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Abstract
Climate changes are likely to significantly affect the region's hydrological cycle, as any change in hydrological variables 
disturbs the hydrologic processes. In the present study, the Regional Hydro-Ecological Simulation System (RHESSys) was 
set up in the Nuranang watershed located in the Tawang district of Arunachal Pradesh, India, to explore the sensitivity of the 
hydrologic response of the watershed toward the projected future climatic scenarios. Future streamflow and saturation deficit 
were obtained by driving the calibrated RHESSys model and Coupled Model Intercomparison Project Phase 5 (CMIP5) 
climate data downloaded from the COordinated Regional Climate Downscaling Experiment-South Asia (CORDEX-SA) 
website (ftp:// cccr. tropm et. res. in/) under Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. All the Global 
Climate Models (GCMs) predicted that the study region’s average temperature would rise by 1.39–6.39 °C in the twenty-first 
century compared to the baseline period. All models projected a higher temperature increase under RCP 8.5 than under RCP 
4.5. The model-average total precipitation increased in the 2020s but decreased in the 2050s and 2080s under both RCP 
scenarios. Monthly, the projections show a prevalent summertime drying (while the winter experiences higher precipitation). 
Changes in subsurface flow, overland flow, and streamflow followed almost the same trend as changes in precipitation. RCP 
4.5 scenario predicts about 1.97% increase in total streamflow in 2020s and a deficit of about 0.60% and 3.54% in 2050s and 
2080s, respectively, as compared to baseline period and under RCP 8.5 scenario the model-average predicted streamflow 
increased by 2.26% in 2020s and reduced by around 1.81% and 2.34% in 2050s and 2080s respectively. On a monthly scale, 
total streamflow increased significantly in winter and decreased in summer for all projected time slices. The model-average 
saturation deficit decreased in all future time slices as compared to the baseline period, except in the 2020s under RCP 4.5. 
Overland flow and streamflow were found most sensitive to climate change under the RCP 4.5 scenario, whereas saturation 
deficit and overland flow were found most sensitive under the RCP 8.5 scenario.
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Introduction

Increases in the concentrations of greenhouse gasses in the 
atmosphere are expected to affect the Earth’s climate in 
the coming century, significantly affecting the hydrologi-
cal cycle. Changes in climatic variables like temperature 
and precipitation disturb the hydrological cycle and water 
availability. Planning and management of water resources 
are essential for the region's environment, ecosystem, and 

economic development. Climate variables and, accord-
ingly, the pattern of streamflow are highly variable both 
inter-annually and intra-annually. Hydrological models 
with assumed climate change scenarios are generally used 
to evaluate the possible effects of climate change on water 
resources and hydrological processes. The projection of 
future flow regimes and water availability in the watershed 
can be beneficial for the adaptation of water resources man-
agement strategies and the socio-economic development of 
the region (Ruth et al. 2007; Fung et al. 2013).

All the major rivers of India originating in the Hima-
layas can be affected by climate change as rainfall, snow, 
and glacier melt contribute to runoff. Studying on climate 
change's influence on the flow regime of river systems helps 
in the planning and management of water resources, disaster 
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management, hydropower generation, etc. In the high alti-
tude regions of the eastern Himalayas, a significant part of 
the annual precipitation falls as snow; therefore, due to an 
increase in temperature, precipitation may fall as rain instead 
of snow and thus disturb the flow regime. Incorporating cli-
mate change forecasts (e.g., air temperature and precipita-
tion) into models that accurately estimate water flows in a 
watershed might help examine climate change's implications 
on water resources. The most common approach to study 
hydrological response to climate change is to run hydro-
logical models with projected climate variables (precipita-
tion and temperature) from Global Climate Models (GCMs) 
under different climatic scenarios generally downscaled or 
bias-corrected to the study region (Etchevers et al. 2002; 
Fowler et al. 2007; Chiew et al. 2009; Senatore et al. 2011; 
Ruelland et al. 2012). GCMs provide climate variation at 
the continental and hemispheric scales and are naturally 
unable to represent local basin-scale characteristics. The 
COordinated Regional Climate Downscaling EXperiment 
(CORDEX) was launched by the World Climate Research 
Programme (WCRP) to downscale the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) scenarios globally 
(Giorgi et al. 2009). Among the several CORDEX domains, 
the South-Asia (SA) domain is a capacity-building effort in 
the South-Asian region that focuses on the South-Asian sum-
mer to translate regional climate downscaled data into mean-
ingful, sustainable development information. CORDEX-SA 
was started in 2012, and the Regional Climate Model (RCM) 
outputs of future projections for the South-Asian region are 
available for some models only (Pechlivanidis et al. 2014).

Distributed watershed scale models have been used 
increasingly to obtain the streamflow from the watershed 
and estimate climate change impacts on streamflow (Hussen 
et al. 2018; Aawar and Khare 2020; Tarekegn et al. 2021). 
Such models have been utilized in hydrological simulations 
under numerous situations, including land use and climate 
change. The impact of climate change on hydrology is stud-
ied by comparing the current streamflow at the catchment 
outlet with the future projected stream flow from two RCPs 
(RCP 4.5 and RCP 8.5) simulated by different climate mod-
els (Beaulieu et al. 2016; Shiferaw et al. 2018; Dutta et al. 
2020; Thiha et al. 2020).

The Regional Hydro-Ecological Simulation System 
(RHESSys), a daily time-step distributed hydro-ecologic 
model, has been used in the present study to derive stream-
flow and other hydrological variables for the present climate 
(using climate input for the present condition) as well as 
for future time periods (using climatic input from climate 
models) and to investigate the sensitivity of different vari-
ables to climate change. RHESSys has been successfully 
applied in various mountainous watersheds to study the 
climate change impact on the hydro-ecological systems of 
the watershed (Band et al. 1996; Morán-Tejeda et al. 2015; 

Peng et al. 2015; Martin et al. 2017; Sarkar et al. 2018). 
Zabalza-Martínez et al. 2018 evaluated the response of 
streamflow in a Mediterranean medium-scale basin under 
land-use and climate change scenarios. Results reveal a 
clear decrease in dam inflow (− 34%) since the dam was 
operational from 1971 to 2013. The simulations obtained 
with RHESsys displayed a similar decrease (− 31%) from 
2021 to 2050. Son and Tague (2018) investigated the effect 
of climate warming (2 and 4 °C) on the model estimates of 
snow water equivalent (SWE), streamflow, evapotranspira-
tion (ET), and moisture deficit in the two watersheds in the 
California Sierra. Shin et al. (2019) examined the effects of 
climate change on hydrological and ecological variables by 
applying the RHESSys model to the Seolmacheon catch-
ment. The RHESSys model previously calibrated and vali-
dated for Nuranang watershed using spatial and climatic data 
(Mishra et al. 2020) was used for future streamflow simu-
lations. Future streamflow and other hydrologic variables 
were obtained by driving the calibrated RHESSys model 
with climate data from CMIP5 for RCP 4.5 and 8.5.

