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Abstract
The mechanisms underlying rock–water interactions play a crucial role in understanding groundwater quality. In this study, 
we examined hydrochemical data from 96 samples obtained from the crystalline aquifer system in the Southeast region of São 
Paulo State, Brazil, to characterize the hydrochemistry of these aquifers. Through the analysis of these data, we conducted 
several geochemical simulations to reproduce the hydrochemistry of the evaluated samples. Our analysis revealed two dis-
tinct evolutionary trends in hydrochemistry. The calcium–magnesium bicarbonate types can be attributed to the dissolution 
of amphiboles, while the sodium bicarbonate type can be reproduced by the dissolution of plagioclases. Contrary to the 
initial assumptions, the hydrochemistry of the evaluated samples does not mimic the mineralogy of the granitic/gneiss rocks. 
Instead, the cations dissolved in groundwater mainly originate from unstable and reactive minerals, primarily represented 
by amphiboles and plagioclases. Furthermore, considering that  HCO3

− is the primary species generated through silicate 
hydrolysis in an open system with respect to  CO2, we have developed a model that utilizes the concentration of this ion as 
a parameter to estimate the mass of rock involved in the rock–water interaction process. This model allows us to assess the 
extent of rock–water interaction based on  HCO3

− concentration. However, this approach is only valid in cases where addi-
tional sources of  HCO3

− are absent, and elevated  PCO2 levels prevent an increase in pH and carbonate precipitation. Overall, 
our findings make significant contributions to the comprehension of rock–water interaction processes and the assessment of 
groundwater quality in crystalline aquifers. However, they challenge the prevalent belief that the hydrochemistry of crystal-
line aquifers closely mirrors that of the fissured rocks through which groundwater flows.
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Introduction

Crystalline aquifers are composed of hard rocks through 
which groundwater flows and is stored in fissures formed 
by various processes, including weathering, tectonics, 
thermal stress, and unloading (e.g., Lachassagne et  al. 
2021; Duranel et al. 2021; Yuguchi et al. 2021; Mao et al. 

2022). Groundwater that fills these fissures undergoes 
complex chemical interactions with the host rock, known 
as rock–water interaction processes. The progression of 
rock–water interaction begins with groundwater recharge, 
which involves the input of low-ionic solutes that circulate 
through the interconnected network of rock fissures into the 
aquifers, gradually altering their initial composition (e.g., 
Almeida et al. 2022; Akurugu et al. 2022; Zango et al. 2023).

Chemical interactions between rock and water involve 
various distinct processes, such as dissolution/precipitation, 
ion exchange, oxidation, and reduction (e.g., Adabanija et al. 
2020; Kumar and Kumar 2020; Fuoco et al. 2022; Ju et al. 
2023; Mizuno et al. 2023). However, the dominant mecha-
nism is undoubtedly represented by silicate hydrolysis (e.g., 
Banks and Frengstad 2006; Elango and Kannan 2007; Tera-
moto et al. 2019; Fuoco et al. 2022; Ghalit et al. 2023).

Numerous studies have investigated the evolution of 
hydrochemistry in groundwater stored in fractured rock, 
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particularly focusing on incongruent silicate dissolution 
(e.g., Warnner et al. 2017; Sunkari and Abu 2019; Rashid 
et al. 2020; Abbas et al. 2021; Kouser et al. 2022; Cho and 
Choo 2019; Nakayama et al. 2022). The quantitative rela-
tionship between the progress of rock–water interaction 
and water quality in crystalline aquifers were explored in 
several previous works (e.g., Sung et al. 2012; Olofinlade 
et al. 2018; Ackerer et al. 2021; Roy et al. 2020; Choi et al. 
2020; Ojoki et al. 2021; Fuoco et al. 2022). Furthermore, 
rock–water interaction also leads to the precipitation of new 
mineral phases, primarily clay minerals such as kaolinite, 
chlorite, and illite, while more stable phases like K-feld-
spar, quartz, and zircon accumulate as residual minerals 
(Procházka et al. 2018).

