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Abstract
In this study, optimal operating policies for a multi-purpose multi-reservoir system have been derived using Implicit Sto-
chastic Optimization (ISO) method. In order to do so, four models: (1) all possible regression, (2) stepwise regression, (3) 
decomposition and (4) simulation, have been proposed that deals with the statistical significance as well as the physical 
significance of the presence of independent variables in a particular regression model. The first two models deal with the vari-
able selection based on statistical significance. In the decomposition models, operation problem is divided into sub-problems 
to generate smaller subsets for regression retaining variables of physical significance. The simulation model examines the 
performance and the predictive efficiency of different regression models. Fifty six years historical inflow data (1962–2017) 
have been used for this analyses. These four models along with 1000 years monthly synthetic inflow sequences, generated 
by the multivariate gamma AR(1) model, are applied to the Damodar Valley (DV), a multipurpose multi-reservoir system 
in India. The effect of variability in those inflow values on the release decisions are taken into account implicitly and the 
results are presented. Analysis of result indicates that decomposition model with less number of predictor variables is the 
most preferred model for DV system.

Keywords  Regression analysis · Implicit stochastic optimization · Simulation · Reservoir operation · Optimal operating 
policies

Introduction

In the deterministic analysis, the reservoir operation problem 
is solved for a particular (known) inflow sequence, among 
numerous other possible sequences. Hence, the effect of 
variation in the inflow pattern is not reflected in the solution 
obtained from the deterministic analysis and it represents 
only a small part of a more wide range of possible reservoir 
behaviors. In the implicit analysis, the randomness of the 
inflows to the reservoir, which makes the reservoir operation 
a stochastic process, is considered indirectly by solving the 
operation problem for a number of possible sequences of 
these random inflows, in a deterministic frame work. This 
results in a number of release sequences and a regression 

model is used with these sequences to obtain an average 
operating policy.

The major issue in the implicit analysis is the selection 
of a proper regression model, particularly regarding the 
selection of specific independent variables to be used in the 
regression equation, from a number of candidate variables. 
This selection poses a formidable task for a multireservoir 
system where a number of combinations of the independent 
variables are possible. In general, there is no specific criteria 
for selecting a particular regression model and usually the 
selection is based on the significance of the regression coef-
ficients in terms of certain statistical parameters.

In this study, a generalized approach is proposed here for 
the selection of appropriate variables in the regression in 
the implicit stochastic Dynamic Programming (DP) frame-
work. The approach selects the appropiate model from the 
judgements based on statistical and physical significance 
of the presence of a variable in the regression model and 
performance based on objective function values through 
simulation. In the regression analysis fundamental contri-
bution have been made by introducing new concepts: (1) 
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all possible combination of independent variables and (2) 
stepwise inclusion and elimination of independent variables 
in regression equations, in order to determining strength 
and character of relationship between optimal storage state 
(dependent variable) with initial storage states and inflow 
(independent variables) in reservoir management.

Literature survey

The implicit approach was first suggested by Hall and How-
ell (1963) . As stated by McKerchar (1975) this approach 
makes one important assumption that the average operating 
policy obtained is equivalent to the policy obtained from 
an explicit stochastic dynamic programming model, which 
by defination optimizes the expected value of the objective 
function. Although no mathematical proof is available, this 
assumption appears reasonable for the case where the loss 
function is smooth and convex. Hall and Howell (1963) 
suggested that as the historic inflow records are of limited 
length, synthetic inflow sequence which resemble the his-
toric data in terms of certain statistical parameters, could be 
used in deriving the average operating policy.

Hall and Howell (1963) used a deterministic dynamic 
programming to find the optimal pattern of release decisions 
for known sequences of inflow data and combines these 
release data into a mean operating policy using a regres-
sion model. The variability of inflow has been cosidered 
implicitly. Young (1967) used the implicit approach to deter-
mine the operating rules for the nonseasonal operation of a 
single reservoir. Minimization of the losses associated with 
the failure to supply target outputs was used as the objec-
tive function and the optimal releases were determined for 
a simulated sequence of inflow data. A multiple regression 
technique was used to relate the optimal releases as a func-
tion of the storage and inflows of the current period. McKer-
char (1975) extended Young (1967) model to determine the 
monthly release policies of a two reservoir system. A mul-
tivariate streamflow model was used to generate synthetic 
sequences of inflows. In the multiple regression analysis, he 
considered optimal monthly releases as a linear function of 
the two storage only (inflow variables were not considered) 
and obtained twelve sets of equations, one for each month. 
Trott (1979) used the implicit approach to determine the real 
time operating rules for a multireservoir system. A Linear 
Programming–Dynamic Programming model was used to 
determine the optimal operating policies which maximize 
the on-peak energy generation. Historical inflows were used 
in place of generated data. He considered release as a linear 
function of storage, previous periods inflow, estimated cur-
rent periods inflow and releases from other reservoirs in the 
system. A two-stage least square technique was used for the 
multiple regression analysis.

Bhaskar and Whitlatch (1980) used the implicit approach 
for the optimal operation of a single reservoir and empha-
sized that the policies derived from the regression analysis 
should be verified for their performance through simulation. 
They have used both the linear and non-linear regression 
model where the storage and inflows of the current period 
and previous periods were used as the independent variables. 
A stepwise regression procedure was adopted to determine 
the regression coefficients. Karamouz and Houck (1982) 
examined the applicability of the operating rules obtained 
through regression. They proposed an iterative technique 
to refine the regression coefficients where the DP-regres-
sion–simulation cycle was executed repeatedly. They have 
used the technique for the annual and monthly operation 
of a single reservoir. Karamouz et al. (1992) applied ISO 
schemes through three step cycle to improve the initial oper-
ating rules for a multireservoir system. The optimal solutions 
are then analyzed in a regression procedure to obtain a set 
of operating rules.