The hydrological systems of the Himalayan region are 
very sensitive to changes in the climate. The fluctuations in 
precipitation and temperature greatly affect the streamflow 
regime and timing of peaks, which can directly influence 
the biodiversity and ecosystem. There has been widespread 
worry among researchers in this region as the effects of cli-
mate change on the region's mountain range become more 
apparent. Changing precipitation and glacier depletion 
will significantly affect streamflow (Marazi and Romshoo 
2018; Rani and Sreekesh 2019; Singh et al. 2021; Thapa 
et al. 2021; Singh and Sharma 2022). Romshoo and Marazi 
(2022) studied the influence of shifting precipitation and 
snowmelt on streamflow in the Lidder, the most glaciated 
watershed in the Upper Indus Basin (UIB). Climate change 
predicts early spring snowmelt by the end of the century, 
altering streamflow peaks from late spring to early spring 
upstream and from summer to spring downstream. Muna-
war et al. (2022) examined climatic and hydrological trends 
in the Jhelum river basin for the twenty-first century using 
Statistical Downscaling Model (SDSM) and Snowmelt Run-
off Model (SRM). According to the study, the twenty-first 
century will be wetter and warmer than the baseline period. 
Dar et al. (2022) examined the influence of the cryosphere 
on streamflow to land system dynamic changes in the Kash-
mir Himalayan Upper Jhelum River Basin (UJRB). Between 
1980 and 2016, temperatures rose, and precipitation fell; 
and in glacierized sub-basins, snow covered area (SCA) 
decreased. Since 1998, the average annual discharge also 
declined.

Studies related to the sensitivity of the hydrologic 
response of watersheds in the eastern Himalayas are limited. 
However, the hydrological systems of the region are highly 
sensitive to change and variability in climatic variables. The 
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changes in precipitation and temperature greatly influence 
the streamflow pattern, as the region has a great share of 
runoff from snowmelt. There is a need to project seasonal 
streamflow and hydrological property variations at the local 
scale to build adaptive resource management and hazard 
alleviation techniques. Therefore, the present study was 
undertaken to analyze the impact of future climate changes 
on total streamflow and saturation deficit in the Nuranang 
watershed of Arunachal Pradesh under different projected 
climatic scenarios.

This study was conceptualized in 2015 and was com-
pleted in 2021 and hence, CORDEX-SA CMIP5 models 
were used for future projections. However, in May 2021, 
CORDEX-SA CMIP6 model projections became available, 
which might give improved insights as per Intergovernmen-
tal Panel on Climate Change (IPCC) 6th Assessment Report 
scenarios.

Study area

Nuranang watershed (Fig. 1a), draining an area of 52.37 
 km2, located in the Tawang district of Arunachal Pradesh, 
India, was selected as the study area. The area lies between 
North latitudes of 27° 29′ 57.37′′–27° 34′ 21.15′′ and East 
longitudes of 92° 00′ 33.98"–92° 07′ 08.93′′ with an eleva-
tion range of 3459 to 4895 m above MSL. The discharge site 
of the Central Water Commission (CWC) at RA-III, Jang, 
was selected as the outlet point at 27° 33′ 00" N and 92° 01′ 
19′′ E, with an elevation of 3459 m above MSL. The entire 
watershed receives seasonal snowfall from October until 

March, and depletion starts in February and continues until 
early June, when snow completely depletes. Snow accumula-
tion and ablation patterns vary a little year-to-year.

Methods and data collection

Digital Elevation Model (DEM) with 30 m spatial resolution 
was downloaded for the study area from the United State 
Geological Survey (USGS) Earth Explorer (Fig. 1a). Land 
Use/Land Cover map for the state of Arunachal Pradesh 
was purchased from the State Remote Sensing Application 
Centre (SRSAC), Department of Science and Technology, 
Govt. of Arunachal Pradesh (Fig. 1b). The hydrological data 
of daily discharge and daily stage for the Nurarang water-
shed for 1999–2011, measured at the CWC discharge site at 
RA-III, Jang, were collected from the CWC office, Itanagar, 
Arunachal Pradesh. The observed stage for the year 2016 
was taken from the Digital Water Level Recorder (DWLR) 
installed at the outlet of the Nuranang catchment purchased 
from Virtual Hydromet, Roorkee, India (http:// www. vhydr 
omet. com/). Daily precipitation, maximum temperature, 
and minimum temperature data for the present condition 
(1970–2005) and future years (2006–2097) under RCP 4.5 
and RCP 8.5 scenarios for different CMIP5 (Coupled Model 
Intercomparison Project Phase 5) models were downloaded 
from the CORDEX-SA website (ftp:// cccr. tropm et. res. in/). 
Five GCMs (ACCESS 1.0, CCSM 4, CNRM-CM5, MPI-
ESM-LR, NorESMI-M) for which CORDEX output were 
available for both present and future years were selected. 
Daily CORDEX-SA data for all GCMs are available at 
0.5° × 0.5° spatial resolution.

Fig. 1  Nuranang watershed, Arunachal Pradesh, India: a DEM and b LULC map

http://www.vhydromet.com/
http://www.vhydromet.com/
ftp://cccr.tropmet.res.in/
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Pre‑processing of CORDEX‑SA data

The downloaded CORDEX data were in numerical control 
file format (.nc); the data were converted to GeoTIFF format 
using QGIS software. The resultant raster images were then 
clipped for the watershed shapefile using ArcMap 10.0. The 
extraction of time series for temperatures (maximum and 
minimum) and precipitation was also done using the Spatial 
Analyst tool in ArcMap 10.0. The time series data obtained 
from the above process were exported to Microsoft Excel 
for further analysis.

Generation of rating curve for Nuranang watershed

A rating curve (stage-discharge curve) was needed in this 
study to convert the daily stage (m) data recorded by the 
DWLR installed at the watershed outlet into discharge 
 (m3  s−1) for the year 2016. These observed streamflow 
data were used to validate the projected streamflow gener-
ated by the RHESSys simulation under projected climate 
(temperature and precipitation) forcings. The time series 
data of the stage (m) at the outlet and the corresponding 
discharge  (m3  s−1) from the watershed from 2000 to 2011 
were arranged in ascending order. On the corresponding 
scatter plot, it was observed that the data points are organ-
ized in a straight line since the stream is small and the 
catchment size is only about 52 sq. km. Hence, the best-fit 

straight line through these data points was drawn by lin-
ear regression, and the corresponding linear equation was 
obtained as the rating curve equation for future use. Ninety 
percent of the available data points were used in devel-
oping the equation, and the remaining 10% of randomly 
selected data points were used to validate the developed 
rating curve.

Figure 2a shows the developed stage-discharge rating 
curve of the Nuranang watershed at the CWC gaging site 
at RA-III, Jang, and the regression analysis gave the best 
fit linear equation as:

where, Y is the observed stage (m) and X is the observed dis-
charge  (m3 s.−1)

The coefficient of determination (R2) of the equation 
was found to be 0.717.