An essential aspect of rock–water interaction is compre-
hending the potential release of chemical species that may 
pose risks to human health. A prominent example is the fluo-
ride ion  (F−), which is predominantly released into water 
through rock–water interaction, rendering it unsuitable for 
consumption. Numerous previous studies have reported the 
loss of potability resulting from the release of fluoride due 
to rock–water interaction in crystalline aquifers worldwide 
(e.g., Pauwels et al. 2015; Nagaraju et al. 2016; Martins et al. 
2018; Sunkari and Abu 2019; Rashid et al. 2020; Cuccuru 
et al. 2020; Nakayama et al. 2022; Fuoco et al. 2022).

In addition to evaluating water quality, understanding 
rock–water interaction is also relevant for elucidating the 
dynamics of groundwater movement within bedrock fissures 
(e.g., Jaunat et al. 2012; Mao et al. 2022; Stober et al. 2022). 
For instance, dissolved silica derived from rock–water inter-
action can serve as a reliable indicator for estimating resi-
dence time in the crystalline aquifer (Benettin et al. 2015; 
Marçais et al. 2018; Mao et al. 2022). Furthermore, experi-
mental data demonstrate that rock–water interaction can 
strongly impact the natural permeability of fissured rocks. 
It can increase permeability through the dissolution of cer-
tain minerals or decrease it through the precipitation of clay 
minerals along fractures (Sanchez-Roa et al. 2021).

One of the challenges in studying rock–water interaction 
is measuring the extent of this interaction, as only a few 
metrics have been proposed for its assessment. For example, 
Wanner et al. (2017) propose the use of Li as a proxy to 
determine the degree of interaction between water and rock, 
while Négrel (2006) suggests utilizing Sr, Ne, and rare-earth 
elements to quantify rock–water interaction. The quantifica-
tion of rock–water interaction remains an ongoing issue, as 
different approaches and indicators provide valuable insights 
into this complex process. Wanner et al. (2017) propose the 
use of Li as a proxy, recognizing its potential in indicating 
the degree of interaction between water and rock. In contrast, 
Négrel (2006) suggests incorporating Sr, Ne, and rare-earth 
elements as alternative indicators for quantifying rock–water 
interaction.

As an alternative to simple metrics for estimating the 
extent of rock–water interaction, the application of geochem-
ical modeling can provide quantitative and robust results, 
taking into account the complex interactions between vari-
ous reactions (e.gAppelo and Postma 2004; Stradioto et al. 
2020; Milesi et al. 2023). Geochemical modeling enables 
us to assess the coherence of anticipated dominant reactions 
and offers quantitative insights into the interaction between 
rocks and groundwater. It also facilitates establishing a con-
nection between the evolution of groundwater hydrochemis-
try and the advancement of the rock–water interaction pro-
cess. Despite the capabilities of geochemical models, only 
a limited number of studies have effectively employed them 
to replicate the water quality resulting from the interaction 
between groundwater and rock in crystalline aquifers, con-
sidering various reaction pathways (e.g., Fuoco et al. 2022; 
Manu et al. 2023).

The Precambrian crystalline basement outcrop and crys-
talline aquifers in São Paulo State serve as significant water 
sources due to their widespread occurrence in a substantial 
portion of Southeastern Brazil. In addition to São Paulo, 
the largest city in Latin America, other major urban centers 
in São Paulo State, such as Guarulhos and Campinas, also 
rely on the utilization of crystalline aquifers. The remarkable 
diversity in geotectonic contexts, lithology, geochemistry, 
and mineralogy observed in the crystalline basement of São 
Paulo State presents a significant opportunity to advance 
our quantitative understanding of rock–water interaction 
processes and their impact on groundwater hydrochemistry. 
Investigating these factors can provide valuable insights into 
the complex dynamics between rock and water, ultimately 
enhancing our knowledge of groundwater quality in the 
region. However, to date, a comprehensive study character-
izing and modeling the hydrochemical evolution of crystal-
line aquifers in São Paulo State has not been undertaken. 
Therefore, this study has two main objectives. First, we aim 
to enhance our understanding of the mechanisms involved 
in the quantitative evaluation of hydrochemical evolution 
resulting from rock–water interactions. To achieve this, it 
is crucial to examine the underlying mechanisms and vari-
ables that influence the water quality of crystalline aquifers. 
Second, our objective is to develop a reliable model capable 
of accurately predicting the extent of rock–water interaction.