Celeste et al. (2009) used ISO to determine monthly oper-
ating rules for a reservoir system located in the semiarid 
Northeast of Brazil. ISO employs a deterministic optimiza-
tion model to find optimal reservoir allocations under several 
possible inflow scenarios. Liu et al. (2014) derived operat-
ing rules using a simulation-based optimization method in 
the context of implicit stochastic optimization of China’s 
Three Gorges Reservoir system. Parameter uncertainty for 
reservoir operating rules is analyzed using Linear Regres-
sion (LR) and Bayesian simulation (BS) and established that 
LR performed less than the Celeste et al. (2016) assesses 
the suitability of ISO against Stochastic Dynamic Program-
ming (SDP) to set up reservoir release policies and estab-
lished the performance of both SDP and ISO is superior to 
that of Standard Operating Procedure followed and close to 
that of perfect-forecast deterministic optimization (PFDO). 
Furthermore, the simple ISO shows to perform similarly to 
the more complex SDP. Moreira and Celeste (2017) applies 
ISO to develop monthly operating rules using the forecast of 
the mean inflow for a future horizon instead of the current-
month inflow. With a hundred different 100-year monthly 
synthetically generated inflow scenario release policies 
derived using SDP and PFDO. The comparison between 
ISO and SDP shows small differences between both, jus-
tifying the adoption of ISO for its simplified mathematics 
as opposed to SDP. Celeste and Ahmed (2018) focused on 
assessing the applicability of an ISO procedure to derive rule 
curves for two different dams of contrasting reservoir scales 
in terms of physical and operational characteristics. They 
established that the ISO provided operating rules similar to, 
and even less vulnerable than, those derived by stochastic 
dynamic programming. Avila et al. (2020) applied ISO with 
copula functions to simulate long-term operating policies for 
a hydropower reservoir located in the Northeastern region of 
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Brazil. Overall, ISO is considered as one of the most reliable 
techniques to derive long-term reservoir operating rules for 
reservoirs. In this review it is found that in ISO for reservoir 
management some researcher used regression analysis and 
some other used synthetically generated inflow sequence to 
deal stochasticity of inflow.

Study area

In this study, DV system (as shown in Fig. 1), a four reser-
voir multi-purpose system in Jharkhand, India has been con-
sidered. There are four reservoirs: Konar, Tilaiya, Panchet 
and Maithon in DV system as shown in Fig. 1. Reservoir 
Konar and Panchet are located over river Damodar and res-
ervoir Tilaiya and Maithon are over river Barakar, a tributary 
of Damodar. Durgapur Barrage is located 17 km downstream 
from the point of confluence of river Damodar and Bara-
kar near Dishergarh in Bardhman District in West Bengal. 
Tilaiya, Panchet and Mithon are associated with hydroelec-
tric power plants of capacities 4 MW, 40 MW and 60 MW 
respectively. Total catchment area of the river Damodar and 
its tributaries is about 6159 km2 . The catchment is irregular 
in shape and somewhat elongated in lower reach.

The mean annual rainfall are 125.9 cm (at Barakar basin), 
127.1 cm (at Damodar basin), lower valley (down stream of 
point of confluence of Damodar and Barakar) 132.89 cm. 
About 82% of the total rainfall occurs during south west 
monsoon period (July to September). During the post-mon-
soon (October–November) and pre-monsoon (April–May) 

months the amount of rainfall is about 8 percent and 7 per-
cent respectively. During the summer season (May) mean 
daily maximum temperature exceeds 40 ◦C and in winter 
mean daily maximum temperature is around below 24 ◦C . 
During the summer season (May) mean daily maximum tem-
perature exceeds 40 ◦C and in winter mean daily maximum 
temperature is around below 24 ◦C . Due to high temperature, 
humidity and wind, almost 50% of the total annual evapora-
tion takes place during March to June. The area faces almost 
80% mean relative humidity during south west monsoon 
period.

In DV system there is Municipal and Industrial (M &I) 
demand at: (1) downstream of Konar up to Panchet, (2) 
downstream of Tilaiya up to Maithon and (3) downstream 
of Panchet and Mithon up to Durgapur Barrage. As M &I 
demand vary from reservoir to reservoir, it is costant for a 
particular reservoir throughout the year. Irrigation demand 
is placed downstream of Durgapur barrage and Irrigation 
demand is variable throughout the year. For sustenance of 
aquatic life and ecology in the streams, quantity of water 
for municipal and industrial (M &I) use is considered to be 
adequate to meet this mandatory requirement and a mini-
mum quantity (2.1 m 3/s) is to be released from the barrage 
to maintain the river ecology.

Statistical parameters like: maximum, minimum, mean, 
standard deviation, skewness and corelation coefficient for 
all monthly inflows have been computed from historical 
inflow of 56 years (1962–2017) and presented in Table 1. 
With the help of multivariate gamma AR(1) model, 1000 
years synthetic sequence resemble to historic sequence been 
generated. Matalas (1967) proposed the multivariate AR(1) 
model preserves the lag-zero and lag-one autocorrelations 
and cross correlations. In this study, the randomness of 
inflows (hydrologic timeseries) have been tested by com-
puting lag-zero autocorrelation which is almost near to zero. 
The monthly mean values show that maximum inflow in the 
system took place from June to October and in maximum 
and minimum values of these months also indicate about 
very high variation. In these 5 months appreciable amount 
of skewness are also observed which indicate a non-normal 
distribution. Some months (July, August, October, Novem-
ber) show strong co-relation. Variation of monthly inflows 
into the four reservoirs during June to October have been 
presented in Fig. 2.