The generated rating curve equation was validated for 
data points not used in the generation process. The data 
points for the validation process were randomly selected in 
such a way that the range covered both low and high flows. 
Figure 2b shows the plot of the predicted/ estimated stages 
using the developed rating curve equation vs. the observed 
stages. Five dimensionless statistical performance criteria, 
namely, NSE (Nash–Sutcliffe efficiency), KGE (Kling-
Gupta Efficiency), CRM (Coefficient of Residual Mass), 

(1)Y = 0.0309X + 3418.3,

Fig. 2  Rating curve for 
Nuranang watershed: a develop-
ment, b validation
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R2 (Coefficient of Determination), and SEE (Standard 
Error of Estimates), were used for validation. Simulated 
stage values showed a high level of agreement with the 
observations, with NSE and KGE of 0.81 and 0.84, respec-
tively. The  R2 value obtained for validation was 0.896. 
The corresponding CRM and SEE values obtained were 
− 0.001 and 0.074, respectively, indicating slight overes-
timation. Therefore, the developed equation was used to 
convert the DWLR recorded daily stage data of the year 
2016 to the corresponding discharge for further use.

RHESSys

RHESSys is a distributed physical processes-based eco-
hydrological model developed by coupling ecological and 
hydrological models (Band et al. 1993; Tague and Band 
2004). Originally, the RHESSys model was designed by 
explicitly coupling the Forest Biogeochemical Cycles 
(FOREST-BGC) canopy model with a Mountain Climate 
Simulator (MT-CLIM) and advanced by coupling with 
topography based hydrological model (TOPMODEL) for 
the hydrologic process. RHESSys is capable of simulating 

water, carbon, and the nitrogen cycle in a forest-dominated 
basin using a geographical information system. The Forest-
BGC model simulates the vegetation growth, nutrient, and 
water cycle of the forest ecosystem while MT-CLIM mainly 
interpolates meteorological variables at a climate station. 
TOPMODEL (Beven and Kirkby 1979) is a physical-based 
quasi-distributed hydrological model that generates stream-
flow and saturation deficits. In addition to streamflow, the 
model also gives estimates of overland and subsurface flow 
and the spatial pattern of the depth to the water table in 
the watershed. For an advance in hydrological processes, an 
explicit hydrologic routing model, the Distributed Hydrol-
ogy Soil Vegetation Model (DHSVM), was incorporated 
in RHESSys to account for non-grid-based patches and no 
exponential transmissivity profiles. Model developers (Band 
et al. 1993; Tague and Band 2004) have described more 
details on each module and algorithm of RHESSys.

The RHESSys model was used to assess how climate 
changes might impact future streamflow regimes. The 
RHESSys model, driven by historical precipitation, mini-
mum and maximum air temperature data, was first calibrated 
and validated using daily streamflows at the watershed 

Fig. 3  Estimation of effect of 
climate change on hydrological 
variables using RHESSys
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outlet. Future streamflow was then obtained by driving the 
calibrated RHESSys model with daily scenarios of differ-
ent climate data from CMIP5 to examine streamflow regime 
change sensitivity.

Governing equations of RHESSys

RHESSys uses TOPMODEL (Beven and Kirkby 1979) to 
calculate total streamflow from patches and the basin out-
let. The model generates streamflow using the variable-
source-area concept. Model projections include stream-
flow, overland flow, subsurface flow, and water table depth 
in the watershed. TOPMODEL assumes saturated hydrau-
lic conductivity changes exponentially with depth, water 
table gradients may be represented by topographic slope, 
and steady-state flow is obtained within the modeling time 
step. Wolock (1993) and Tauge and Band (2004) provide a 
detailed overview of the mechanisms employed in RHESSys 
streamflow generation.

The RHESSys explicit routing model is based on the 
DHSVM routing technique (Wigmosta et al. 1994), which 
has been modified to accommodate non-grid-based patches 
and non-exponential transmissivity profiles. Surface flow 
(i.e., saturation overland flow or Hortonian overland flow) 
produced is routed following the same patch topology used 
for routing saturated subsurface throughflow. All surface 
flow produced by a patch is assumed to exit from the patch 
within a single time step. If the receiving patch is not satu-
rated, surface flow is allowed to infiltrate and is added to the 
unsaturated soil moisture storage. Patch routing is sequenced 
to start from the uppermost patches in the watershed.

Future climatic projections

GCMs are tools that enable us to investigate the climate 
behavior under various forcings and project the future 
climate over the twenty-first century. Different climate 

Fig. 4  Yearly average climatic 
variables projected by different 
GCMs: a maximum tempera-
ture, b minimum temperature, c 
total precipitation



Sustainable Water Resources Management (2023) 9:87 

1 3

Page 7 of 22 87

projection models are available, through which different 
emission scenarios for different projected future years can 
be obtained.

Change in temperature and precipitation

Daily precipitation and maximum and minimum tempera-
tures for present and future years for all five selected models 
were analyzed to determine the change in them in future 
years, as compared to the present climatic condition. The 
available CORDEX data from 1979 to 2097 were divided 
into four time slices, i.e., the baseline period (1979–2005), 
2020s (2011–2040), 2050s (2041–2070), and the 2080s 
(2071–2097) for both RCP 4.5 and RCP 8.5 scenarios. Daily 
values of each climate input were averaged to obtain one 
dataset for each time slice for all five climate models. Daily 
precipitation for each month was added to obtain monthly 
precipitation for each climate model for all four time slices. 
Daily maximum and minimum temperatures were averaged 
to obtain monthly maximum and minimum temperatures 
for present and future time slices. Percent changes in each 
climate variable for each model were estimated compared 
to the baseline period. The annual percentage change of the 
climatic variables was also analyzed.

Impact of climate change on various hydrological variables

The impact of climate change on various RHESSys out-
puts was evaluated using projected climate forcings from 

CORDEX-SA for future years under RCP 4.5 and RCP 8.5 
scenarios (Fig. 3).

Daily maximum and minimum temperatures and pre-
cipitation data for the present climate (1979–2005) and 
future years (2006–2097) were used as climate forcings 
in the RHESSys model. The RHESSys model was run for 
three future time slices (2020s, 2050s, and 2080s) and for 
the baseline period to analyze the change in hydrological 
and ecological variables as compared to the present climate. 
RHESSys outputs for baseline and future periods under RCP 
4.5 and RCP 8.5 scenarios for each climate model were com-
pared to evaluate the impact of climate change on different 
hydrological variables.

Sensitive hydrological variables to climate change

In the present work, hydrological sensitivities were meas-
ured as the percentage change in hydrological variables with 
changes in climatic inputs (maximum temperature, minimum 
temperature, and precipitation) as compared to the baseline 
period. The Sensitivity of different hydrological variables to 
climate change was estimated by comparing the RHESSys 
outputs for the baseline period (present climate condition) 
with the future periods for all five climate models under the 
RCP 4.5 and RCP 8.5 scenarios. The percent change in each 
variable in future periods as compared to the baseline period 
was obtained under both the scenarios (RCP 4.5 and RCP 
8.5) of all five climate models for the future periods of the 
2020s, 2050s, and 2080s. The average percentage change in 
each variable for each month as compared to the baseline 

Fig. 5  Projected maximum temperature ranges under: a RCP 4.5 scenario, b RCP 8.5 scenario
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period was calculated. Different variables were ranked as 
per their sensitivity to climate change (based on percentage 
change as compared to the baseline period).