Materials and methods

Study area and regional geology

The study area is situated in the Crystalline Basement 
of the State of São Paulo, located in southeastern Bra-
zil (Fig. 1). The rocks of the crystalline basement that 
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occupies about 30% of the area of the State of São Paulo 
in its eastern region.

The focus of this study will be on the Mantiqueira 
Province as most of the samples are located within this 
unit. The Mantiqueira Province (Almeida et al. 1981) 
constitutes a complex Brazilian orogenic system (Fuck 
et al. 2008) that extends parallel to the east coast of Brazil 
in an approximate northeast direction. It stretches from 
southern Uruguay to southern Bahia, covering a length 
of over 3000 km (Heilbron et al. 2004). The province is 
delimited by the São Francisco, Tocantins, and Paraná 
provinces, as well as the basins of the East Continental 
Margin Province (Hasui 2010). It is compartmentalized 
into three main segments and five distinct orogens, as 
described by Heilbron et al. (2004): (a) the northern seg-
ment, which includes the Araçuaí Orogen; (b) the central 
segment, comprising the southern portion of the Brasília 
Orogen, and the Ribeira and Apiaí orogens; and (c) the 
southern segment, encompassing the Dom Feliciano and 
São Gabriel orogens.

Stratigraphically, the Mantiqueira Province can be 
divided into Archean and Paleoproterozoic basement 
rocks, metasedimentary sequences deposited in Paleo-
proterozoic to Mesoproterozoic intracontinental basins, 
Neoproterozoic metasedimentary and metavulcano-
sedimentary sequences, as well as Neoproterozoic gran-
ites and Neoproterozoic covers. The metamorphic grade 
recorded in the lands of the Mantiqueira Province ranges 
from greenschist facies to granulite facies (Heilbron et al. 
2004).

Data collection and exploratory analysis

We analyzed a comprehensive dataset comprising 96 
hydrochemical records extracted from six previously 
conducted studies carried out in the crystalline basement 
of São Paulo State, Southeastern Brazil. The sources of 
these data include Kiang et al. (2003), Iritani et al. (2011), 
DAEE (2011), Ezaki et al. (2014), Martins et al. (2018), 
and Teramoto et al. (2019).

The selection of data prioritized samples from the crys-
talline basement with plutonic or hypabyssal magmatic 
rocks, as well as rocks subjected to metamorphism in 
amphibolite facies or higher. Aquifers composed of meta-
sedimentary/metabasic rocks with low metamorphic grade 
were excluded from the dataset. This ensured that the ana-
lyzed aquifers were predominantly composed of quartz, 
potassic feldspars, plagioclases, biotite, and amphibole. 
Additionally, we compiled available geochemical data to 
assess the compatibility of groundwater with the interact-
ing rock. The locations of the sampled groundwater are 
depicted in Fig. 1, and the complete dataset is presented 
in Table S1 of the Supplementary Materials.

To setting the diverse geochemistry of rocks found in 
the crystalline basement of São Paulo, we compiled X-ray 
diffraction analyses from various rock samples published 
in previous works. The data sources include Spinelli and 
Barros (2009), Oliveira et al. (2008), Janasi et al. (2009), 
Sobrinho et al. (2011), Melo and Oliveira (2013), Duffles 
et al. (2013), and Toledo et al. (2018).

Fig. 1  The location of the 
compiled groundwater samples 
and of the region where the geo-
chemistry of rock is available
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To conduct an initial assessment of compositional vari-
ations in the water samples, we performed hydrochemical 
typology and calculated the saturation index of the dissolved 
phase in groundwater. Additionally, we constructed a Cox 
Diagram to explore the distinct geochemistry of the rocks. 
Where both groundwater and rock analyses were conducted 
within the same aquifer, we endeavored to establish a cor-
relation between them, seeking to identify any connections 
or relationships.