Methodology

In this research paper, optimal operating policies of a multi-
purpose multi-reservoir system have been developed through 
implicit optimization method. At the begining variable 
selection techniques, in terms of (1) All Possible Regres-
sion (APR) and (2) Stepwise Regression (SR) are discussed. Fig. 1   Damodar valley system
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It is assumed that the regression equations are linear and 
a constant term (intercept) is present in the equation. The 
decomposition models and the simulation technique are 
then described in relation to the DV system. Finally, this 
approach is applied to the DV system with a number of syn-
thetic inflow sequences generated by the multivariate gamma 
AR(1) model as input and the results are presented.

Here a subset of independent (predictor) variables is to 
be selected for use in a regression equation among many 
potential variables present in the system. Although different 
methods for subset selection are available which use dif-
ferent statistics for test of significance and in practice all 
of them may not lead to the same solution when applied to 

the same problem (Draper and Smith 1968; Kennedy and 
Gentle 1980). Hence, performances of different model build-
ing methods are to be examined before selecting the final 
equation. In the present study, two widely used methods for 
regression analysis in statistics: APR and SR, have been 
applied for reservoir management and tested.

All possible regression (APR) technique

One of the most comprehensive but cumbersome ways of 
selecting subset regression is to compute all possible sub-
set regressions. In all possible regression, the pool of q 
variables is divided into subsets which involve n variables, 

Fig. 2   Monthly inflow distribu-
tion during monsoon period
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n = 1, 2,… q. In each subset, regressions are done for all 
possible combinations of the predictors, and each regres-
sion equation is ordered according to some criterion; usu-
ally the criterion is the value of R2 (coefficient of determi-
nation) achieved by the least square fit (Draper and Smith 
1968, Chapter-8). The leaders in this ordering within each 
subset are then selected for further examination and a deci-
sion is made as to which equation is best to be used, after 
examining the R2 [correlation coefficients computed for opti-
mal storage states (dependent variables), initial storage states 
and inflows into reservoir] values.

The major drawback of this approach is the number of 
regressions that must be calculated: 2q − 1 for a pool of q 
predictor variables. Contrasting with the computational 
effort involved is the valuable information provided by 
examining all possible subsets. Most other variable selec-
tion procedures yield only one or perhaps a few candidates 
for the final prediction equation. By examining summary 
information one can identify the better subsets and then 
choose one or more according to the nature and purpose of 
the investigation. Considerable attention has been directed 

at identifying the best (largest R2 or, equivalently, smallest 
residual sum of squares) subsets of a given size; i.e., of all 
subsets having a fixed number of predictor variables, iden-
tifying the one that has the largest R2 (Gunst and Mason 
1980, Chapter-8 ).

The main advantages in computing all possible regression 
or the selection criteria for all the regression, have led to 
research for more efficient means of determining best sub-
sets. The disadvantage of this approach is that only the single 
best subset of a given size is identified where as other good 
subsets that could be trivially inferior to the best ones might 
not be identified, yet these other subsets may be preferable 
due to problem related considerations.

Stepwise regression (SR) technique

Stepwise regression procedure is a selection technique that 
sequentially add or delete single predictor variables to the 
regression equation, based on certain criterion. Since a 
series of steps are involved and since each step leads directly 

Table 1   Statistical parameters 
of inflow of DV system

Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Reservoir Konar
Ymax 31.51 29.34 32.24 25.35 22.64 161.5 328.2 289.5 253.8 197.1 44.39 35.05
Ymin 0.009 0.000 0.000 0.000 0.430 6.519 18.09 15.16 10.42 0.888 0.510 0.000
Mean 6.305 5.834 5.978 6.211 6.931 40.81 91.71 114.0 96.45 38.71 8.103 6.314
� 6.530 5.990 6.160 5.700 7.660 29.51 62.82 57.04 60.91 38.77 8.033 6.601
� 1.760 1.803 1.838 1.593 1.401 1.739 1.576 0.740 0.689 1.935 2.116 1.999
� 0.290 0.602 0.590 0.732 0.473 0.321 0.802 0.734 0.678 0.811 0.853 0.465
Reservoir Tilaiya
Ymax 24.40 14.71 12.33 14.62 11.38 198.4 308.5 300.6 335.9 175.5 27.58 36.09
Ymin 0.000 0.000 0.000 0.000 0.000 0.260 2.220 14.22 1.300 0.160 0.000 0.000
Mean 4.563 2.853 1.750 1.136 2.232 23.88 66.88 92.67 79.40 31.08 5.221 4.921
� 5.625 3.618 2.700 2.600 3.143 37.41 60.14 64.88 66.69 33.71 5.457 6.503
� 2.069 1.503 2.380 3.557 1.520 2.900 1.847 1.113 1.773 2.171 2.012 2.629
� 0.102 0.694 0.538 0.344 0.751 0.678 0.703 0.745 0.632 0.652 0.753 0.714
Reservoir Panchet
Ymax 134.5 150.8 89.70 195.8 146.9 1320 2315 2956 2896 1734 486.6 216.8
Ymin 0.000 0.000 0.000 0.000 0.470 22.54 85.40 182.5 124.7 4.215 0.000 0.000
Mean 18.36 19.36 17.07 23.99 29.49 224.0 807.6 1146 1063 445.9 76.92 25.36
� 21.67 23.83 17.75 30.19 26.18 244.1 602.9 656.1 630.0 412.9 80.36 32.71
� 3.137 3.521 1.918 3.639 2.037 2.483 0.975 0.860 0.637 1.609 2.827 3.921
� 0.215 0.207 0.324 0.284 0.010 0.436 0.672 0.652 0.796 0.891 0.763 0.241
Reservoir Maithon
Ymax 112.9 101.07 66.98 60.17 53.04 1087 1794 1970 1475 1363 215.8 65.17
Ymin 0.000 0.000 0.000 0.000 0.000 0.000 33.08 96.90 98.89 0.000 0.000 0.000
Mean 11.55 13.84 9.925 5.967 8.307 156.9 501.0 586.7 562.6 257.6 30.09 13.28
� 21.25 20.95 15.60 12.59 12.96 196.8 377.3 359.3 346.24 251.77 39.03 18.76
� 2.768 2.016 1.726 2.674 1.694 2.787 1.249 1.568 0.648 2.084 2.328 1.217
� 0.133 0.141 0.671 0.238 0.768 0.552 0.732 0.798 0.621 0.765 0.831 0.453
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to the next, these methods involve the calculation of a much 
smaller number of equations than 2q − 1 required for the 
APR approach.