Comparison of climate projected streamflow with observed 
streamflow

The projected streamflow using RHESSys model was com-
pared with the observed streamflow measured using the 
DWLR at the outlet of the watershed to validate the future 
projection of streamflow generated using RHESSys and cli-
matic models. Total streamflow for the depletion period of 
2016, i.e., from 01-04-2016 to 30-09-2016, was generated 
by RHESSys simulation with climate forcings from CMIP5 
(ACCESS 1.0, CCSM 4, CNRM-CM5, MPI-ESM-LR, and 
NorESM1-M) projected future precipitation, maximum tem-
perature, and minimum temperature under RCP 4.5 and RCP 
8.5 scenarios.

The observed streamflow at the outlet of the watershed 
was obtained from the stage data recorded at the outlet 
using the DWLR. The developed rating curve (Eq. 1) for the 
Nuranang watershed was used to convert the observed stage 
to the observed discharge. The total discharge observed dur-
ing the depletion period of the year 2016 was compared with 
the simulated discharge using future climate data from COR-
DEX to validate the projected streamflow using RHESSys 
coupled with climatic models.

Results and discussion

Model testing

To evaluate the applicability of the RHESSys model in 
Nuranang watershed, the model was calibrated and vali-
dated using the required meteorological (temperature and 
precipitation) data and spatial inputs (DEM, soil map, veg-
etation map) of the watershed. The model was successfully 
calibrated for the years 2004 and 2005 and validated for 
the years 2008 and 2009 using observed daily streamflow 
at the watershed outlet. Magnitude, evolution, and varia-
tion of streamflow were well reproduced in both calibration 
years. The RHESSys simulated streamflow matched daily 
observed discharge well with model efficiency (ME) of 0.75 
and 0.82 for calibration years 2004 and 2005, respectively. 
For the validation year also, simulated streamflows showed 
a high level of agreement against observed streamflow, with 
ME values of 0.74 and 0.77 for the years 2008 and 2009, 
respectively (Mishra et al. 2020).
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Future climate projection

Yearly average temperature and precipitation

The maximum temperature and minimum temperature 
obtained from each GCM for each year were averaged to 
obtain yearly average maximum and minimum temperatures 
in baseline and future periods (Fig. 4a, b). Temperature 
changes were similar in both scenarios (RCP 4.5 and RCP 

8.5), but the amplitude was significantly higher in RCP 8.5. 
The increase in maximum temperature (Fig. 4a), i.e., the dif-
ference between 1970 and 2097, was maximum for ACCESS 
1.0 (2.67 °C under RCP 4.5 and 6.39 °C under RCP 8.5) and 
minimum for CCSM 4 (2.00 °C under RCP 4.5 and 3.92 °C 
under RCP 8.5). The minimum temperature (Fig. 4b) also 
increased in future years under both RCP 4.5 and RCP 8.5 
scenarios. The increase in minimum temperature was also 
maximum for ACCESS 1.0 (2.80 °C under RCP 4.5 and 

Fig. 6  Projected minimum temperature ranges under: a RCP 4.5 scenario, b RCP 8.5 scenario

Table 2  Monthly changes in average minimum temperature (°C) under different RCP scenarios

Mon Baseline RCP 4.5 RCP 8.5

2020s 2050s 2080s 2020 2050 2080

Avg value Change Avg value Change Avg value Change Avg value Change Avg value Change Avg value Change

Jan – 2.89 – 2.54 0.35 – 2.00 0.89 – 1.57 1.32 – 2.30 0.59 – 1.24 1.65 0.24 3.13
Feb – 0.62 – 0.36 0.26 0.42 1.04 1.08 1.70 0.12 0.74 1.31 1.93 2.92 3.54
Mar 2.60 3.18 0.58 3.76 1.16 4.37 1.77 3.42 0.82 4.44 1.84 5.95 3.35
Apr 5.25 5.83 0.58 6.30 1.05 6.79 1.54 6.09 0.83 6.90 1.65 8.15 2.90
May 8.16 8.68 0.52 9.30 1.14 9.74 1.58 8.93 0.76 10.02 1.86 11.33 3.17
Jun 10.23 10.75 0.51 11.57 1.34 12.31 2.08 10.94 0.71 12.28 2.05 13.85 3.62
Jul 10.68 11.41 0.73 12.35 1.67 12.91 2.23 11.48 0.80 13.06 2.38 14.74 4.06
Aug 10.28 10.93 0.65 11.62 1.34 12.21 1.93 10.92 0.64 12.45 2.17 14.15 3.87
Sep 8.24 8.86 0.61 9.76 1.52 10.41 2.16 8.96 0.72 10.57 2.33 12.39 4.15
Oct 3.92 4.52 0.61 5.56 1.64 6.04 2.13 4.72 0.80 6.49 2.57 8.13 4.21
Nov – 0.60 0.08 0.69 1.09 1.70 1.42 2.03 0.18 0.78 1.79 2.40 3.47 4.08
Dec – 2.98 – 2.46 0.52 – 1.91 1.06 – 1.59 1.38 – 2.60 0.38 – 1.31 1.67 0.30 3.27
Avg 0.55 1.30 1.82 0.71 2.04 3.61
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6.02 °C under RCP 8.5) and minimum for CCSM 4 (1.39 °C 
under RCP 4.5 and 3.81 °C under RCP 8.5).

All five GCMs indicated that the study region would be 
warmer in the twenty-first century, with average tempera-
ture increasing between 1.39 and 6.39 °C depending on the 
climate model and scenario considered, which agreed well 
with the climate change study in the western Himalayas by 
Tiwari et al. 2018 who reported temperature increases of 
1.5–5.0 °C in all the seasons. The increase in temperature 
was also quite comparable with the study of Urrutia and 
Vuille (2009) in tropical South America, where the tempera-
ture was estimated to increase between 2 and 7 °C in 2100, 
depending on the location and scenario considered. Total 
precipitation did not follow any specific temporal trend in 
the baseline and future periods (1970–2097) under RCP 4.5 
and RCP 8.5 for five GCMs (Fig. 4c).

Maximum temperature envelope under projected 
climatic scenarios

The average maximum temperature was observed at its mini-
mum in January, then gradually increased to April, decreased 
a little in May–June, increased again in July–August, and 
finally decreased up to December in the baseline period as 
well as in all three future time slices under both RCP 4.5 and 
8.5 scenarios (Fig. 5 and Table 1).

Under the RCP 4.5 scenario, the average maximum tem-
perature was observed maximum in April (17.59 °C in the 
2020s, 18.38 °C in the 2050s, and 19.15 °C in the 2080s) 

and minimum in January (9.15 °C in the 2020s, 9.94 °C in 
the 2050s, and 10.43 °C in the 2080s) in all the three future 
time slices (Table 1). The average maximum temperature 
was projected to increase for all the months in all future 
time slices. Model outcomes suggested an increase in the 
maximum temperature for all months. The magnitude of the 
increase peaked in the summer, with a small change in the 
winter. Considering the average of all the five models, the 
average increase was maximum in August (0.87 °C in the 
2020s, 1.75 °C in the 2050s and 2.40 °C in the 2080s) and 
minimum in February (0.37 °C in the 2020s) and March 
(1.14 °C in the 2050s and 1.60 °C in the 2080s). All the 
models predicted an increase in temperature in future time 
slices, with the maximum increase in the 2080s and the 
minimum in the 2020s. The average yearly change consid-
ering all five models was 0.68 °C in the 2020s, 1.5 °C in the 
2050s, and 2.03 °C in the 2080s.