Geochemical conceptual model

We assume that the natural hydrochemistry of crystalline 
aquifers is governed by chemical interactions with the 
modal mineralogy of rocks. Consequently, the rock–water 
interaction is controlled by the dissolution of K-feldspar, 
plagioclase, pyroxenes, amphiboles, and biotite.  Na+,  K+, 
 Ca2+,  Mg2+, and  HCO3

− are assumed to be ions released 
into the water, while  Cl−,  SO4

2−, and  NO3
− are presumed to 

be derived from anthropogenic contamination.
Potassium feldspars (orthoclase and microcline) repre-

sent abundant mineral phases in granites and gneisses. The 
hydrolysis of potassium feldspars is responsible for the 
release of potassium into the water, as described in Eq. 1 
(Appelo and Postma 2004)

Plagioclases are significant mineral phases found in 
granitic/gneissic rocks, especially those of the tonalite and 
granodiorite types. The hydrolysis reactions of the terminal 
members of the plagioclase series, anorthite and albite, are 
presented in Eqs. 2 and 3, respectively (Appelo and Postma 
2004)

Although amphiboles typically constitute a small percent-
age of granitoids (< 5%), these minerals can have a signifi-
cant impact on groundwater composition due to their reac-
tivity. Given the mineralogical composition of the examined 
rocks, it is likely that hornblende hydrolysis is the domi-
nant source of magnesium in the water, as outlined in Eq. 4 
(Helms et al. 1987)

(1)
2KAlSi3O8 + 2CO2 + 11H2O
→ Al2Si2O5(OH)4 + 2K+ + 2HCO−

3 + 4Si(OH)4.

(2)
CaAlSi3O8 + 2CO2 + 3H2O
→ Al2Si2O5(OH)4 + Ca2+ + 2HCO−

3 + 4Si(OH)4

(3)
2NaAlSi3O8 + 2CO2 + 11H2O
→ Al2Si2O5(OH)4 + 2Na+ + 2HCO−

3 + 4Si(OH)4.

In the case of an open system with respect to  CO2, which 
is expected to be true for fissured crystalline rocks, the pH 
is buffered by high  PCO2 levels, and  HCO3

− serves as the 
main anion produced by silicate hydrolysis, as demonstrated 
in Eqs. 1–3. We interpret the variations in major cations and 
 HCO3

− as distinct stages of rock–water interaction, forming 
a continuum reflecting the extent of reaction with the rock.

Kaolinite is widely acknowledged as the primary mineral 
phase resulting from the weathering of crystalline rocks, 
such as granite and gneiss, in tropical and subtropical cli-
mates (Eqs. 1–4) (e.g., Jeong 2000; Gurumurthy et al. 2012; 
Liu et al. 2016; Fuoco et al. 2022).

Geochemical simulation

To assess the extent of rock–water interaction, we catego-
rized certain samples into geological groups and ranked 
them based on the concentrations of major cations and ani-
ons. All numerical geochemical simulations in our study 
were performed using Geochemist's Workbench 10.0 (GWB 
10) software (Bethke and Yeakel 2018).

Speciation calculations were conducted using the Espec8 
program within GWB 10 to determine the saturation state 
with respect to dissolved minerals. The saturation index (SI) 
of a specific mineral is obtained by dividing the chemical 
activities of the dissolved ions (ion activity product, IAP) by 
their solubility product (Ksp), as described in Eq. 5

When the saturation index (SI) is lower than 0, the solu-
tion is unsaturated with respect to the evaluated mineral. 
An SI equal to 0 indicates that the solution is saturated with 
respect to the evaluated mineral. In the case of SI > 0, the 
mineral phase is supersaturated, leading to the precipitation 
of the mineral phase.

The reaction paths related to rock–water interaction 
was performed following the procedures described by 
Teramoto et al. (2019). The simulation of water composi-
tion variations as a function of rock–water interaction was 
conducted using the React program within GWB 10 and 
thermodynamic database thermo.tdat. These simulations 
aimed to reproduce changes in the chemical composition 
of water as water–rock interaction intensifies. Additionally, 

(4)

Na0,5Ca2
(

Fe1,3Mg2,6Al1,1
)(

Al1,6Si6,4
)

O2

+ 15H+ + H2O → 0, 5Na + 2Ca2+ + 2, 6Mg2+

+ 1, 3Fe2+ + 2, 7Al(OH)+2 + 6, 4H4SiO4(aq).

(5)SI = log10

(

IAP

Ksp

)

.
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the simulations provided estimates of the mass balance of 
chemical species released into the water and the mass of 
secondary minerals produced from this interaction. Some 
reference samples were selected as criteria for adjusting the 
reacted mineralogy.

