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Abstract
Streamflow forecasts are fundamental to the effective operation of flood control reservoirs and levee systems. Therefore, 
streamflow forecasting is of great importance. In this paper, the HEC-HMS conceptual model and SARIMA time-series 
model are compared to forecast streamflow in Maroon basin in the southwest of Iran to evaluate their ability and accuracy in 
monthly streamflow forecasting. First, the continuous rainfall–runoff was simulated monthly before the forecasting period 
by the HEC-HMS model. The monthly data from October 1991 to 2010 were used for verification. Also the data from 2011 
to 2017 were used for calibrated HEC-HMS model. Streamflow forecast was conducted from 2018 to 2021 at the Idanak 
hydrometric station. To validate the SARIMA model based on the autocorrelation function, the partial autocorrelation of 
the residuals, Port-Manteau test, Akaike criterion and plotting the residual time series diagram on normal probability paper 
were used. The results showed that the accuracy of the HEC-HMS model in forecasting streamflow is higher than SARIMA 
model, the Root Mean Square Error (RMSE) of predicted and observed discharges for HEC-HMS and SARIMA models are 
2.8 and 3.4  m3/s, respectively.

Keywords Streamflow · Forecasting · HEC-HMS model · Maroon · SARIMA

Introduction

Streamflow forecasts are fundamental to the effective opera-
tion of flood control reservoirs and levee systems. Forecasts 
may also support emergency operations by providing esti-
mates of the timing and extent of expected hazardous or 
damaging flood conditions. Forecasts are based on recent 
meteorological and hydrological conditions in basin, and 
may also incorporate predicted future meteorological condi-
tions. Although most often used to predict flood conditions, 

streamflow forecasts may also support water supply, hydro-
power, environmental flow requirements, and other opera-
tional needs. The use of statistical time series and hydro-
logic models has a relatively long history in forecasting 
stream flow. The stream flow estimation and forecasting 
are important. Various softwares have been developed to do 
this important task and are used extensively throughout the 
world so far. With the proper stream forecasting can lead to 
proper management of irrigation decisions, flood forecast-
ing, water resources and much more (Ni et al. 2019; Fathian 
et al. 2019a, b; Tongal and Booij 2018; Shafizadeh-Mogh-
adam et al. 2018). Can et al. (2009) reviewed the monthly 
average flow data in the Cekerek basin of Turkey and fitted 
an SARIMA (1.0.0) * (0.1.1)12 to it. Their results indicated 
the efficiency and accuracy of the mentioned model. Yurekli 
et al. (2005) fitted ARIMA (0.1.1) model for monthly data 
at the Asacquardaric station in the Carrasco River. Valipoor 
et al. (2012) performed the monthly forecasting of inflow 
into the Dez dam reservoir by the neural network autoregres-
sive model. The results of their research showed that the best 
model for forecasting the inflow into the Dez dam reservoir 
is the neural network autoregressive model that can forecast 
the inflow of 5-year lead time. Valipoor et al. (2015) studied 
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the capability of Seasonal Autoregressive Integrated Moving 
Average (SARIMA) and Autoregressive Integrated Moving 
Average (ARIMA) models to forecast the long-term runoff 
in the United States. The results showed that the accuracy 
of SARIMA model is more than ARIMA model. Using the 
model of artificial intelligence and time series, they esti-
mated the monthly flow of the river (Mehdizadeh et al. 
2019a, b). Flow modeling efficiency was improved using 
the AR (TAR) hybrid threshold model with the GARCH 
approach (Fathian et al. 2019a, b). They used time series 
models to model monthly flow (Mehdizadeh et al. 2019a, 
b). Using machine learning method, modeling precipitation-
runoff (Adnan et al. 2021).