Under the RCP 8.5 scenario, the average maximum tem-
perature was projected to increase by all the models in all 
the months except March, where the maximum temperature 
decreased for ACCESS 1.0 and NorESMI-M under the RCP 
8.5 scenario for the 2020s. Average maximum temperature 
was observed maximum in April in the 2020s and 2050s 
(17.95 °C in the 2020s and 19.06 °C in the 2050s), in July 
(20.78 °C) in the 2080s, and minimum in December–January 
(9.32 °C in the 2020s, 10.78 °C in the 2050s, and 12.38 °C in 
the 2080s) following almost the same trend as the baseline 
period (Table 1). The average maximum temperature was 
projected to increase by all the models in all the months in 

Fig. 7  Projected precipitation ranges under: a RCP 4.5 scenario, b RCP 8.5 scenario
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all three future time slices, with the maximum increase in 
the 2080s and the minimum increase in the 2020s. Consider-
ing the average of all the five models, the average increase 
in maximum temperature was maximum in April in the 
2020s (1.03 °C) and in August in the 2050s (2.48 °C) and 
2080s (4.53 °C), and minimum in March (0.61 °C in the 
2020s, 1.60 °C in the 2050s and 3.05 °C in the 2080s). The 
average yearly change considering all the five models was 
0.90 °C in the 2020s, 2.19 °C in the 2050s, and 3.88 °C in 
the 2080s). Changes in maximum temperature ranged from 
0.37 to 4.53 °C for the present study, which goes well with 
the findings of Bhandari et al. (2020), where they estimated 
that maximum temperature changes fluctuate between 1.6 °C 
to 4.01 °C for Pajaro River Watershed (PRW) of central 
California.

Minimum temperature envelope under projected 
climatic scenarios

The average projected minimum temperature was observed 
at its minimum in January, then gradually increased up to 
July, and again decreased up to December in the baseline 
period as well as in future time slices (Fig. 6 and Table 2).

Under the RCP 4.5 scenario, average minimum tempera-
ture was observed at its maximum in the month of July in 
all the future time slices (11.14 °C in the 2020s, 12.35 °C 
in the 2050s, and 12.91 °C in the 2080s) and minimum in 
January (− 2.54 °C in the 2020s and − 2.00 °C in the 2050s) 
and December (− 1.59 °C in the 2080s) (Table 2). Minimum 
temperature was observed maximum in 2080s and minimum 
in 2020s. The average minimum temperature increased in 
all the months in all three future time slices. On monthly 
basis, considering all the five models, the average increase 
was maximum in July (0.73 °C in the 2020s and 2.23 °C in 
the 2080s) and in November in the 2050s (1.70 °C). Aver-
age increase was minimum in February (0.26 °C in 2020s) 
and January in 2050s (0.89 °C) and 2080s (1.32 °C). The 
range of projections varied from 0.08 °C to 1.87 °C. The 
average yearly change considering all five models was 
0.55 °C, 1.3 °C, and 1.82 °C in the 2020s, 2050s, and 2080s, 
respectively.

Under the RCP 8.5 scenario, the average minimum tem-
perature was observed to be at its maximum in the month 
of July in all the future time slices (11.48 °C in the 2020s, 
13.06 °C in the 2050s, 14.74 °C in the 2080s) and at its mini-
mum in December (− 2.60 °C in the 2020s and − 1.31 °C 
in the 2050s) and January (0.24 °C in the 2080s) (Table 2). 
The minimum temperature was observed at its maximum in 
the 2080s and minimum in the 2020s. The average minimum 
temperature increased in all the months in all three future 
time slices. On monthly basis, considering all five models, 
the average increase was maximum in April (0.83 °C in the 
2020s) and in October in the 2050s (2.57 °C) and 2080s Ta
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(4.21 °C). The average increase was minimum in December 
(0.38 °C in the 2020s), January in 2050s (1.65 °C), and April 
in the 2080s (2.90 °C). The range of projection varied from 
0.20 °C to 1.27 °C. The average yearly change consider-
ing all five models was 0.71 °C, 2.04 °C, and 3.61 °C in 
the 2020s, 2050s, and 2080s, respectively. The increase in 
average minimum temperature was high in the high emis-
sion scenario (RCP 8.5) as compared to RCP 4.5 in all three 
future time slices.

For the 2020s, the magnitudes of temperature increase 
(both maximum and minimum temperature) for RCP4.5 and 
RCP8.5 are almost alike (with an increase value below 1 °C 
in all the months), as the difference between the two RCPs 
before 2050 are minor. After 2050, both scenarios show very 
different features, and the temperature increase for RCP 8.5 
reaches around 4–5° under RCP 8.5, whereas the tempera-
ture increases by around 1–2° under the RCP 4.5 scenario by 
2100. Changes in minimum temperature ranged from 0.38 to 
4.21 °C for the present study, which matches well with the 
findings of Maharjan et al. (2021), where they estimated that 
minimum temperature changes fluctuate between 0.7 °C to 
4.9 °C for the Thuli Bheri River Basin, Nepal.

Precipitation envelope under projected climatic 
scenarios

Total projected precipitation was observed at its minimum 
in January, then increased gradually up to June, and again 
decreased up to December in the baseline period as well as 

in future time slices (Fig. 7 and Table 3). The future projec-
tion of total precipitation shows certain similarities across 
both scenarios, with an increase in precipitation in the winter 
months and a decrease in the monsoon months as compared 
to the baseline period. These changes are most pronounced 
in the high emissions (RCP8.5) scenario as compared to the 
RCP 4.5 scenario.

Under the RCP 4.5 scenario, total precipitation was 
observed to be maximum in June (30.25 mm in the 2020s, 
27.33 mm in the 2050s, and 27.20 mm in the 2080s) and 
minimum in December (2.12 mm in the 2020s, 1.41 mm 
in the 2050s, and 1.42 mm in the 2080s) in all three future 
time slices (Table 3). Total precipitation increased in win-
ter months and decreased in monsoon months in all time 
slices. The maximum increase was observed in the month 
of December in 2020s (52.39%) and in March in 2050s 
(12.07%) and 2080s (13.08%). The maximum decrease 
was in October (− 8.26%) in the 2020s and in August in 
the 2050s (− 10.73%) and 2080s (− 21.22%). On a yearly 
basis, considering the average of all the five models, pre-
cipitation was observed to increase by around 1.85% in 
the 2020s and decrease by around 0.90% and 3.94% in the 
2050s and 2080s, respectively, as compared to the baseline 
period.

Under the RCP 8.5 scenario also, total precipitation was 
observed at its maximum in June (28.43 mm in the 2020s, 
27.07 mm in the 2050s, and 26.59 mm in the 2080s) and at 
its minimum in December (1.94 mm in the 2020s, 1.58 mm 
in the 2050s, and 1.61 mm in the 2080s) in all three future 
time slices (Table 3). According to the outcome, monsoon 

Fig. 8  RHESSys simulated subsurface flow ranges under: a RCP 4.5 scenario, b RCP 8.5 scenario
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months would exhibit a deficit in rainfall amount, whereas 
winter months would receive more rainfall as compared to 
the baseline period. The maximum increase was observed 
in the months of December in the 2020s (39.45%) and Feb-
ruary in the 2050s (39.33%) and 2080s (39.87%). Maxi-
mum decreases were in April (− 5.82%) in the 2020s, in 
July in the 2050s (− 15.14%) and in August in the 2080s 
(− 21.62%). The range of projection varied from 0.66 to 
7.66 mm. On a yearly basis, model-average total precipita-
tion increased in the 2020s (2.07% increase) and decreased 
in the 2050s (2.26% decrease) and 2080s (2.99% decrease) 
as compared to the baseline period.