At each step of the SR a predictor variable is added to 
the regression if its t-statistic is the largest one calculated 
and exceeds critical value, tc . Next each predictor variable 
already chosen is reconsidered and eliminated from the 
selected subset if its t-statistic is the smallest one and does 
not exceed tc value. This process continues until all q predic-
tor variables are in the equation or until the selection criteria 
are no longer met. At any step, the SR method allows one 
to judge the contribution of each predictor in the subset as 
though it were the most recent variable to enter the regres-
sion equation.

The advantages of SR is that (1) the particular variable 
which does not have any significant contribution is elimi-
nated at the entry level for given step and (2) it puts more 
power and information readily avialable than ordinary 
multiple regression method. The major disadvantages of 
SR is that the end result is a single subset which may not 
be necessarily the best for a given size (Gunst and Mason 
1980, Chapter-8).

Application to DV reservoir system

In the implicit stochastic DP framework, the operation prob-
lem of the DV system of reservoirs is first solved for 100 sets 
of synthetic inflow sequences (generated by the multivariate 
gamma AR(1) model, using (1) Discrete Dynamic Program-
ming (DDP) algorithm as proposed by Bellman and Dreyfus  
(1962) considering one reservoir at a time approach and (2) 
Discrete Differential Dynamic Programming(DDDP) algo-
rithm as proposed by Heidari et al. (1971) with the help 
of initial trajectories as obtained from DDP based on the 
following system dynamics (Eqs. 1–4), system constraints 
(Eqs. 5–6), performance function (Eq. 7), objective function 
(Eq. 8) and recursive equation (Eq. 9):

(1)xt+1(1) =xt(1) + yt(1) − ut(1) − evt(1)

(2)xt+1(2) =xt(2) + yt(2) − ut(2) − evt(2)

(3)xt+1(3) =xt(3) + yt(3) + ut(1) − ent(3) − ut(3) − evt(3)

(4)xt+1(4) =xt(4) + yt(4) + ut(2) − ent(4) − ut(4) − evt(4)

(5)�min ≤ �t ≤ �max(on storage)

(6)�t,min ≤ �t ≤ �t,max(on release)

xt(i) , ut(i) , yt(i) , evt(i) and ent(i) represent the volume of stor-
age, the volume of release, the volume of inflow, the amount 
of evaporation loss to the ith reservoir during time period 
t and the en-route loss in the reach between (i − 2) th reser-
voir and ith reservoir. �min and �max represent vectors of 
minimum and maximum storage capacities of the four res-
ervoirs, �t,min is the vector of minimum mandatory releases, 
and �t,max is the vector of maximum permissible releases,Lt 
is the single stage loss function, Dt(1) and Dt(2) represent the 
water supply target levels for reservoir Konar and reservoir 
Tilaiya respectively and Dc

t
 represents the combined water 

supply target level for reservoir Panchet and Maithon where 
VN+1(�

k
N+1

) = 0 for all k (number of iterations) and �i
t+1

 , �k
t+1

 , 
�t = � (�i

t
, �k

t+1
) feasible. (Bracketted number 1, 2, 3 and 4 

attached with all notations represent reservoir Konar, Tilaiya 
, Panchet and Maithon respectively). In system dynamics 
(Eqs. 1–4), seepage loss has been neglected as well as reduc-
tion of live storage space due to sedimentation is assumed 
as zero.

The 100 sets of optimal trajectories as obtained from 
DDDP, the average operating policies are determined for 
each reservoir for each month. As the final storage state 
( �t+1 ) during stage t as used as the decision variable in the 
deterministic model, the same is used as the dependent 
variable (response) in the regression analysis. The inde-
pendent (predictor) variables are �t(i) , �t(i) , i = 1,…M and 
yt−1(j) for the particular reservoir j. For convenience, these 
independent variables are assigned name as follows:

Independ-
ent vari-
able

xt(1) xt(2) xt(3) xt(4) yt(1) yt(2) yt(3) yt(4) yt−1(j)

Name 
assigned

1 2 3 4 5 6 7 8 9

thus making a total of 9 candidate independent vari-
ables. A linear equation (with a constant term) is assumed 
for regression. In the present case, dealing with non-linear 
equations is extremely difficult as the number of predictor 
variables are many, and so it is not attempted here.

(7)
Lt =[(Dt(1) − ut(1))∕Dt(1)]2 + [Dt(2) − ut(2))∕Dt(2)]2

+ [Dc
t − ut(3) − ut(4))∕Dc

t ]
2

(8)min
ut

N
∑

t=1

Lt(ut)

(9)
Vt(�it) = min

�Kt+1
{Lt + Vt+1(�kt+1)}

i = 1, 2,… , I, t = 1, 2,… ,T
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For the selection of the appropriate predictor vari-
ables from a total of 9 candidate variables, the proposed 
approach starts with the APR as described in “All possible 
regression”. In APR, out of several subsets four subsets: 
SS1, SS2, SS3 and SS4 with independent variable 2, 4, 6 
and 8 respectively, are used for comparision. Then the SR 
(as described in “Stepwise regression (SR)”) is applied 
and continued till all 9 independent variables are in the 
equation based on the selection criteria (critical value, tc ) 
are met. As these two techniques deals with the statistical 
significance of the regressions, another group of subsets 
is formulated based on the decomposition of the original 
four reservoir problem into smaller sub-problems, which 
is described next.