According to the results, the Artificial Neural Network 
(ANN) and Least-Square Support Vector Regression (LS 
SVR) models have the best performance in flow prediction 
in linear and nonlinear conditions, respectively (Modaresi 
et al. 2018). The results show that small floods during El 
Nino are important in flood management (Hooshyaripor 
et al. 2020). Singh and Manik (2015) simulated continu-
ous streamflow using the Soil Moisture Accounting (SMA) 
loss algorithm in the Dahir basin of India. The results indi-
cated that the HEC-HMS model has acceptable ability to 
simulate the stream flow. Sintayehu (2015) simulated the 
upstream flow of the Nile River basin using the HEC-HMS 
model and the results showed that SMA and linear reservoir 
parameters have the most effect on the basin hydrograph. 
Khezrian Nezhad et al. (2012) predicted the runoff using the 
quantitative forecasting of precipitation through the output 
of numerical forecasting models of the atmosphere. They 
used the WRF model to forecast precipitation and the HEC-
HMS model to forecast runoff. The results show that the pre-
dicted runoff values   are less than the observed values. Supe 
et al. (2015) performed the rainfall–runoff process using the 
HEC-HMS model for the Van River Basin by the SMA loss 
algorithm. They found that the HEC-HMS calibrated model 
could be used to forecast runoff in the Van River Basin. 
Razmkhah et al. (2016) modeled precipitation and runoff 
using SMA penetration losses in the HEC-HMS model in 
the Karun 3 dam basin. The modeling results showed that 
according to the Nash–Sutcliffe criterion the SMA method 
provides an appropriate estimation of penetration. The 
results of the sensitivity analysis of the model showed that 
the hydraulic conductivity, Clark conservation coefficient 
and concentration time are the most important parameters 
for maximum flood simulation. Goumindoga et al. (2016) 
studied rainfall-runoff modeling in ten different basins with 
and without runoff statistics (no stations) using the HEC-
HMS model in Zimbabwe. Also, the share of each of the 
sub-basins was calculated without statistics in production of 
the basin's outflow runoff. The results showed that the HEC-
HMS model appropriately predicts the amount of runoff 
and peak discharge of the basins with statistics. Koch et al. 

(2013) modeled continuous rainfall-runoff by the HEC-HMS 
model in the Aggtelek Karst region using the SMA loss 
algorithm. In order to validate the runoff, the HEC-HMS 
model was used Wei et al. (2018). The main purpose of this 
paper is to evaluate the accuracy of the conceptual HEC-
HMS model in monthly stream flow forecasting in Maroon 
basin and compare it with the predicted stream flow using 
the SARIMA time series model. The main purpose of this 
study is to compare the performance of the HEC-HMS con-
ceptual model and SARIMA time series model in predicting 
the monthly flow of the Maroon River. Also the distinguish 
between of this research with previous study in present study 
is using of a new section in the HEC-HMS software called 
forecasting, which present full description in the materials 
section about it.

Materials and methods

Introduction of the case study

Maroon basin with an area of about 3824  km2 is located in 
the geographic coordinates 49◦

50
�

− 51
◦

10
� E 30◦

30
�

−31
◦

20
� 

N at the heights of Behbahan city in Khuzestan province 
of Iran. Maroon basin is surrounded by Zohreh and Karun 
basins in Khuzestan and Kohgiluyeh and Boyer Ahmad 
provinces. A major part of Maroon basin is mountainous. 
Meanwhile the northern and eastern sides are higher than 
other parts. The Maroon basin is divided into four sub-basins 
based on the topography and position of hydrometric stations 
using ArcGIS software. Figure 1 shows Maroon basin with 
the sub-basins and the position of the rain gauge and hydro-
metric stations. Figure 2 illustrates the schematics of the 
geometric model of Maroon basin in the HEC-HMS model 
environment. Table 1 shows the geometric characteristics 
of four sub-basins with conceptual model of Maroon basin 
in HEC-HMS model. Precipitation data are provided by the 
rain gauge stations affiliated to the Ministry of Energy. The 
flow rates at the Idanak hydrometric station with 24◦

50
′ E 

36
◦

30
′ N coordinates are used to calibrate the model.