The initial solution was assumed to be pure water, with 
an average concentration of  Cl−,  SO4

2−,  NO3
−, and  K+ based 

on the reference samples. The selection of mineral phases 
for reference was based on the geological context of the 
water sources, and the masses of each reacted phase were 
manually adjusted. Since the GWB database did not include 
calcio-magnesian hornblende, we used tremolite as a proxy 
for magnesian amphibole. To enable the precipitation of 
supersaturated mineral phases, we activated the precipita-
tion function in GWB. The resulting precipitated mineralogy 
was also calculated.

Results

Geochemistry of rocks

The geochemistry of the Precambrian basement exhibits a 
wide range of diversity, which aligns with its genetic con-
text. Metamorphic rocks found in amphibolite and granulite 
facies include ortho- and para-derived gneiss, migmatites, 
granulites, and amphibolites. Additionally, there are scat-
tered occurrences of sin- or post-orogenic granites, pre-
dominantly classified as monzogranite and syenogranite 
according to the QAP classification. The lithological diver-
sity reflects the varied geochemistry of the rocks, as illus-
trated in Fig. 2. The samples of Amparo Complex (Oliveira 
et al. 2008) fall within gabbro field, since these rocks are 

derived from the metamorphism of tholeiitic basalts. The 
samples from the Amparo Complex (Oliveira et al. 2008) 
fall within the gabbro field, as these rocks originate from 
the metamorphism of tholeiitic basalts. The geochemistry 
of the Guaxupé Complex exhibits broad variation (Melo and 
Oliveira 2013), encompassing the paleosome of migmatites 
composed of tholeiitic basaltic orthogranulite, as well as 
the neosome formed through partial melting. The neosome 
exhibits a calc-alkaline composition, ranging from granitic 
to tonalitic, with high  SiO2 content. Additionally, samples 
from charnockite intrusions are also present.

Regarding the geochemistry of the rocks, our study 
focused on the major metallic elements that comprise the 
modal mineralogy of granitoids and gneiss, namely potas-
sium, sodium, calcium, and magnesium. Generally, the gran-
itoids exhibit a composition range from diorite to syenite, as 
shown in Fig. 2. The dominant element is  K2O (> 4.5 wt%), 
followed by  Na2O (0.28–7.11 wt%), CaO (0.05–4.22 wt%), 
and MgO (with average values below 0.5 wt%) (e.g., Janasi 
et al. 2009; Spinelli and Barros Gomes 2009; Duffles et al. 
2013; Toledo et al. 2018). However, there are some rock for-
mations that deviate from the typical granitoid composition. 
For instance, the Amparo Complex, which spans a large area 
in São Paulo State, is derived from the metamorphism of 
tholeiitic basalts. The average content of CaO, MgO,  Na2O, 
and  K2O in this complex is 10.66%, 11.89%, 1.24%, and 
0.35% wt, respectively (Oliveira et al. 2008). Similarly, in 
the case of the paleosome of migmatites within the Guaxupé 
Complex, the average composition of CaO, MgO,  Na2O, and 
 K2O is 11.37%, 9.88%, 1.87%, and 0.85% wt, respectively 
(Melo and Oliveira 2013).

Characterization of evaluated samples

As illustrated in Eqs. 1–3, bicarbonate is the predominant 
anion resulting from rock–water interaction in an open sys-
tem with respect to  CO2. Consequently, all water samples in 
our study are classified as either Ca–Mg–HCO3 or Na–HCO3 
types, as depicted in Fig. 3. Three samples deviate from this 
classification and are categorized as Na-SO4 types, indicat-
ing anthropogenic influence. The pH values of the water 
samples are consistently close to neutral, and the electrical 
conductivity (EC) exhibits a wide range of variation, span-
ning from 28 to 1,121 µS/cm.

The relationship between Electrical Conductivity (EC) 
and Total Dissolved Solids (TDS) is well established, with 
the former often used as an indicator for estimating the latter. 
By plotting the TDS values against the corresponding EC 
data (Fig. 4), we observed a linear relationship between the 
two parameters, which aligns with expectations. Through 
linear regression analysis with the intercept constrained 
at EC = 0 and TDS = 0, we determined that TDS can be 

Fig. 2  Cox diagram illustrating the percentage of  Na2O +  K2O plotted 
against  SiO2 in rock samples from selected lithostratigraphic units of 
the Crystalline Basement in São Paulo State. The diagram highlights 
the distinctiveness of rock geochemistry based on data acquired from 
literature sources
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estimated by multiplying EC by 0.82 in crystalline aquifers 
in the studied area.

