policy is of significant importance, 
as it encompasses not only the conservation of local forests 
but also the comprehensive consideration of human activities 
across the entire watershed. This perspective is substanti-
ated by a range of investigations, including those undertaken 
by Buck et al. (2004), Pratt and Chang (2012), Ding et al. 
(2016), and Shi et al. (2022).

Conclusions

The present study investigated the primary impacts of land 
use on the quality of water in neotropical streams. The streams 
exhibit significant contamination from organic nutrients and 
fecal coliforms, specifically nitrogen and Escherichia coli. Fur-
thermore, the presence of heavy metals such as lead, chromium, 
and copper poses a considerable threat to both water quality 
and the long-term viability of the ecosystem (Yuan et al. 2021). 
The streams are classified as having “poor” and “marginal” 

quality according to the CCME index and 2007 standards. The 
aforementioned methods showed efficacy in the realm of stream 
monitoring, hence underscoring the imperative for a more com-
prehensive evaluation of water resources. According to Silva 
et al. (2018), the results indicate the need for a revision of 
Resolution CONAMA No. 357/2005 in order to adopt a more 
conservation-oriented and comprehensive approach.

In order to protect the integrity of the local water qual-
ity, the study proposes the implementation of a conserva-
tion strategy targeting riparian woodlands with a minimum 
width of 50 m. Furthermore, the study identified agriculture 
and urban areas as the primary factors contributing to the 
decline of water quality within a radius of 1000 m from the 
watershed. The aforementioned research findings underscore 
the necessity of implementing public policies and making 
amendments to the Brazilian Forest Code with regards to 
permanent preservation zones. These measures are crucial 
for safeguarding aquatic ecosystems through the maintenance 
of vegetation cover and taking into account the impacts of 
human activities (Chaves et al. 2023).

Notwithstanding the limited number of streams and the 
assessment of only one seasonal period, the outcomes of 
this study are in alignment with previous studies. Therefore, 
we propose conducting multiscale investigations in order to 
enhance comprehension of water quality and enhance the 
efficacy of management strategies. This research has the 
potential to enhance water resource management in anthro-
pogenically impacted environments, hence enhancing the 
field of freshwater ecosystem studies.

The degradation of stream water quality poses a significant 
threat to both natural and human populations who are reliant 
on river ecosystems. The performance of the CCME index 
and the CCME, 2007 recommendation in this analysis was 
satisfactory, emphasizing the necessity for a more rigorous 
approach to evaluating water quality. The findings additionally 
propose a revision of CONAMA Resolution No. 357/2005, 
with an emphasis on conservation and a comprehensive strat-
egy. According to the research findings, the preservation of 
forests plays a crucial role in maintaining the quality of local 
water resources, while the presence of agricultural and urban 
areas might have detrimental effects on the overall water 
quality within a given basin. The aforementioned findings 
underscore the imperative of implementing public policies 
and making adjustments to the Brazilian Forest Code in order 
to preserve aquatic ecosystems. This can be achieved through 
the protection of plant cover and the inclusion of human influ-
ences in decision-making processes. The implementation of 
these measures will enhance water quality and promote envi-
ronmental conservation, ensuring the sustainability of future 
generations. In order to enhance comprehension of water qual-
ity and effectively manage and preserve aquatic ecosystems, 
it is imperative to complement the findings with multiscale 
investigations.
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Appendix 1: Limnological analysis of physicochemical and biological parameters evaluated 
in neotropical streams. Pn = streams from the Pirapó basin; In = streams from the Ivaí basin.

Parameters P1 P2 P3 P4 P5 P6 I1 I2 I3 I4 I5 I6

Temperature 22.92 23.89 22.32 25.13 24.85 26.31 23 23.66 23.48 22.19 25.69 24.75
Turbidity 6.567 6.100 26.900 1.800 35.067 5.133 51.667 10.067 10.167 6.633 2.900 14.900
Conductivity 0.033 0.086 0.052 0.247 0.204 0.201 0.058 0.144 0.076 0.253 0.198 0.188
TDS 0.022 0.056 0.034 0.161 0.132 0.130 0.038 0.094 0.049 0.165 0.129 0.122
ORP 206.667 244.000 312.667 287.000 259.000 255.000 152.667 270.000 263.333 249.667 281.000 285.333
pH 6.863 7.473 7.553 7.417 7.297 7.230 7.310 7.590 7.543 7.823 7.297 7.350
Total Nitro-