Streamflow forecast using the HEC‑HMS model

The HEC-HMS model is a semi-distributed conceptual 
model that has the ability to simulate losses, snowmelt, sub-
basin routing and river flow routing. Streamflow forecast 
usually involves the simulation of past and future conditions. 
Forecast starts with selection of a forecast lead-time. Lead-
time usually represents the last available time for meteoro-
logical observations of precipitation, temperature, and other 
variables. If observations of streamflow, stage or reservoir 
pool elevation are available, the last available value will 
be generally near the time of forecast too. The simulation 
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is started few hours or days before the time of forecast. 
The results computed between the start time and the fore-
cast time, may be called the "look back" period. When the 
observations of current basin conditions are available, they 
may be compared with computed results from the look back 
period to make calibration adjustments that improve model 
performance. Meteorological observations are not available 
after the forecast time and predictions of future values are 
used. For example, quantitative precipitation forecast (QPF) 
provides the meteorological prediction of future precipita-
tion depths. Similar predictions are used for other meteoro-
logical variables such as temperature. The future streamflow 
response is simulated based on the predicted meteorological 
conditions. This period of time in the future may be called 
the "forecast". The SMA loss algorithm was used to simu-
late continuous rainfall-runoff process in Maroon basin. The 
SMA loss algorithm has the ability to model hydrological 
systems for long periods continuously (HEC 2008). This 
loss algorithm introduces the basin using a series of storage 
layers (Bennett 1998). When the precipitation takes place, 
the first layer with filled capacity is the interception storage 
capacity. The second layer of storage is the depression stor-
age capacity. The third layer of storage is soil profile storage 
capacity. The excessive water of these storages appears as 
surface runoff. The soil profile loses part of its water due 
to evapotranspiration and part of its water due to percola-
tion into groundwater layers and groundwater reserves are 
linked to a linear reservoir model for modeling the base flow. 

Fig. 1  The Maroon Basin with the structure of the HEC-HMS conceptual model

Fig. 2  Schematic of soil moisture accounting algorithm in HEC-HMS
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Figure 2 also shows the schematic and conceptual scheme 
of the SMA loss algorithm. The Clark's unit hydrograph 
model was used to transform precipitation to runoff, due to 
its general usage in large basins and acceptable performance. 
Linear reservoir model was also used to estimate the base 
flow in each sub-basin with the SMA model (Bennett 1998). 
The Muskingum method was used for routing the flow in all 
reaches. In addition, the upstream region of Maroon basin is 
mountainous; therefore the temperature index method was 
used for simulation of precipitation and snowmelt runoff.

Model calibration and validation

Different statistical criteria were used for evaluation of accu-
racy and performance of the HEC-HMS model. Equations 1 
to 4  show the statistical criteria including Coefficient of 
determination  (R2), Nash–Sutcliffe (NS) coefficient, Percent 
of Total Volume Error (PTVE) and Root Mean Square Error 
(RMSE), respectively. In Eqs. 1 to 4, n is equal to the num-
ber of flow data, Oi and Si are the observed and simulated 
flow data in the time step i, O is the mean observed discharge 
and Cov is the covariance of the observed discharge.

The Nash–Sutcliffe coefficient represents the model's effi-
ciency which has recently been used in hydrological con-
texts. The Nash–Sutcliffe coefficient can take values of the 
infinite negativity to one, where the one indicates a perfect 
fit and 100% consistency between the observed and simu-
lated values.
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√
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SARIMA models

Box et al. (1994) developed the SARIMA model for seasonal 
time series. If the periodic behavior is observed at specified 
intervals (S) in a time series, this time series has a seasonal 
period and the SARIMA model is used for its modeling. 
The ARIMA model is shown as ARIMA (p, d, q) (P, D, Q)s 
where the (P, D, Q) is the seasonal component of the model, 
(p, d, q) is the non-seasonal component of the model and 
S is the season’s length of period. The general form of the 
model is shown as follows using the backward transformer 
operator (B):

where φ (B) and θ (B) are the p and q order polynomials, 
respectively. Φ(Bs) and Θ(Bs) are polynomials in Bs of the 
P and Q order. p is the non-seasonal auto correlated order, 
d is the number of differentials, q is the seasonal auto cor-
related order, D is the number of seasonal differentials, Q is 
the seasonal autoregressive integrated moving average and 
S is the length of the season. The time series models consist 
of the following four steps that are repeated:

1. Identification of the pattern At this stage, the stability 
of the mean and variance of the data was evaluated by 
mapping the autocorrelation function (ACF) and par-
tial autocorrelation function (PACF). Autocorrelation 
function is one of the most important tools for testing 
data dependency. This function measures the correla-
tion between observations at different intervals and is 
used to examine a single time series in the time domain. 
This function often provides an insight into the prob-
abilistic pattern that produces the data which is used 
to identify and fit the appropriate stochastic model to 
data. In addition to autocorrelation between (xt, xt+k) , 
if the correlation between (xt, xt+k) is intended followed 
by deleting the elimination of the relationship between 

(4)RMSE =

√√√√1

n

n∑
i=1

(Oi − Si)
2
.

(5)�p(B)ΦP(B
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s)at,

Table 1  Geometric Properties of the Sub-basins of Maroon Basin

Sub-basin Area  (km2) perimeter (km) Gravellius 
coefficient

Minimum 
elevation (m)

Maximum 
elevation (m)

Average 
elevation (m)

Average 
slope (%)

Main stream 
length (km)

1 971.5 173.0 1.61 1339 3491 2415.02 7.10 32.02
2 686.6 73.6 0.79 859 3321 2079.06 9.39 41.95
3 1067.4 87.5 0.76 567 3165 1864.50 7.95 70.63
4 1020.3 95.1 0.84 362 3117 1746.88 8.62 73.28
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(xt+1, xt+2, ...., xt+k−1) variables, the partial autocorrela-
tion function (PACF) is used. The behavior of these 
functions in the correlation graph is one of the most 
important criteria for estimating the time series pattern. 
In the case of lack of statistics, at first the intended series 
is stabilized by the suitable differential series and the 
data conversion is stabilized by the Box-Cox method in 
the mean and the variance and then the series is stabi-
lized. Therefore, at this stage, by analyzing the variance 
of the differentiated data and PACF and ACF diagrams 
the p, q, P and Q orders are specified.where n is the 
total number of data, m = (p + q + p + q) and RSS is the 
residual sum of squares. The chosen model should have 
the smallest amounts of (AIC) and (SBC).

2. Fitting the pattern (Estimation of Parameters) At this 
stage, it is possible to use the Akaike Information Cri-
terion (AIC) by identifying the appropriate patterns in 
the previous step to compare several patterns and choose 
the best one. The modified Akaike Information Crite-
rion (AIC) is calculated from the following equation. 
In addition to the modified AIC, the Schwartz Bayes-
ian Criterion (SBC) is used.where n is the total number 
of data, m = (p + q + p + q) and RSS is the residual sum 
of squares. The chosen model should have the smallest 
amounts of (AIC) and (SBC).

1. Diagnosis of the pattern correctness To check the accu-
racy of the model, the residual chart is evaluated in 
terms of normality and statistics.where, n is the number 
of observations. This test statistic is the modified Q sta-
tistic or Liung-Box (LBQ) and has a distribution under 
the H0. m is the number of estimated parameters in the 
model. If the value of the Q statistic is greater than the 
corresponding value of the chi square table, the H0 is 
rejected. Sometimes the H0 is also called the model's 
adequacy hypothesis.