To assess the formation of authigenic minerals result-
ing from rock–water interaction, we constructed a stability 
diagram focusing on Ca-rich and Na-rich silicates. How-
ever, due to missing data on  SiO2 and  Al3+ concentrations 
for some samples, they were not included in the diagram. 
Figure 5 illustrates that the majority of samples are located 
within the kaolinite field, indicating the prevalence of kao-
linite formation. However, a few samples are classified under 
gibbsite and montmorillonite categories. It is worth noting 
that the samples falling within the montmorillonite field are 
characterized by high TDS values, suggesting a significant 
level of interaction with the rocks.

Geochemical simulation

To gain insights into the hydrochemical evolution of ground-
water resulting from rock interaction in crystalline aquifers 
in São Paulo, we examined two theoretical endmembers: 
the Ca–Mg–HCO3 and Na–HCO3 types. In the first set of 
simulations, we focused on samples from the Amparo Com-
plex, which consists of metamafic and amphibolites from 
the Amparo and Itapira complexes. For the second set of 
simulations, we chose samples representing sodium-rich 
rocks and those with an alkaline affinity. The quantities of 
precipitated kaolinite and quartz per liter of water are pre-
sented in Table 1, providing valuable information on mineral 
precipitation during rock–water interaction.

Figures 6 and 7 depict the Stiff diagrams comparing the 
results of the first and second sets of simulations, respec-
tively, highlighting their similarities. The plagioclase series 
encompasses various intermediate types, spanning from 
predominantly calcium-based compositions (anorthite) to 
predominantly sodium-based compositions (albite). To rep-
licate plagioclases with varying proportions of calcium and 
sodium in their compositions, we employed variable masses 
of anorthite and albite as the interacting minerals with water. 
Dissolved  CO2 values were adjusted to represent different 
 PCO2 conditions in the studied aquifers, resulting in hydro-
gen concentrations and alkalinities that closely resembled 
the observed values.

Figure  8 illustrates the evolution of CE, pH, TDS, 
 HCO3

− concentration, and the masses of precipitated kaolin-
ite and quartz as a function of the reacted mass of rock (sum 
of reacted minerals). The figure shows that, for most of the 
presented parameters, there is a linear increase as the mass 
of reacted minerals increases. However, the pH exhibits a 
non-linear increase followed by a gradual rise, indicating 
the buffering effect of high  PCO2. This behavior reflects the 
system's ability to maintain pH within a certain range despite 
variations in the reacted mineral mass.

Due to the buffering effect caused by high  PCO2, water 
exhibits elevated concentrations of  CO2, which undergo 
hydrolysis to form  HCO3

− during interactions with rock. 
Taking this into consideration, we calculated an increase 
in  HCO3

− concentration corresponding to the reacted rock 
(Fig. 8). As depicted in the figure, the  HCO3

− concentration 
shows a linear increase in relation to the equivalent mass of 
the reacted rock.

Based on the linear correlation between  HCO3
− concen-

tration and the mass of reacted minerals, we developed two 
linear equations for predicting the theoretical mass of reacted 
rock for the Ca–Mg–HCO3 type (Eq. 6) and the Na–HCO3 
type (Eq. 7). The distinction between these equations lies in 
the proportion of reacted amphibole, as these mineral lacks 
alumina

Fig. 3  Groundwater samples projected on the Durov diagram. The 
evaluated samples were classified into five distinct groups, according 
to TDS values

Fig. 4  Scatterplot of TDS versus EC values as a linear model
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Discussion

Our analysis was based on previously published works. 
Figure 1 illustrates a significant data gap in the southern 
portion of the study area, which limits our analysis in that 
region. The concentration of samples in specific regions 
introduces a potential bias into our analyses; however, we 
have confidence in the representativeness of our samples. 
They were collected from the principal lithostratigraphic 
groups encompassing the crystalline basement of the State 
of São Paulo.