Both the RCP scenarios show an increase in annual 
precipitation in the near future (2020s), and it is expected 
to decrease in the 2050s and the 2080. The projections 
show a prevalent summertime drying (with precipitation 
up to 20% lower than present-day average values), while 
the winter experiences higher precipitation (up to 50% 
higher than at present). The relative change in seasonal 
precipitation (especially for drier months) is significantly 
larger than the annual mean change. These changes in rain-
fall amount areis expected to affect yearly and monthly 
streamflow at the catchment outlet. Percentage changes in 
monthly precipitation ranged from -21% to 52.39% for the 
watershed, which agrees well with the findings of Maha-
rjan et al. (2021), where they estimated that precipitation 
changes fluctuate between – 12 and 50% for Thuli Bheri 
River Basin, Nepal.

Change in hydrological variables with climate 
change

Future climate data (maximum and minimum temperature 
and precipitation) from different CMIP5 models were used 
as climate inputs in the already calibrated and validated 
RHESSys model to simulate future subsurface flow, over-
land flow, total streamflow, and saturation deficit. RHESSys 
uses TOPMODEL (Beven and Kirkby 1979) for the simula-
tion of saturation deficit and streamflow. Daily values were 
averaged to obtain monthly values for better analysis.

Subsurface flow

The total subsurface flow was at its minimum in January, 
increased gradually to reach its maximum in June, and again 
reduced gradually up to December for both the baseline 
period and all future simulations. The pattern of subsurface 
flow fluctuation followed the same trend as total precipita-
tion (Fig. 8 and Table 4).

Under the RCP 4.5 scenario, taking the average of all the 
five models, the maximum subsurface flow was observed 
in June (9.17 mm in the 2020s, 8.90 mm in the 2050s, 
and 8.87 mm in the 2080s) and the minimum in January Ta
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(0.79 mm in the 2020s, 0.94 mm in the 2050s, and 1.09 mm 
in the 2080s) in all three future time slices (Table 4). On a 
monthly basis, total subsurface flow increased in the winter 
and decreased in the summer months, following the same 
trend as total precipitation. Taking the average of all the 
five models, the percentage increase in subsurface flow was 
maximum in January (56.98% for the 2020s, 87.67% for 
the 2050s, and 111.25% for the 2080s), and the percentage 
decrease was maximum in October (− 5.24% for the 2020s 
and − 16.98% for the 2080s) and in August (− 3.51%) in the 
2050s. The range of projection varied from 0.13 to 1.60 mm. 
Model-average total subsurface flow increased in the 2020s 
(1.29% increase) and 2050s (0.96% decrease) and decreased 
in the 2080s (1.09% decrease) as compared to the baseline 
period.

Under the RCP 8.5 scenario, taking the average of all the 
five models, the maximum subsurface flow was observed 
in June (9.26 mm in the 2020s, 8.86 mm in the 2050s, 
and 8.75 mm in the 2080s) and the minimum in January 
(0.87 mm in the 2020s, 1.18 mm in the 2050s, and 1.41 mm 
in the 2080s) in all three future time slices (Table 4). On a 
monthly basis, total subsurface flow increased in the win-
tertime and decreased in the summertime, following the 
same trend as precipitation. Taking the average of all the 
five models, the percentage increase was maximum in Janu-
ary (73.49% in the 2020s, 136.42% in the 2050s, and 182.23 
in the 2080s) and the percentage decrease was maximum 
in October (− 4.15%) in the 2020s and in August in the 
2050s (− 7.84%) and 2080s (− 11.57%). Considering the 
yearly average, total subsurface flow in 2020s increased for 

all the models except MPI-ESM-LR (− 0.17% decrease), 
the maximum increase in subsurface flow was for ACCESS 
1.0 (4.11%), whereas in 2050s it increased for all the models 
except CCSM 4 and CNRM-CM5, the maximum increase 
was for MPI-ESM-LR (6.11%); and the maximum decrease 
was for CNRM-CM5 (3.8% decrease). In the 2080s, total 
subsurface flow increased for all the models except CNRM-
CM5 (0.78% decrease), the maximum increase was for 
ACCESS 1.0 (4.11% increase). Model-average total subsur-
face flow increased in all three future time slices in 2020s 
(2.69%, 1.14% and, 1.12% increase in 2020s, 2050s, and 
2080s, respectively as compared to the baseline period). On 
the yearly basis, under both RCPs, the percentage change in 
the model-average subsurface flow reduced gradually from 
2020 to 2080, whereas under RCP 4.5, it was found to be 
decreasing in 2080s.

Overland flow

The total overland flow was minimum in December–January 
and maximum in June for both the baseline period as well as 
all future simulations. The pattern of overland flow fluctua-
tion followed the same trend as total precipitation (Fig. 9 
and Table 5). The range of projections from five models for 
each time slice was observed to be high in summer months 
and low in winter months.

Under the RCP 4.5 scenario, taking the average of all 
the five models, the maximum overland flow was observed 
in June (20.53 mm in the 2020s, 18.29 mm in the 2050s, 
and 18.20 mm in the 2080s) and the minimum in December 

Fig. 9  RHESSys simulated overland flow ranges under: a RCP 4.5 scenario, b RCP 8.5 scenario
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(0.29 mm in the 2020s and 2080s and 0.24 mm in the 2050s) 
in all three future time slices (Table 5). The monthly projec-
tions show significant decreases in overland flow in summer-
time, while significant increases in wintertime are indicated 
following a similar trend of precipitation. On a monthly 
basis, taking the average of all the five models, the percent-
age increase in overland flow was maximum in December 
(288.36% in the 2020s, 225.17% in the 2050s, and 217.14% 
in the 2080s) in all three future time slices. The percent-
age decrease was maximum in October (− 8.16%), August 
(− 12.81%), and February (− 41.13%) in the 2020s, 2050s, 
and 2080s, respectively.

Under the RCP 8.5 scenario, taking the average of all 
the five models, the maximum overland flow was observed 
in June (19.13 mm in the 2020s, 18.09 mm in the 2050s, 
and 17.73 mm in the 2080s) and minimum in December 
(0.19 mm in the 2020s, 0.35 mm in the 2050s, and 0.48 mm 
in the 2080s) in all three future time slices (Table 5). The 
monthly projections show significant decreases of overland 
flow in summertime, while significant increases in winter-
time are indicated in all three future time slices following the 
similar trend of precipitation; however, changes are maxi-
mum in the 2080s and minimum in the 2020s. On monthly 
basis, taking the average of all the five models, the percent-
age increase was maximum in December (152.60% in the 
2020s, 367.98% in the 2050s, and 546.16% in the 2080s), 
and the percentage decrease was maximum in October 
(− 9.19%) in the 2020s, and in July (− 17.32%) and August 
(− 25.72%) in the 2050s and 2080s, respectively. The range 
of projection varied from 0.20 mm to 5.73 mm. Consider-
ing the yearly average, model-average total overland flow 
increased in the 2020s (1.98% increase) and decreased in 
the 2050s (3.67% decrease) and 2080s (4.54% decrease) as 
compared to the baseline period. Considering yearly aver-
age, model-average total overland flow increased in 2020s 
(2.40% increase) and decreased in 2050s (− 1.60%) and 
2080s (− 5.10%) as compared to the baseline period, follow-
ing the same trend as the yearly change in total precipitation.