2. Forecast using the Box-Cox transformation the values of 
the predicted data series were corrected by the discharge 
values. The results were evaluated as the final predicted 
discharge data for the intended years. To model the dis-
charge data of the above stations, the Minitab software 
has been used which is based on Box-Jenkins approach. 
In addition the Port-Manteau test is useful for examin-
ing the adequacy of the model. This test uses the auto-
correlation of the residuals to test the zero hypothesis 
H0:P1 = P2 = …. = PK = 0 along with the following test 
statistic.where, n is the number of observations. This test 

(6)AIC = n × LN
(
2πRSS

n

)
+ 1 + 2mϕ(B),

(7)SBC = n × LN(MSE) + 2m × LN(MSE),

statistic is the modified Q statistic or Liung-Box (LBQ) 
and has a distribution under the H0. m is the number of 
estimated parameters in the model. If the value of the Q 
statistic is greater than the corresponding value of the 
chi square table, the H0 is rejected. Sometimes the H0 is 
also called the model's adequacy hypothesis.

Discussion

Modeling with HEC‑HMS

The monthly data from October 1991 to 2010 were used 
for calibration. Also the data from 2011 to 2017 were used 
for validation of calibrated HEC-HMS model. Stream flow 
forecast was conducted from 2018 to 2021 at the Idanak 
hydrometric station. After each implementation of the HEC-
HMS model, the simulated hydrograph was compared with 
observed hydrograph to evaluate the model. Also, the sta-
tistical indices of the model error were calculated and com-
pared with the values of statistical indices in the previous 
run. If the accuracy of the precipitation-runoff simulation 
was not recognized to be proper, the simulation operation 
would be resumed until obtaining satisfactory results. Fig-
ures 3, 4 and 5 compare the observed and simulated hydro-
graphs in the calibration, validation and prediction stages of 
the HEC-HMS model. Figure 7 also shows the dispersion 
curves between the observed discharges and the predicted 
discharges for the HEC-HMS model. According to Figs. 3 
and 4, it can be concluded that the HEC-HMS model has 
a good accuracy in estimating the streamflow with low 
discharge and baseflow relative to the peak discharges. 
The reason is that the available data including precipita-
tion, streamflow, air temperature and evapotranspiration 
to simulate the continuous rainfall-runoff process over a 
minimum of 1 water year are monthly values. But the esti-
mated time parameters of the sub-basins including the time 
of concentration, lag time, and Clark's storage coefficient 
are hourly values. The flow hydrograph at the hydrometric 
station during a water year was also as the baseflow with 
low discharge and a few streamflows with peak discharge 
on most days of the year. According to Table 4, the PTVE 
between the observed and simulated streamflows at the cali-
bration stage of the model is 14.4% which indicates that 
the model underestimated the total volume of streamflow 
but with relatively acceptable accuracy. The RMSE of the 
observed and simulated discharges at the calibration stage 
of the model is 27.5 which indicates the high accuracy of 
the model in rainfall-runoff simulation. The value of the NS 

(8)Q = n(n + 2)

k∑
h=1

(n − h)−1p̂h
2
,



 Sustainable Water Resources Management (2022) 8:158

1 3

158 Page 6 of 11

Fig. 3  Comparison of monthly simulated and observed hydrographs at Idanak station in model calibration

Fig. 4  Comparison of monthly simulated and observed hydrographs at Idanak station in model validation

Fig. 5  Comparison of monthly 
predicted and observed hydro-
graphs at Idanak station
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coefficient for the calibration stage is 0.83 which is accept-
able. The amounts of NS coefficient and the RMSE between 
the observed and simulated hydrographs in the calibration 
stage are 0.83 and 27.5 which indicate the suitable calibra-
tion of the model and the acceptability of model accuracy in 
simulation of rainfall–runoff in Maroon basin. In addition, 
according to Table 4, the PTVE between the observed and 
simulated streamflows in the validation stage of the model is 
14.4% which is similar to the calibration stage of the model, 
indicates the underestimation of the model in estimating the 
total volume of streamflow but with relatively acceptable 
accuracy. In addition, according to Fig. 5, it can be seen that 
changes in predicted hydrographs are relatively reasonable. 
According to Table 4, the amounts of NS coefficient and the 
RMSE between the observed and predicted hydrographs are 
0.7 and 16.62  m3/s which these values indicate the accepta-
ble accuracy of the model in predicting runoff in the Maroon 
basin. In addition, considering that the PTVE between the 
observed and predicted hydrographs are equal to 14.3% over 
the predicted period, it can be concluded that the predicted 
values are less than the corresponding observed values.