During the hydrochemical characterization, we observed 
that all groundwater samples exhibited variations between 
the Ca, Mg–HCO3 and Na–CO3 types, as depicted in Fig. 3. 
This is likely due to the high annual precipitation in the 
studied area (> 1200 mm/year) and the subsequent leaching 

(6)M
interacted rock

= 0.002⋅HCO
−

3
− 0.0408

(7)M
interacted rock

= 0.0032⋅HCO
−

3
− 0.0647.

process. Most samples fall within the kaolinite and gibbsite 
fields, as shown in Fig. 5. These samples align along two 
reaction paths: one composed of orthogneisses from the 
Amparo Complex and the other involving sodium-rich rocks. 
To simulate the rock–water interaction within the Amparo 
Complex, we utilized amphiboles and calcium-rich plagio-
clases as reactant phases (Fig. 6). Conversely, to replicate the 
evolution of Na-HCO3 types, the presence of sodium-rich 
plagioclase alone was sufficient (Fig. 7). In our simulations, 
the secondary mineralogy resulting from the dissolution of 
primary silicates consists exclusively of quartz and kaolinite 
(Table 1).

In addition to rock mineralogy, the climatic and hydrolog-
ical conditions also exert an influence on rock–water interac-
tion. Therefore, by conducting a comprehensive analysis of 
our study along with previous research that employed similar 
methodologies, we significantly advance the current under-
standing of the mechanisms that govern rock–water interac-
tion in crystalline aquifers. Despite the recent publication of 
several relevant works deducing the mechanisms control-
ling water quality in crystalline rocks (e.g., Cho and Choo 
2019; Cuccuru et al. 2020; Kumar and Kumar 2020; Abbas 
et al. 2021; Mao et al. 2022; Kouser et al. 2022; Ghalit et al. 
2023), only a few of them (e.g., Fuoco et al. 2022; Manu 
et al. 2023) have utilized geochemical modeling to reproduce 
the reaction paths of rock–water interaction, enabling direct 
comparisons with our results.

When comparing our findings with previous studies that 
utilized similar modeling approaches (Fuoco et al. 2022; 
Manu et al. 2023), certain similarities arise, particularly in 
recognizing the significance of plagioclases as a key mineral 
group influencing hydrochemistry. From this perspective, 

Fig. 5  Stability diagram regard-
ing aluminum silicate minerals

Table 1  Mass of precipitated minerals calculated by simulations per 
liter of groundwater

Group Mass of kaolinite precip-
itated (g)

Mass of quartz 
precipitated (g)

Amparo complex 0.1562 0.07988
Sodium-rich rock 0.2526 0.195
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the concentrations of  Na+ and  Ca2+ in groundwater can be 
predominantly influenced by the Na/Ca ratio in the reacted 
plagioclases. However, it is important to exercise caution 
when interpreting this statement, as the dissolution of pla-
gioclases, as established by Stober and Bucher (1999), is 
notably incongruent. This means that while Ca is released 
into the groundwater, Na remains relatively unaffected 
within the crystal structure. Consequently, the proportions 
of reactive albite and anorthite adjusted in geochemical 
simulations may not accurately reflect the true composition 
of plagioclases.

In contrast to our findings, Fuoco et al. (2022) demon-
strated in their geochemical simulations that biotite plays a 
significant role as the second most important reacted min-
eral, releasing magnesium into the groundwater. The use 
of biotite as a source of  Mg2+ in crystalline aquifers is sup-
ported by several studies (e.g., Soulsby et al. 1998; Elango 
2007; Jeong 2001; Venkatramanan et al. 2016), considering 
its abundance and reactivity. The average concentrations of 
 Na+,  K+,  Ca2+, and  Mg2+ are 3.48 mmol/L, 0.056 mmol/L, 
2.50 mmol/L, and 0.94 mmol/L, respectively. Thus, our 
samples display a relatively high proportion of magnesium, 
comparable to that of calcium and sodium, while showing 

a significantly lower concentration of potassium. This chal-
lenges the notion of biotite being the primary source of mag-
nesium. Based on our model, amphiboles appear to be a 
more suitable candidate as the main source of magnesium.