Decomposition model

Decomposition models are based on the physical signifi-
cance of the system variables in terms of continuity of flow 
and configuration of the system. In this study for DV sys-
tem, the continuity equations (Eqs. 1–4) indicate that for 
any reservoir, the final storage is primarily a function of the 
initial storage state and the inflow state of that reservoir, 
during stage t. As reservoir is of finite size, any amount 
above the maximum storage capacity will be spilled. Simi-
larly, as downstream channel is of finite capacity, outflow 
will not exceed optimal channel capacity. In this problem 
down stream demand is predefined and sum of the suare of 
deviation of outflow from target is minimized. Considering 
the integrated operation of the reservoirs, the other influenc-
ing variables are the state of the other reservoirs upstream or 
downstream, connected in series or parallel, although, their 
order of influence can not be judged precisely. Based on 
these considerations, four different configurations: DM-A, 
DM-B, DM-C and DM-D, of decomposition models are con-
structed as shown in Fig. 3.

DM-A represents the simplest (elementary) model which 
uses a single reservoir unit and the subset contains only two 
predictor variables: storage and inflow. Four models (DM-
A21, DM-A22, DM-A23 and DM-M24) are constructed in 
this configuration. The DM-B configuration is constructed 
considering the unit of two reservoirs and the subsets con-
sist of 4 independent variables. Two models are constructed 
(DM-B41 and DM-B42) in this configuration. The DM-C 
configuration consists of three reservoirs and accordingly, 
the subset contains six predictor variables. In this con-
figuration also, two models are constructed (DM-C61 and 
DM-C62). Finally, DM-D81 considers the original configu-
ration of the four reservoir system, and accordingly, the sub-
set contains eight independent variables (Table 2).

For the downstream reservoirs, y′

t
 represents the net 

inflow whereas yt represents the local (intermediate) inflow. 
Each of them ( yt and y′

t
 ) is used in the equation separately to 

observe the corresponding effects. Actually, in the present 
case, the contribution of the yt to the net inflow y′

t
 is much 

more than the upstream release. Also, presence of yt in the 
regression equation avoids the forecast errors associated 
with the inflow to the upstream reservoir. Previous period’s 
inflow instead of current period’s inflow is also tested. 
However, this is not tested for the other three configurations 
(DM-B, DM-C and DM-D). In the above table number 1, 
2, 3 and 4 represent reservoir Konar, Tilaiya, Panchet and 
Maithon respectively and bj,t(i) is j-regression coefficient 
for the ith reservoir for stage t. The decomposition models 
(DM-A, DM-B, DM-C and DM-D) are actually the stepwise 
inclusion of different reservoir units maintaining the spatial 
continuity of the system.

In decomposition model one after another reservoir unit 
is included in the system maintaining the spatial continuity. 
The main advantages of the decomposition model are the 
effect of one reservoir on the other reservoir can be stud-
ied clearly. The main disadvantage is with the increase of 
number of reservoir in the system, number of regression 
equation would me more, therefore number of predictor vari-
ables would increase with increasing number of reservoir in 
different configaration. The APR and the SR serve as guide-
lines, in terms of statistical significance, in order to select 
the appropriate decomposition model.

Simulation

From the regression analysis, a model can be selected by 
considering the physical and statistical significance, how-
ever, the real test of how good the resulting regression 
model will depend on the ability of the model to predict 
the dependent variable for observations on the independent 
variables that were not used in estimating the regression 
coefficients (Haan, 1979, Chapter-10). To make a compari-
son of this nature, the historical inflow sequence, which is 
not used in forming the data set for regression, is used with 
the regression coefficients obtained from different decom-
position models (DM-A21, DM-A22, DM-A23, DM-A24, 
DM-B41, DM-B42, DM-C61, DM-C62, DM-C81). The 
resulting release sequences are then used to compute the 
average values of the objective function (as mentioned in 
Eq. 8). With the help of simulation model, performance and 
predictive efficiency of different regression models are com-
puted and a model with less number of independent vari-
ables is selected among different models having relatively 
similar or closer objective function value.
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Results and discussion

APR technique

The APR technique yields a number of solutions based on 
different subsets instead of a particular solution. As men-
tioned in “All possible regression”, the best of the each 
subset is selected based on the largest value of R2 for each 
reservoir for each month in percent. For subsets SS1, SS2, 
SS3 and SS4, the corresponding R2 values as obtained from 

the decomposition models DM-A, DM-B, DM-C and DM-D 
having same subsets have also been computed. Variable 
names corresponding the largest R2 values as obtained from 
those subsets and decomposition models are presented in 
Table 3. In all the following tables, variables number are 
written without separing by comma.

From the Table 3, 1 it is observed that most of the vari-
ance in the response can be explained by two or at the most 
four variables and the regression model should contain the 

Fig. 3   Decomposition models 
with different configurations
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two primary variables, storage and inflow for the particular 
reservoir. It also demonstrates the limitation of selection 
process based on the highest R2 value e.g, for the month of 
February and for subset 2, the highest R2 criterion selects 
variables 1 [ xt(1) ] and 2 [ xt(2) ], whereas the correspond-
ing decomposition model with variables 1 [ xt(1) ] , and 5 
[ yt(1) ] yielded almost the same R2 value, but it contains 
variables physically more significant than subset of vari-
ables 1 and 2.