SARIMA time series modeling

In this paper, it is attempted to identify and fit the best 
SARIMA linear model to forecast the monthly discharge 
of the Idanak hydrometric station for the years 1991–2021. 
Figures 6 and 7 show the autocorrelation and partial auto-
correlation functions in which the seasonal variations are 
fully apparent. Figure 8 shows the time series diagram 
of the monthly discharge of the Idanak hydrometric sta-
tion after stability in the mean and variance. Figure 9 also 
shows the results of the Box-Cox transformation of the 

monthly discharges. To choose the best model in terms of 
using the least estimated parameters, the modified Akai-
kes criterion is used. Tables 2 and 3 illustrate a summary 
of statistical parameters of the fitted ARIMA model and 
illustrate the Akaikes criteria on the monthly discharge of 
the Idanak station. As mentioned earlier, one of the meth-
ods for verifying the fitted pattern series is to analyze the 
residual patterns. A logical method for testing the model 
error is to test the normality of data and plot the autocor-
relation functions of model residuals. If the fitted model 
is a suitable model, the autocorrelation function of the 
residual samples does not show any structures, in other 
words, it remains in the confidence interval for all delays. 
In Figs. 10 and 11, the autocorrelation and partial auto-
correlation functions of the residuals are presented for the 
SARIMA (1,0,2)*(2,0,2)12 models which are the superior 
model. However, the independence of the residuals can 
be accepted by the correlations limits. It is observed that 
the assumption of the normality of the residual is cor-
rect. The conventional method to test the suitability of 
the model based on the residual’s autocorrelation is the 
Port-Manteau test. The results of the Port-Manteau test (Q 
(r)) statistic for the studied station are presented in Table 2 
for the fitted SARIMA statistical models. To judge the H0 
hypothesis, the value of the statistic obtained from Port-
Manteau was compared with the value λ2 at a significant 
level of 5%. As observed in the table, this statistic is less 
than the corresponding value λ2 in the station for both 
fitted SARIMA models. The seasonal components (P, D, 
Q) and the non-seasonal components (p, d, q) are pre-
sented in Table 2 for the best fitted model for the monthly 
discharges of the station. The results obtained from the 
study of correlation between the actual and predicted flow 

Fig. 6  Autocorrelation function diagram of the Idanak monthly discharge time series
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rates for the SARIMA models are recorded in Table 3 
for the studied stations. The results showed that among 
SARIMA models, the SARIMA (1,0,1)*(2,0,2)12 model 
with R2 equal to 0.65 and minimum SB equal to 129 is 
prioritized to model the monthly discharge of the sta-
tion. Figure 12 shows the scatter diagram of the predicted 
monthly runoff discharge rates with the HEC-HMS model 
and the SARIMA(1,0,1)*(2,0,2)12 time series relative to 
the observed monthly runoff in the Idanak hydrometric 
station. Table 4 showed some statistical criterial between 
observed and monthly predicted stream flow with HEC-
HMS and SARIMA model.

Conclusion

The rainfall–runoff simulation with the HEC-HMS model 
shows a good accuracy in estimating the streamflow 
with low discharge and baseflow relative to the peak dis-
charges. Input data of existing models include precipita-
tion, streamflow, air temperature and evapotranspiration 
to simulate the rainfall–runoff process over a minimum of 
1 water year continuously. But the estimated time param-
eters in the sub-basins include the time of concentration, 
the lag time, and Clark's storage coefficient in an hourly 

Fig. 7  Partial autocorrelation function diagram of the Idanak monthly discharge time series