According to the simulations by Fuoco et al. (2022), 
K-feldspar is postulated as the third most important min-
eral contributing to water quality. Since K-feldspar is one 
of the most abundant minerals in granitoids and gneiss, it 
is theoretically expected to have a significant impact on the 
hydrochemistry of crystalline aquifers. However, during our 
simulations, we observed that the contribution of K-feldspar 
to the hydrochemistry of crystalline aquifers is minimal, 
despite its abundance in granite/gneiss. This is indicated by 
the low activity of  K+ in almost all samples. We ruled out 
the possibility of potassium-rich clays, such as montmoril-
lonite and illite, precipitating due to their low saturation 
indices. The preferential dissolution of plagioclases over 
K-feldspar can be attributed to the low reactivity of the lat-
ter mineral, with dissolution rates at least two-to-three orders 
of magnitude lower than those of plagioclases (e.g., White 
et al. 2001; Kampman et al. 2009; Zhu 2005).

In some locations where both the rock and geochemistry 
data were available, a comparative evaluation was possible. 

Fig. 6  Comparison of stiff 
diagram of simulated solution 
with distinct stages of rock–
water interaction and data from 
Amparo complex samples
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We note that groundwater samples collected at the occur-
rence of Amparo and Guaxupé Complex in the north portion 
of studied area, the concentration of calcium and magnesium 
is high, agreeing with rock geochemistry. On the other hand, 
in the locations markedly by occurrence of granitoids with 
composition varying between syenogranite and granodiorite, 
the sodium comprises the most important dissolved cation, 
with minor but important concentration of calcium and mag-
nesium. In this case, our study reveals a discrepancy between 
groundwater and rock compositions, highlighting the need 
for a more nuanced interpretation.

As rock–water interaction is the primary mechanism 
influencing the water quality of crystalline aquifers, vari-
ous metrics have been proposed to measure the extent of 
these processes. Our research demonstrates the suitability of 
 HCO3

− as a proxy for quantifying the extent of rock–water 
interaction, as this anion is exclusively generated through 
silicate hydrolysis in the studied area. However, it is impor-
tant to note that this holds true under specific conditions, 
particularly in an open system with respect to  CO2, where 
the pH remains close to neutral and there is no carbonate 

precipitation or another external source of bicarbonate (e.g., 
calcite).

Conclusions

Through the compilation of hydrochemical data from 
groundwater in Precambrian crystalline rocks and the appli-
cation of geochemical modeling, we have gained valuable 
insights into the primary mechanisms governing the chemi-
cal composition of these waters in the Southeast region of 
São Paulo State, Brazil. In our approach, we employed a 
reacted mineralogy adjustment in numerical simulations to 
accurately reproduce the two main hydrochemical evolution 
trends.

Our simulations revealed that the groundwater in 
crystalline aquifers in São Paulo consists of Na–HCO3, 
Ca–Mg–HCO3, or intermediate hydrochemical types. 
These types can be attributed to two distinct evolutionary 
trends in hydrochemistry. The Ca–Mg–HCO3 types can be 
linked to the dissolution of amphiboles and plagioclases, 
while the sodium bicarbonate type can be reproduced by 

Fig. 7  Comparison of stiff dia-
gram of simulated solution with 
distinct stages of rock–water 
interaction and data of sodium-
rich samples
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the dissolution of sodium-rich plagioclases. Consequently, 
in the studied area, the rock–water interaction can be 
simplified as involving the hydrolysis of plagioclase and 
amphiboles, leading to the precipitation of secondary min-
eralogy, such as kaolinite and quartz.

It is worth noting that despite the abundance of 
K-feldspar in the granitoids and its high percentage in 
the rocks, the concentration of  K+ in groundwater is very 
limited. While our results align with other studies that 
have reproduced the hydrochemical evolution resulting 
from rock–water interaction in crystalline aquifers, it is 
important to recognize that important features can vary 
significantly, and models should be applied with caution, 
considering the specificity of each site.

Another significant finding is that contrary to com-
mon belief, the hydrochemistry of the evaluated samples 
does not mimic the mineralogy or geochemistry of the 
granitic/gneiss rocks. Instead, the dissolved cations in 
groundwater mainly originate from unstable and reactive 
minerals, primarily represented by amphiboles and plagio-
clases. Finally, our simulations theoretically demonstrate 
that  HCO3

− can be utilized as a parameter to measure the 
extent of rock–water interaction in the studied area, as it 
is the main species produced through silicate hydrolysis 
under an open system with respect to  CO2.
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