It is also observed that the 9th variable, i.e, previous 
period’s inflow for the corresponding reservoirs appears in 
fourth subset and onward. It indicates that predictor vari-
able yt−1 is having very little influence on the response and 
so it’s presence in the regression models can be avoided. 
This is partly due to the presence of both yt and yt−1 in the 
data matrix which are correlated. Although in the subset of 
two predictor variables, yt is always present, but not yt−1 . 

Table 2   Regrssion equations of different decomposition models

DM-A21 DM-A22

1 xt+1(1) = b
0,t(1) + b

1,t(1)xt(1) + b
2,t(1)yt(1) xt+1(1) = b

0,t(1) + b
1,t(1)xt(1) + b

2,t(1)yt(1)

2 xt+1(2) = b
0,t(2) + b

1,t(2)xt(2) + b
2,t(2)yt(2) xt+1(2) = b

0,t(2) + b
1,t(2)xt(2) + b

2,t(2)yt(2)

3 xt+1(3) = b
0,t(3) + b

1,t(3)xt(3) + b
2,t(3)yt(3) xt+1(3) = b

0,t(3) + b
1,t(3)xt(3) + b

2,t(3)y
�

t
(3)

4 xt+1(4) = b
0,t(4) + b

1,t(4)xt(4) + b
2,t(4)yt(4) xt+1(4) = b

0,t(4) + b
1,t(4)xt(4) + b

2,t(4)y
�

t
(4)

DM-A23 DM-A24
1 xt+1(1) = b

0,t(1) + b
1,t(1)xt(1) + b

2,t(1)yt−1(1) xt+1(1) = b
0,t(1) + b

1,t(1)xt(1) + b
2,t(1)yt−1(1)

2 xt+1(2) = b
0,t(2) + b

1,t(2)xt(2) + b
2,t(2)yt−1(2) xt+1(2) = b

0,t(2) + b
1,t(2)xt(2) + b

2,t(2)yt−1(2)

3 xt+1(3) = b
0,t(3) + b

1,t(3)xt(3) + b
2,t(3)yt−1(3) xt+1(3) = b

0,t(3) + b
1,t(3)xt(3) + b

2,t(3)y
�

t−1
(3)

4 xt+1(4) = b
0,t(4) + b

1,t(4)xt(4) + b
2,t(4)yt−1(4) xt+1(4) = b

0,t(4) + b
1,t(4)xt(4) + b

2,t(4)y
�
1t−1(4)

DM-B41
1 xt+1(1) = b

0,t(1) + b
1,t(1)xt(1) + b

2,t(1)yt(1) + b
3,t(1)xt(3) + b

4,t(1)yt(3)

2 xt+1(2) = b
0,t(2) + b

1,t(2)xt(2) + b
2,t(2)yt(2) + b

3,t(2)xt(4) + b
4,t(2)yt(4)

3 xt+1(3) = b
0,t(3) + b

1,t(3)xt(3) + b
2,t(3)yt(3) + b

3,t(3)xt(3) + b
4,t(3)yt(3)

4 xt+1(4) = b
0,t(4) + b

1,t(4)xt(4) + b
2,t(4)yt(4) + b

3,t(4)xt(4) + b
4,t(4)yt(4)

DM-B42
1 xt+1(1) = b

0,t(1) + b
1,t(1)xt(1) + b

2,t(1)yt(1) + b
3,t(1)xt(3) + b

4,t(1)yt(3)

2 xt+1(2) = b
0,t(2) + b

1,t(2)xt(2) + b
2,t(2)yt(2) + b

3,t(2)xt(4) + b
4,t(2)yt(4)

3 xt+1(3) = b
0,t(3) + b

1,t(3)xt(3) + b
2,t(3)yt(3) + b

3,t(3)xt(3) + b
4,t(3)y

�

t
(3)

4 xt+1(4) = b
0,t(4) + b

1,t(4)xt(4) + b
2,t(4)yt(4) + b

3,t(4)xt(4) + b
4,t(4)y

�

t
(4)

DM-C61
1 xt+1(1) = b

0,t(1) + b
1,t(1)xt(1) + b

2,t(1)yt(1) + b
3,t(1)xt(3) + b

4,t(1)yt(3) + b
5,t(1)xt(4) + b

6,t(1)yt(4)

2 xt+1(2) = b
0,t(2) + b

1,t(2)xt(2) + b
2,t(2)yt(2) + b

3,t(2)xt(4) + b
4,t(2)yt(4) + b

5,t(2)xt(3) + b
6,t(2)yt(3)

3 xt+1(3) = b
0,t(3) + b

1,t(3)xt(1) + b
2,t(3)yt(1) + b

3,t(3)xt(3) + b
4,t(3)yt(3) + b

5,t(3)xt(4) + b
6,t(3)yt(4)

4 xt+1(4) = b
0,t(4) + b

1,t(4)xt(2) + b
2,t(4)yt(2) + b

3,t(4)xt(4) + b
4,t(4)yt(4) + b

3,t(4)xt(3) + b
4,t(4)yt(3)

DM-C62
1 xt+1(1) = b

0,t(1) + b
1,t(1)xt(1) + b

2,t(1)yt(1) + b
3,t(1)xt(3) + b

4,t(1)yt(3) + b
5,t(1)xt(4) + b

6,t(1)yt(4)

2 xt+1(2) = b
0,t(2) + b

1,t(2)xt(2) + b
2,t(2)yt(2) + b

3,t(2)xt(4) + b
4,t(2)yt(4) + b

5,t(2)xt(3) + b
6,t(2)yt(3)

3 xt+1(3) = b
0,t(3) + b

1,t(3)xt(1) + b
2,t(3)yt(1) + b

3,t(3)xt(3) + b
4,t(3)yt(3) + b

5,t(3)xt(4) + b
6,t(3)y

�

t
(4)