Total streamflow

Total streamflow gradually increased from January to June, 
after which it reduced gradually to December. Streamflow 
was as its maximum during May–June-July, and the mini-
mum values were in December–January. This overall pat-
tern and the change in streamflow varied directly with the 
precipitation pattern. Figure 10 and Table 6 show the future 
change rates of monthly total streamflow for different pro-
jected scenarios of climate change.

Under the RCP 4.5 scenario, in the 2020s, taking the 
average of all the five models, maximum streamflow was 
observed in June (29.70 mm in the 2020s, 27.20 mm in 
the 2050s, and 27.08 mm in the 2080s) and minimum in Ta
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December (1.23 mm in the 2020s, 1.29 mm in the 2050s, 
and 1.38 mm in the 2080s) (Table 6). At the monthly scale, 
it was found that total streamflow increased significantly in 
wintertime (November to March) and decreased in summer-
time for all projected time slices, following the same trend 
as the change in monthly precipitation. The average percent-
age increase in total streamflow was maximum in December 
(79.68% in the 2020s, 87.55% in the 2050s and, 100.74% 
in the 2080s), and the average percentage decrease was 
maximum in October (− 6.62% in the 2020s) and August 
(− 9.23% in the 2050s and − 18.68% in the 2080s). At the 
annual scale, the RCP 4.5 scenario predicts about a 1.97% 
increase in total streamflow in the 2020s and a deficit of 
about 0.60% and 3.54% in the 2050s and 2080s, respectively, 
as compared to the baseline period.

Under the RCP 8.5 scenario, in the 2020s, taking the 
average of all the five models, maximum streamflow was 
observed in June (28.38 mm in the 2020s, 26.95 mm in 
the 2050s, and 26.47 mm in the 2080s) and minimum in 
December (1.06 mm in the 2020s, 1.61 mm in the 2050s, 
and 1.90 mm in the 2080s) (Table 6). At the monthly scale, 
it was found that total streamflow increased significantly in 
wintertime (November to March) and decreased in summer-
time for all projected time slices, following the same trend as 
the change in monthly precipitation. The average percentage 
increase was maximum in January (62.44% in 2020s) and in 
December in the 2050s (134.27%) and 2080s (176.48%), and 
the average percentage decrease was maximum in October 
(− 6.52% in 2020s) and in August in the 2050s (− 13.60%) 
and 2080s (− 20.21). At the annual scale, the model-average 

predicted streamflow increased by 2.26% in the 2020s and 
reduced by around 1.81% and 2.34% in the 2050s and 2080s, 
respectively (Table 6), as compared to the baseline period.

Monthly and annual total streamflow at the watershed 
outlet is greatly affected by changes in precipitation amounts 
over the three projected time slices and for both RCP4.5 and 
RCP8.5. The increase in flows in the 2020s can be explained 
by the increase in rainfall over the watershed during this 
period under both RCPs, whereas the flow deficit in the 
2050s and 2080s can be explained by the decrease in pre-
cipitation during those periods under both RCPs.

Saturation deficit

Total saturation deficit was observed high in January, then 
decreased gradually and remained low during April–Septem-
ber with a slight increase in the middle around May–June, 
after which it increased gradually again to reach the maxi-
mum in December, following the reverse trend of precipita-
tion. This overall pattern was found to be the same in both 
the baseline period as well as all future simulations (Fig. 11 
and Table 7).

Under the RCP 4.5 scenario, taking the average of all the 
five models, the maximum saturation deficit was observed 
in December (614.38 mm in the 2020s, 604.34 mm in the 
2050s, and 595.26 mm in the 2080s) in all three future 
time slices, and the minimum in August (246.78 mm in 
the 2020s) and September (237.65 mm in the 2050s and 
235.97 mm in the 2080s) (Table 7). The monthly projec-
tions show significant increases in saturation deficit in 

Fig. 10  RHESSys simulated streamflow ranges under: a RCP 4.5 scenario, b RCP 8.5 scenario
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summertime, while significant decreases in wintertime are 
indicated, which follows the inverse trend of the change in 
total precipitation. On the monthly basis, taking the average 
of all the five models, the percentage increase in saturation 
deficit was maximum in April (10.69%), June (5.81%), and 
May (6.73%) in the 2020s, 2050s, and 2080s, respectively, 
and the percentage decrease was maximum in December 
(− 5.37% in the 2020s) and January (− 7.26% in the 2050s 
and − 9.01% in the 2080s). Considering the annual average, 
the model-average predicted saturation deficit increased by 
0.85% in the 2020s and reduced by around 2.36% and 1.63% 
in the 2050s and 2080s, respectively, as compared to the 
baseline period.

Under the RCP 8.5 scenario, taking the average of all the 
five models, the maximum saturation deficit was observed 
in December (624.40 mm in the 2020s, 581.98 mm in the 
2050s, and 557.40 mm in the 2080s) in all three future 
time slices, and the minimum in August (237.03 mm in the 
2020s) and April (241.59 mm in the 2050s and 238.58 mm 
in the 2080s) (Table 7). The monthly projections show sig-
nificant increases in saturation deficit in summertime, while 
significant decreases in wintertime are indicated, which fol-
lows the inverse trend of the change in total precipitation. On 
the monthly basis, taking the average of all the five models, 
the percentage increase in saturation deficit was maximum 
in April (5.62%), May (5.05%), and August (10.22%) in the 
2020s, 2050s, and 2080s, respectively, and the percentage 
decrease was maximum in January (− 6.58% in the 2020s, 
-11.37% in the 2050s and − 14.74% in the 2080s). The 
range of projection varied from 8.97 to 79.16 mm. Con-
sidering annual variation, the model-average saturation 
deficit decreased in all future time slices as compared to 
the baseline period, with a minimum decrease in the 2020s 
(− 2.34%), then in the 2050s (− 4.14%), and the 2080s 
(− 5.12%).

Sensitivity of hydrological variables to climate 
change

The sensitivity of variables to climate change was analyzed 
for all future time slices (2020s, 2050s, and 2080s) and for 
both the RCP scenarios separately. Average percentage 
changes in each variable were analyzed, and the variables 
were ranked in order of their sensitivity to climate change 
(Table 8). Variables like streamflow and overland flow are 
directly dependent on rainfall; thus, they vary directly with 
variation in rainfall in all the future time slices, whereas 
saturation deficit depends on temperature, precipitation, 
and other variables like PET, which in a way depends on 
temperature, RH, and other variables.