gen
1.380 2.350 0.920 4.800 7.460 10.300 1.500 2.570 3.000 4.740 6.130 2.100

Total Phos-
phorus

0.190 0.060 0.080 0.070 0.110 0.070 0.000 0.090 0.560 0.070 0.140 0.070

Dissolved 
Oxygen

10.070 10.193 10.960 10.013 8.687 8.233 9.997 9.140 8.900 9.950 8.153 8.660

BOD 1 7.02 1.3 2.95 0 0 31 2.27 4.56 0 2.39 0
COD 3.2 3.8 3.1 10.4 5 5.7 107 7.5 17.7 4.4 11.5 4.3
Cadmium 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Lead 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.000 0.000 0.000 0.000
Chromium 0.000 0.000 0.000 0.000 0.000 0.000 0.087 0.000 0.021 0.000 0.000 0.000
Zinc 0.038 0.000 0.020 0.028 0.000 0.016 0.156 0.012 0.024 0.000 0.017 0.010
Nickel 0.000 0.000 0.000 0.000 0.000 0.000 0.033 0.000 0.000 0.000 0.000 0.000
Copper 0.006 0.000 0.012 0.000 0.006 0.000 0.322 0.006 0.054 0.000 0.005 0.000
Total Coli-

forms
 > 2419.6  > 2419.6  > 2419.6  > 2419.6  > 2419.6  > 2419.6  > 2419.6  > 2419.6  > 2419.6  > 2419.6  > 2419.6  > 2419.6

Escherichia 
coli

112.4 191.8 167.4 66.3 2419.6 1986.3 149.1 193.5 1413.6 142.5 1986.3 980.4

Appendix 2: Percentage (%) of land use measured in the scale groups: Local Scale (L), River 
Network Scale (R), and average percentage of terrain slope (Dec.) at Local Scale (L—500 m 
buffer) and Network Scale (R—drainage basin) included in forest use. Pn = streams 
in the Pirapó basin; In = streams in the Ivaí basin

Forest (%)

Points 30 50 100 200 500 1000 Dec

L R L R L R L R L R R L R

P1 100.00 97.02 87.98 89.19 51.81 59.26 27.15 31.48 13.68 12.62 7.50 7.81 8.39
P2 100.00 91.31 100.00 83.27 66.47 64.15 32.67 40.27 22.38 20.83 15.15 9.67 9.5
P3 90.06 89.77 61.07 71.17 44.23 44.19 29.75 24.61 20.55 10.23 7.12 8.39 8.09
P4 99.98 96.73 93.16 91.31 70.49 67.76 35.71 43.16 13.81 22.37 15.97 8.76 9.84
P5 100.00 80.91 100.00 71.98 83.34 44.49 45.21 22.15 16.20 8.43 4.02 8.08 7.89
P6 100.00 96.50 100.00 91.20 85.60 78.45 52.35 48.39 26.88 18.59 5.72 9.17 11.32
I1 94.86 97.60 76.16 76.79 38.39 43.49 20.05 22.82 9.73 8.53 5.70 7.08 8.01
I2 84.60 80.62 73.56 69.16 59.21 46.84 36.38 28.28 19.48 15.12 9.19 8.36 10.67
I3 100.00 94.90 85.50 70.26 51.45 37.41 28.47 19.68 11.23 8.31 3.48 7.21 7.03
I4 99.66 97.45 84.41 93.01 47.28 74.71 24.48 52.68 14.04 32.14 16.03 8.92 9.01
I5 100.00 84.45 100.00 76.82 77.78 61.26 53.94 46.01 31.89 20.92 9.04 9.48 12.89
I6 100.00 93.24 94.11 88.31 76.80 81.90 49.37 40.40 23.77 20.75 8.38 7.13 9.92
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Farming (%)

Points 30 50 100 200 500 1000

L R L R L R L R L R R

P1 0.00 2.75 12.02 10.67 48.19 40.67 72.85 68.49 86.32 87.37 92.49
P2 0.00 8.22 0.00 16.45 33.53 35.71 67.33 59.64 77.62 79.13 84.82
P3 9.94 7.72 38.93 27.14 55.77 54.87 70.25 74.93 79.25 89.59 91.63
P4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15
P5 0.00 0.37 0.00 1.69 0.00 4.32 0.00 4.57 1.80 1.74 0.83
P6 0.00 0.68 0.00 1.77 0.00 3.14 0.00 3.79 18.76 1.79 1.58
I1 5.14 2.40 23.84 23.21 61.61 56.51 79.95 77.18 90.27 91.47 94.30
I2 15.40 16.31 26.44 28.24 40.79 51.21 63.62 70.74 80.52 83.96 87.14
I3 0.00 4.92 14.50 29.63 48.55 62.31 71.53 79.86 88.77 91.53 96.34
I4 0.34 0.22 15.21 3.01 45.68 11.95 57.21 16.95 69.75 19.33 12.36
I5 0.00 0.60 0.00 2.16 0.00 4.60 0.00 5.17 0.35 2.18 0.90
I6 0.00 3.24 0.00 5.43 0.00 14.66 1.21 17.79 10.41 17.94 12.87