4 xt+1(4) = b
0,t(4) + b

1,t(4)xt(2) + b
2,t(4)yt(2) + b

3,t(4)xt(4) + b
4,t(4)yt(4) + b

3,t(4)xt(3) + b
4,t(4)y

�

t
(3)

DM-D81
1 xt+1(1) = b

0,t(1) + b
1,t(1)xt(1) + b

2,t(1)yt(1) + b
3,t(1)xt(3) + b

4,t(1)yt(3) + b
5,t(1)xt(4) + b

6,t(1)yt(4)

      +b
7,t(1)xt(4) + b

8,t(1)yt(4)

2 xt+1(2) = b
0,t(2) + b

1,t(2)xt(2) + b
2,t(2)yt(2) + b

3,t(2)xt(4) + b
4,t(2)yt(4) + b

5,t(2)xt(3) + b
6,t(2)yt(3)

      +b
7,t(2)xt(4) + b

8,t(2)yt(4)

3 xt+1(3) = b
0,t(3) + b

1,t(3)xt(1) + b
2,t(3)yt(1) + b

3,t(3)xt(3) + b
4,t(3)yt(3) + b

5,t(3)xt(4) + b
6,t(3)yt(4)

      +b
7,t(3)xt(4) + b

8,t(3)yt(4)

4 xt+1(4) = b
0,t(4) + b

1,t(4)xt(2) + b
2,t(4)yt(2) + b

3,t(4)xt(4) + b
4,t(4)yt(4) + b

3,t(4)xt(3) + b
4,t(4)yt(3)

      +b
7,t(4)xt(4) + b

8,t(4)yt(4)



	 Sustainable Water Resources Management (2022) 8:141

1 3

141  Page 10 of 13

However, at this point, yt−1 is not discarded as a predictor 
variable and it will be used for further examination.

SR technique

In the SR technique a particular model has been selected 
based on t-statistic. In Table 4 the particular variables 
selected are shown in terms of their numbers for each res-
ervoir for each month. It is observed from Table 4 that 
the xt and yt values for the corresponding reservoirs (1,5 
for reservoir 1 and 2, 4 for reservoir 2) are always present 
in the selected models, for almost every month. Regard-
ing the downstream reservoirs Table 4 showed that xt and 
yt values for reservoir 3 (numbers 3, 7) and reservoir 4 

(numbers 4, 8) are present in the models almost always. 
The 9th variable ( yt−1 ) occurred in some months for dif-
ferent reservoirs. In a few places yt−1 is present in absence 
of yt for a particular reservoir. In general, although the 
effect of yt−1 is not very prominent, it is retained for further 
examination. Regarding the number of variables in a sub-
set, in most of the cases stepwise regression suggested a 
subset of minimum four variables and higher (some times 
it includes all the variables).

In general the results from APR and SR always indi-
cate the use of elementary variables (storage and inflow). 
Regarding the inclusion of other system variables many 
times model suggested by these two techniques are simi-
lar to the decomposition models, although in some cases 
they suggested inclusion of variables of lesser physical 

Table 3   Selected variables from different subset and decomposition model based on highestR2 value

Month Reservoir Konar Reservoir Tilaiya

APR subset corresponding variables APR subset corresponding variable

SS1 SS2 SS3 SS4 SS1 SS2 SS3 SS4

Oct 15 1245 124568 12456789 26 1269 126789 12346789
Nov 15 1345 134589 12345789 26 2469 234569 12345689
Dec 14 1459 145679 13456789 26 2469 124569 12456789
Jan 13 1346 123579 12345679 26 2369 234569 12345679
Feb 13 1357 123569 12345789 26 2369 235679 12345679
Mar 13 1359 123569 12345689 23 2369 123679 12356789
Apr 15 1359 123459 12345789 26 2369 236789 12346789
May 15 1579 145789 12345789 26 2469 234679 23456789
Jun 15 1568 145678 13456789 26 1268 124568 12456789
Jul 15 1459 134569 12345689 26 1269 124679 12345689
Aug 15 1569 124569 12345679 26 1269 124679 12345679
Sep 15 1459 124569 12456789 26 1269 124679 12346789

Decomposition model Decomposition model
15 1357 134578 12345678 26 2468 234678 12345678

 Month Reservoir Panchet Reservoir Maithon

SS1 SS2 SS3 SS4 SS1 SS2 SS3 SS4

Oct 56 3578 134578 12345678 47 4578 124578 12456789
Nov 37 3567 135679 12356789 48 1468 346789 13456789
Dec 37 1378 135678 12345678 47 3478 346789 13456789
Jan 37 2347 234679 23456789 48 3478 123478 12346789
Feb 37 1347 134567 13456789 48 3478 345789 12345789
Mar 37 2347 234789 23456789 48 1248 123478 12346789
Apr 37 3467 234678 12345678 47 3478 123478 12345789
May 37 1378 134578 12345789 48 2458 245678 12456789
Jun 37 3479 345679 23456789 48 4678 234678 12345678
Jul 67 1267 125678 12356789 27 1567 125679 12456789
Aug 17 1479 134579 12345679 47 1457 134579 13456789
Sep 17 1579 156789 12456789 17 1479 145789 12456789

Decomposition model Decomposition model
37 1357 134578 12345678 48 2468 234678 12345678
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importance. Hence, the selection of final regression model 
will be based on the set of decomposition models starting 
from simplest model with two variables to the full model 
with all reservoirs.

Decomposition models and simulation

The decomposition models are based on the physical sig-
nificance of the system variables and from the APR and 
SR analysis, it is found that these models are also having 
acceptable statistical significance. Hence, final selection 

of a particular regression equation can be made from these 
decomposition models. The APR analysis suggested for 
models with at the most four variables, whereas the SR 
method sometimes suggested for higher models. Before final 
selection, another comparison is made with these decom-
position models through simulation. All the nine regres-
sion models are used with the historical inflow sequences 
(1961–2018) to determine the corresponding releases and 
the value of objective function as shown in Table 5 have 
been computed and the lowest value is obtained from 
DM-B41.