Fig. 8  Time series scatter diagram of the Idanak monthly discharge after being stationary
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manner. Considering the amounts of NS coefficient and the 
RMSE between the observed and simulated hydrographs 
it is concluded that the accuracy of stream forecast by the 
HEC-HMS model in Maroon basin is acceptable. In addi-
tion given the PTVE between the observed and predicted 
hydrographs for the studied period, it can be concluded 
that the predicted streamflow values are less than the cor-
responding observed values. On the other hand, the analysis 
of the correlogram of time series of the monthly flow data 
indicated that these data were completely consistent with 
the SARIMA multiplicative seasonal model. Based on the 
behavior of autocorrelation functions, the partial autocor-
relation of residuals and Port-Manteau test values obtained 

Fig. 9  Time series scatter 
diagram of the Idanak monthly 
discharge after Box-Cox trans-
formation

Table 2  Parameters value of SARIMA time series models fitted on monthly streamflow at the Idanak station

Time series model AIC SBC �
2 Q �2 �1 �2 �1 �2 �2 �1

SARIMA(1,0,2)*(2,0,2)12 78.74 129 11.07 8.3 0.408 0.522 − 0.1013 − 0.0473 − 0.444 – 0.4246
SARIMA(1,0,1)*(2,0,2)12 54.134 78.2 12.59 6.4 0.4819 0.428 − 0.1563 − 0.6367 – – 0.4263
SARIMA(2,0,2)*(2,0,2)12 59.43 93.7 9.485 5.8 0.3129 0.5999 − 0.1574 − 0.462 0.5412 0.29 − 0.01616

Table 3  Regression equation and determination coefficient between 
monthly observed and predicted streamflows with SARIMA model at 
the Idenak station

Rank R2 Regression equation model

1 0.65 y = 0.5998x + 10.569 SARIMA(1,0,1)*(2,0,2)12

2 0.61 Y = 1063x−3.7275 SARIMA(2,0,2)*(2,0,2)12

3 0.60 Y = 10686X−5.4898 SARIMA(1,0,2)*(2,0,2)12

4 0.58 Y = 0.785X + 10.456 SARIMA(1,0,0)*(2,0,0)12

5 0.56 Y = 0.7428X + 10.411 SARIMA(2,0,0)*(2,0,0)12

6 0.55 Y = 0.7319X + 10.456 SARIMA(1,1,1)*(1,1,1)12

7 0.52 Y = 0.7174X + 10.709 SARIMA(1,1,2)*(2,1,2)12

Fig. 10  Autocorrelation function diagram of the residuals of the model SARIMA(1,0,1)*(2,0,2)12



 Sustainable Water Resources Management (2022) 8:158

1 3

158 Page 10 of 11

from the fitting of models, the validation of the fitted mod-
els were confirmed. To select the best SARIMA model, 
the Akaike and Port-Manteau criteria were used and the 
SARIMA(1,0,1)*(2,0,2)12 with the lowest Akaike statistic 

was selected as the superior model. According to the statisti-
cal criteria, the HEC-HMS hydrologic model is more accu-
rate than the SARIMA(1,0,1)*(2,0,2)12 time series model in 
forecasting the monthly streamflow of Maroon basin.

Fig. 11  Autocorrelation function diagram of the residuals of the model SARIMA(1,0,1)*(2,0,2)12

Fig. 12  Scatter diagram of 
monthly observed and predicted 
streamflows with HEC-HMS 
and SARIMA(1,0,1)*(2,0,2)12 
models y = 0.5998x + 10.569
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Table 4  Statistical criteria 
between observed and predicted 
streamflow with HEC-HMS and 
SARIMA models

Modeling steps R2 RMSE  (m3/s) PTVE (%) NSH Regression equation

Hec-HMS Calibration 0.84 27.5 14.44 0.83 y = 0.8483x + 0.4266
Validation 0.78 18.26 14.41 0.76 y = 0.8458x + 0.3341
Forecast 0.73 16.62 14.38 0.7 y = 0.808x + 1.8211

SARIMA Calibration 0.79 33.63 22.26 0.74 y = 0.7118x + 3.8668
Validation 0.71 22.35 16.57 0.65 y = 0.8814x − 1.5738
Forecast 0.65 18.55 12.12 0.62 y = 0.5998x + 10.569
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