Urban areas (%)

Points 30 50 100 200 500 1000

L R L R L R L R L R R

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.12
P4 0.02 3.27 6.84 8.69 29.51 32.24 64.29 56.84 86.19 77.63 83.87
P5 0.00 8.25 0.00 16.16 16.66 45.03 54.79 70.27 82.00 88.68 94.61
P6 0.00 2.32 0.00 5.52 14.40 16.79 47.65 47.01 53.95 79.32 92.62
I1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 2.24
I3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11
I4 0.00 2.33 0.39 3.98 7.04 13.34 18.31 30.37 16.21 48.53 71.60
I5 0.00 5.05 0.00 11.54 20.12 28.58 38.08 45.93 65.51 75.64 89.62
I6 0.00 1.93 5.89 5.30 23.20 2.84 49.42 41.58 65.83 61.23 78.71

See Figs. 4 and 5.

Appendix 3: Estimates of the slopes of the relationship between the percentage of land use 
and the axes (PC1 and PC2) for each group of scales: Local (local scale) and Network (Water 
network scale), as well as the overall statistics of the models (AIC, R2, and P)

Forest

Axis Buffer Group Estimate AIC R2 P

PC1 30 Local − 8.58 46.8 0.78 0.002
Rede 0.97 59.68 0.37 0.09

50 Local –2.00 45.2 0.81 0.002

Rede −0.46 63.48 0.14 0.42

100 Local − 0.71 47.2 0.77 0.02

Rede − 0.36 59.80 0.37 0.18

Forest

Axis Buffer Group Estimate AIC R2 P

200 Local − 0.82 48.8 0.74 0.04

Rede − 0.60 58.04 0.45 0.09

500 Local − 1.62 55.8 0.54 0.09

Rede − 1.08 58.16 0.45 0.07

1000 Rede − 1.59 63.54 0.14 0.37
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Forest

Axis Buffer Group Estimate AIC R2 P

PC2 30 Local − 4.39 50.3 0.38 0.09
Rede 0.03 49.06 0.45 0.91

50 Local − 0.74 48.3 0.48 0.19
Rede 0.11 48.23 0.49 0.71

100 Local − 0.63 40.8 0.72 0.01
Rede − 0.07 47.69 0.51 0.61

200 Local − 0.65 45.5 0.59 0.06
Rede − 0.005 47.29 0.52 0.98

500 Local − 1.03 52.2 0.28 0.19
Rede − 0.07 48.29 0.48 0.83

1000 Rede − 0.68 47.97 0.50 0.46

Farming

Axis Buffer Group Estimate AIC R2 P

PC1 30 Local 8.58 46.8 0.78 0.002
Rede 1.26 62.9 0.18 0.41

50 Local 1.70 46.1 0.79 0.004
Rede 0.69 52.63 0.65 0.02

100 Local 0.34 50.3 0.71 0.10
Rede 0.31 48.4 0.75 0.01

200 Local 0.19 52.1 0.66 0.19
Rede 0.21 46.9 0.78 0.01

500 Local 0.17 54.0 0.60 0.25
Rede 0.16 46.1 0.79 0.01

1000 Rede 0.15 46.4 0.79 0.01
PC2 30 Local 4.39 50.39 0.38 0.09

Rede − 2.08 28.09 0.90 0.0003
50 Local 0.74 48.63 0.47 0.15

Rede − 0.13 45.67 0.58 0.46
100 Local 0.37 42.34 0.68 0.02

Rede − 0.01 45.43 0.59 0.84
200 Local 0.20 45.26 0.60 0.08

Rede − 0.01 45.60 0.59 0.80
500 Local 0.16 47.19 0.53 0.15

Rede − 0.01 45.67 0.58 0.77
1000 Rede − 0.01 46.08 0.57 0.76

Urban areas

Axis Buffer Group Estimate AIC R2 P

PC1 30 Local − 41.54 59.54 0.27 0.75
Rede − 0.09 59.44 0.38 0.95

50 Local − 3.02 58.37 0.44 0.30
Rede − 0.06 57.34 0.48 0.92

100 Local − 0.59 55.33 0.56 0.29
Rede − 0.16 58.66 0.42 0.47

200 Local − 0.24 54.51 0.59 0.31
Rede − 0.20 50.62 0.70 0.05

500 Local − 0.18 54.85 0.58 0.31
Rede − 0.16 47.31 0.77 0.02

1000 Rede − 0.14 46.05 0.79 0.01
PC2 30 Local − 1.05 54.25 0.004 0.99