In the 2020s, under the RCP 4.5 scenario, overland 
flow was found to be most sensitive to climate change, 
with a 2.4% increase as compared to the baseline period, Ta
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followed by streamflow (1.97% increase) and subsurface 
flow (1.29% increase). In the 2050s, the subsurface flow 
was observed decreasing while other variables increased. 
The saturation deficit was found to be most sensitive to 
climate change, with a 2.36% decrease, followed by over-
land flow (1.60% decrease) and subsurface flow (0.96% 
increase). All the variables were observed to decrease in 
the 2080s under the RCP 4.5 scenario. The overland flow 
was found to be most sensitive to climate change, with 
a 5.09% decrease from the baseline period, followed by 
streamflow (3.54% decrease) and saturation deficit (1.62% 
decrease).

Under RCP 8.5 in the 2020s, the subsurface flow was 
found to be most sensitive to climate change, with a 2.69% 
increase as compared to the baseline period, followed by 
saturation deficit (2.34% decrease) and streamflow (226% 
increase). In the 2050s, saturation deficit was found to be 
most sensitive to climate change with a 4.44% decrease as 
compared to the baseline period, followed by overland flow 
(3.67% decrease) and streamflow (1.81% decrease), and in 
the 2080s, saturation deficit was found to be most sensitive 
to climate change with a 5.11% decrease as compared to the 
baseline period, followed by overland flow (3.66% decrease) 
and streamflow (2.34% decrease).

Comparison of projected streamflow with observed 
streamflow

Streamflow generated for the depletion period (April–Sep-
tember) of 2016 from RHESSys simulations using climate 
forcing projected under RCP 4.5 and RCP 8.5 scenarios was 
compared with the observed streamflow. Total runoff for the 
RCP 4.5 scenario varied from 183.85 to 214.20 M  m3 with 
an average of 197.44 M  m3, whereas under the RCP 8.5 
scenario, total runoff varied from 140.04 to 236.38 M  m3 
with an average of 202.718 M  m3. The actual streamflow 
for the year 2016 was obtained using the observed stage 
data at the watershed outlet. Observed daily stage data were 
converted to corresponding discharge using the developed 
stage discharge curve. Total observed discharge in the deple-
tion period of 2016 was obtained as 199.02 M  m3. The total 
simulated discharge obtained for the same period for all the 
CMIP5 models under both the RCP scenarios was quite 
comparable with the observed value. Under the RCP 4.5 
scenario, the deviation of simulated streamflow from the 
observed varied from 15.18 to − 15.17 M  m3, and the aver-
age runoff simulated for different models was quite compa-
rable (around 1.58 M  m3 less than the observed) with the 
observed value. Under the RCP 8.5 scenario, the deviation of 
simulated streamflow from the observed varied from 37.36 

Fig. 11  RHESSys simulated saturation deficit ranges under: a RCP 4.5 scenario, b RCP 8.5 scenario
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to 58.99 M  m3, and the average runoff simulated for differ-
ent models was around 3.69 M  m3 more than the observed. 
Overall, the streamflow estimated under the RCP 4.5 sce-
nario was more comparable with the observed streamflow, 
with an average deviation of − 1.58 M  m3 (Table 9).

Conclusions

Hydrological models are increasingly used for the assess-
ment of the sensitivity of hydrologic variables to climate 
change. In the present study, an effort has been made to 
investigate the potential hydrologic responses to projected 
climatic scenarios by applying the RHESSys model. In 
this study, the analysis of the hydrologic response of the 
Nuranang watershed to the changed climate was mainly 
focused on predicting the potential effects of changes in 
temperature and precipitation on total streamflow and satu-
ration deficit. Daily maximum and minimum temperatures 
and precipitation for the present climate (1979–2005) and 
future years (2006–2097) from CORDEX were used as cli-
mate forcing in the RHESSys model. The model was first 
calibrated and validated for the watershed; the calibrated 
model was further used to investigate the climate change 
impact on streamflow and saturation deficit. All the GCMs 
indicated that the study region would be warmer in the 
twenty-first century, with average temperature increas-
ing between 1.39 and 6.39 °C as compared to the baseline 
period. The model-average total precipitation increased in 
the 2020s but decreased in the 2050s and 2080s under both 
RCP scenarios. Monthly, the projections show around a 20% 
decrease in precipitation during the summer while the winter 
experiences higher precipitation (up to 50% higher than at 
present). These seasonal changes in precipitation amount 
greatly affect yearly and monthly streamflow at the water-
shed outlet. Variations in subsurface flow, overland flow, and 
streamflow in future time slices followed almost the same 
trend as changes in precipitation. Temperature increases dur-
ing summer increase evaporation and reduce flows, whereas 
temperature increases during winter produce greater snow-
melt rates when a snowpack is present or cause precipitation 
to occur as rain instead of snow. Greater snowmelt rates 
and rain rather than snowfall both cause a small increase in 
streamflow in the winter season. On a monthly scale, sub-
surface flow, overland flow, and total streamflow increased 
significantly in wintertime and decreased in summertime 
compared to the baseline period, following the same trend 
as precipitation. Total saturation deficit was observed to be 
high in January, then decreased gradually and remained low 
during April–September with a slight increase in the middle 
around May–June, after which it increased gradually again 
to reach a maximum in December, following a reverse trend 
of precipitation. Overland flow and total streamflow were Ta
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found to be the most sensitive variables under the RCP 4.5 
scenario, whereas saturation deficit and overland flow were 
found to be the most sensitive variables under the RCP 8.5 
scenario.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40899- 023- 00874-7.
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Table 8  Change in hydrological variables under different RCP scenarios

Hydrological Variable RCP 4.5 RCP 8.5

2020 2050 2080 2020 2050 2080

Change % Rank Change % Rank Change % Rank Change % Rank Change % Rank Change % Rank

Subsurface flow 1.29 3 0.96 3 – 1.08 4 2.69 1 1.14 4 1.12 4
Overland flow 2.40 1 – 1.60 2 – 5.09 1 – 1.98 4 – 3.67 2 – 3.66 2
Total Streamflow 1.97 2 – 0.60 4 – 3.54 2 2.26 3 – 1.81 3 – 2.34 3
Saturation deficit 0.85 4 – 2.36 1 – 1.62 3 – 2.34 2 – 4.44 1 – 5.11 1

Table 9  Total simulated streamflow under RCP 4.5 and RCP 8.5 scenarios with different climate model projections

Model Simulation period Total observed 
streamflow, M 
 m3

RCP 4.5 RCP 8.5

Total RHESSys 
simulated streamflow, 
M  m3

Deviation from 
observed, M  m3

Total RHESSys 
simulated streamflow, 
M  m3

Deviation from 
observed, M  m3

ACCESS 1.0 01-04-2016 to 30-09-
2016

199 02 183.85 -15.17 222.15 23.13
CCSM 4 202.75 03.72 236.38 37.36
CNRM-CM5 188.36 -10.66 140.04 -58.99
MPI-ESM-LR 198.06 -00.97 192.90 -06.13
NorESM1-M 214.20 15.18 222.12 23.11
Average 197.44 -1.58 202.72 3.70

https://doi.org/10.1007/s40899-023-00874-7
https://search.earthdata.nasa.gov/search
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