Table 4   Selected variables from stepwise regression

Month Variable number Variable number

Reservoir Konar Reservoir Tilaiya

Oct 1 2 4 5 6 8 1 2 5 6 9
Nov 1 3 4 5 8 9 2 3 4 5 6 9
Dec 1 4 5 6 7 9 1 2 4 5 6 9
Jan 1 3 4 5 6 7 9 1 2 3 4 5 6 7 9
Feb 1 2 3 5 7 9 2 3 5 6 7 9
Mar 1 2 3 5 6 9 1 2 3 6 9
Apr 1 2 3 4 5 7 8 9 2 3 6 9
May 1 2 3 4 5 7 8 9 2 3 4 5 6 9
Jun 1 4 5 6 7 8 1 2 5 6 8
Jul 1 3 4 5 6 9 1 2 4 5 6 8 9
Aug 1 3 5 6 9 1 2 4 6 9
Sep 1 2 4 5 6 9 1 2 4 6 7 9

 Month Variable number Variable number

Reservoir Panchet Reservoir Maithon

Oct 1 3 5 7 8 1 2 4 5 7 8 9
Nov 1 3 5 6 7 9 1 3 4 6 7 8 9
Dec 1 3 5 6 7 8 1 3 4 5 6 7 8 9
Jan 2 3 4 7 9 1 2 3 4 7 8
Feb 1 3 4 5 6 7 3 4 5 7 8
Mar 2 3 4 7 8 9 1 2 3 4 7 8
Apr 3 4 6 7 1 2 3 4 5 7 8
May 1 3 5 7 8 2 4 5 6 7 8
Jun 2 3 4 5 6 7 9 2 3 4 6 7 8
Jul 1 2 4 6 7 1 2 4 5 6 7 8 9
Aug 1 3 4 5 7 9 1 3 4 5 7 8 9
Sep 1 5 7 1 4 5 8 9

Table 5   Decomposition models in terms objective function value

 Model  Objective function value  Model  Objective function value  Model  Objective function value

 DM-A21  1.9447173 × 10
12  DM-A24  1.953566 × 10

12  DM-C61  1.959352 × 10
12

 DM-A22  1.937229 × 10
12  DM-B41  1.803144 × 10

12  DM-C62  1.951731 × 10
12

 DM-A23  1.972152 × 10
12  DM-B42  1.822271 × 10

12  DM-D81  1.966327 × 10
12
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Storage behaviors of the four reservoirs corresponding to 
the different decomposition models are shown in Fig. 4. The 
trajectories are shown for the first five years only. Although 
no specific inferences can be drawn, these figures show that 
trajectories obtained from DM-A23 (based on yt−1 ) is some-
what different than the others which are almost identical. 
Due to fixed M & I demand, nature of trajectories for two 
upstream reservoirs are different than that of two down-
stream reservoirs because of variable irrigation demand.

Selection of the final model from competing models of 
different size is actually a compromise between two opposite 
criteria (Draper and Smith 1968, Chapter-6): (1) to select 

a model with less of number of variables because of the 
difficulties involved in obtaining information on a large 
number of predictors (specifically for inflows) and (2) to 
select a model with as many variables as possible for better 
representation of the system and for better prediction. The 
simpler models (DM-A and DM-B) are having the advantage 
of using less number of variables: for any reservoir, deci-
sions are based on the state of that particular reservoir. Fore-
cast errors or the numerical errors associated with the state 
variables of the other reservoirs do not affect the decision 
much. However, these models cannot incorporate the other 
significant configurational aspects, like the joint operation 

Fig. 4   Trajectories of different 
decomposition models
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of downstream reservoirs, which sometime may have greater 
consequence.

On the other hand, higher models (DM-C and DM-D) 
show better approximation of the system regarding the sys-
tem configuration and the influence of other reservoirs on 
a particular reservoir. Apart from this, the numerical errors 
associated with the use of regression is also more in case 
of higher models. For example, for the complete model 
DM-D81, during a particular stage t, for any reservoir, the 
final storage state xt+1 is based on the storage state xt of all 
reservoirs which were again computed from some regres-
sion equations during stage t − 1 . Thus as stage t increases, 
numerical errors also increase. Also, as the equations for 
DM-D81 involve more number of random variables yt , fore-
cast errors associated with these variables will also affect the 
decision and the error will be propagated.

Based on statistical significance, physical significance 
and objective function values obtained through simulation, 
and other justifications discussed above, model DM-B41 is 
selected.

Conclusion

In the implicit stochastic DP framework, a generalized 
approach is proposed here for the selection of appropriate 
variables in the regression. The variable selection techniques 
based on statistical significance, APR and SR, are powerful 
tools but sometimes important variables from physical jus-
tification of the problem may be discarded. So, care should 
be taken regarding the final selection.The approach selects 
the appropriate model from the judgments based on statisti-
cal and physical significance of the presence of a variable 
in the regression model, performance of the model through 
simulation and from the view of utility. The statistical per-
formances of the different decomposition models which are 
based on the spatial decomposition of the original problem 
and maintain the essence of physical significance of the 
operation problem, are also quite justified and acceptable. 
Therefore, final selections can be made from this configura-
tion of models.

To obtain precise information about some variable (e.g, 
inflow) is very difficult and there is possibility of propaga-
tion of error, therefore models with less number of predictor 
variables are selected from a group of models with similar 
performance. Here simulation serves as an important basis 
for selecting models from almost similar models (in terms 
of statistical or physical significance), DM-41 is selected 
as most preferred model. All these conclusions are sys-
tem dependent in general and true for the DV system in 
particular.
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