Rede 0.13 49.5 0.20 0.13
50 Local 0.02 56.25 0.005 0.99

Rede 0.10 48.2 0.28 0.07
100 Local − 0.47 51.14 0.35 0.31

Rede 0.05 48.47 0.27 0.08
200 Local − 0.23 48.29 0.48 0.21

Rede 0.03 47.76 0.31 0.05
500 Local − 0.16 48.68 0.47 0.24

Rede 0.02 47.38 0.33 0.04
1000 Rede 0.02 48.08 0.29 0.06

Bold highlights emphasize models that show a significant 
impact at the chosen scale
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Appendix 4: Estimates of parameters for models selected using backward and forward 
methods, based on the lowest AIC value, for each group of scales: Local Scale (L), Network 
Scale (R)

Forest

Coefficients Estimate Pr( >|t|) F-statistic p-value Adjusted 
R-squared

PC1 (L) (Intercept) 190.53 0.001 11.65 (3.8) 0.002 0.74
floresta_50 − 2.00 0.002
paisagem_local$slope_500 − 21.91 0.002
floresta_50:paisagem_local$slope_500 0.22 0.003

PC1 (R) (Intercept) 21.63 0.09 2.24 (3.8) 0.16 0.25
floresta_200 − 0.60 0.09
paisagem_montante$slope_bacia − 3.11 0.15
floresta_200:paisagem_montante$slope_

bacia
0.08 0.15

PC2 (L) (Intercept) 45.5 0.009 7.0 (3.8) 0.01 0.62
floresta_100 − 0.63 0.01
paisagem_local$slope_500 − 6.11 0.006
floresta_100:paisagem_local$slope_500 0.08 0.008

PC2 (R) (Intercept) 5.36 0.01 8.16(1.10) 0.01 0.39
paisagem_montante$slope_bacia − 0.90 0.01

Farming

Coefficients Estimate Pr( >|t|) F-statistic p-value Adjusted 
R-squared

PC1 (L) (Intercept) − 4.21 0.43 10.6 (3.8) 0.003 0.72
agropecuaria_50 1.70 0.004
paisagem_local$slope_500 0.32 0.6
agropecuaria_50:paisagem_

local$slope_500
− 0.19 0.005

PC1 (R) (Intercept) − 4.51 0.22 10.52 (3.8) 0.003 0.72
agropecuaria_500 0.16 0.01
paisagem_montante$slope_bacia 0.45 0.47
agropecuaria_500:paisagem_

montante$slope_bacia
− 0.02 0.04

PC2 (L) (Intercept) − 5.80 0.28 5.874 (3.8) 0.02 0.57
agropecuaria_100 0.37 0.02
paisagem_local$slope_500 0.81 0.20
agropecuaria_100:paisagem_

local$slope_500
− 0.05 0.01

PC2 (R) (Intercept) 10.68 5.45 25.35 (3.8) 0.0001 0.86
agropecuaria_30 − 2.08 0.0003
paisagem_montante$slope_bacia − 1.63 8.80
agropecuaria_30:paisagem_

montante$slope_bacia
0.27 0.0003

Urban areas

Coefficients Estimate Pr( >|t|) F-statistic p-value Adjusted 
R-squared

PC1 (L) (Intercept) 10.52 0.07 5.713 (2.9) 0.025 0.46
urbano_200 − 0.05 0.03
paisagem_local$slope_500 − 1.11 0.11
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Urban areas

Coefficients Estimate Pr( >|t|) F-statistic p-value Adjusted 
R-squared

PC1 (R) (Intercept) 10.79 0.003 10.66 (3.8) 0.003 0.72
urbano_bacia − 0.14 0.01
paisagem_montante$slope_bacia − 1.45 0.007
urbano_bacia:paisagem_

montante$slope_bacia
0.01 0.06

PC2 (L) (Intercept) 7.82 0.18 2.539 (3.8) 0.12 0.29
urbano_200 − 0.23 0.21
paisagem_local$slope_500 − 1.06 0.14
urbano_200:paisagem_local$slope_500 0.03 0.15

PC2 (R) (Intercept) − 0.94 0.14 5.086 (1.10) 0.04 0.27
urbano_500 0.02 0.04
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