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Abstract
Groundwater protection models systematically assess the vulnerability of the entire aquifer. They require extensive but 
often scarce or expensive data to produce guidelines that are barely comprehensible to policymakers. A better alternative 
would be a cartographic fragmentation of the landscape to target locations where polluting activities exist or are expected 
and simplify the model so that it is easier to implement and leads to measurable, realistic, and timely actions. In this paper, 
we propose a new flexible user-oriented Groundwater Protection Model (GPM) that adapts to land use changes to anticipate 
protection measures. It was designed to provide two key elements: (i) the response time which is a function of thickness 
and hydraulic conductivity of the unsaturated zone, and (ii) the protection measures that depend on the type of contaminant 
likely to penetrate from a surface spill. GPM was tested in a case study in Morocco where targeted geophysical surveys 
filled the data gap. The results are consistent with previous classic studies and have the advantage of being cost-effective and 
spatially specific. For this, we recommend its broad application to improve the management and protection of groundwater, 
particularly in the event of a lack of means or data.
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Introduction

The assessment of groundwater vulnerability and risk is of 
unquestionable importance for water management, espe-
cially in developing countries that undergo water short-
age problems combined with strong socio-economic and 
political pressures that lead to a pollution spread which 
disregards protective frameworks. The most pertinent 
visions of Aller et al. (1987) and Foster (1987) became the 
inspiration for most hydrogeologists who sought a direct 
impact on territorial strategies, protection of resources, 
and improvement of social welfare. Since then, most of 
the papers have shown outstanding outputs through insu-
lated or comparative case studies while few have focused 
on developing and modelling approaches to improve 
the understanding and promote technical progress and 
innovation that have reach and enthuse large numbers of 
researchers (Benabdelouahab et al. 2018; Machiwal et al. 
2018; Wachniew et al. 2016).

However, the aquifer vulnerability concept still has 
two quite unresolved scientific and decisional dimensions 
(Gray et al. 2014; Machiwal et al. 2018; Voigt et al. 2004). 
From the scientific point of view, it refers to the suscep-
tibility to being adversely affected by an imposed con-
taminant load from the land surface (Vrba and Zaporozec 
1994; Foster et al. 2002; Machiwal et al. 2018). This con-
cept has proved a useful communication bridge (about 
groundwater quality protection needs) between scientists 
and policy-makers, thus, enabling the application of land 
use constraints and pollution control measures (Foster 
et al. 2013). Nevertheless, the abundance of assessment 
models causes an ambiguous perception which often leads 
to conflicting results or even lack of scientific evidence 
(Frind et al. 2006; Lasagna et al. 2018; Stevenazzi et al. 
2017). As proof of this ambiguity, generalist models (e.g. 
GOD (Foster 1987)) which were originally performed to 
qualify the vulnerability of the extensive British aquifers 
are endorsed by several authors for small aquifers where 
lateral and vertical lithological variations are frequent 
(Aboulouafa et  al. 2020; Maria 2018; Rukmana et  al. 
2020). In addition, some authors (Busico et  al. 2017; 
Jesiya and Gopinath 2019; Noori et al. 2019; Omotola 
et al. 2020; Wu et al. 2018) have improvised paramet-
ric modifications to the original models established after 
exhaustive and meticulous investigations (i.e. DRASTIC 
and SINTACS), motivated by the lack or incompatibility 
of the data at their disposal. For this reason, it is not clear 
whether this improvisation based on isolated case stud-
ies can be extrapolated as with the original models exten-
sively tested. It is true that comparing the advantages and 
limitations of models, and identifying the most suitable 
for an area of interest is crucial (Shrestha et al. 2017), 

however, many authors carry out comparative studies but 
fail to conclude the most suitable model for lack of vali-
dation or uncertainty (Hermanowski and Ignaszak 2017; 
Lasagna et al. 2018; Luoma et al. 2017). Faced with this 
scientific ambiguity, it is essential to decide on the most 
suitable evaluation model (Aller et al. 1987; Aslam et al. 
2018; Civita et al. 2000). However, although some models 
are well designed, they are difficult to apply due to lack 
of required parameters, especially in scarce data areas; 
thus the importance of defining the key parameters (Casas 
et al. 2008; Kirsch 2009; Stempvoort et al. 1993). Admit-
tedly, the latter are the thickness and hydraulic properties 
of the unsaturated zone, which affect the percolation of 
contaminants into the productive aquifer (Díaz et al. 2008; 
Li et al. 2017; Omosuyi and Oseghale 2012). In many 
cases (e.g., small, intramountain, or multi-layered aqui-
fers), the application is complex due to frequent lateral and 
vertical lithological variations which require a more dense 
and detailed data mesh (Himi et al. 2017). This is only 
possible thanks to geophysical prospecting as a scientifi-
cally accepted and cost-effective tool (in correlation with 
existing drilling data to avoid measurement or interpreta-
tion errors) (Martorana et al. 2018; Parsekian et al. 2017).

From the decisional point of view, the growing impact of 
the scientific outputs could raise awareness and lead to tan-
gible protection measures despite a persistent gap of under-
standing and perception (Ardaya et al. 2019; Pluchinotta 
et al. 2019; Salhi et al. 2020c). It has been argued that this 
gap is a consequence of the pressure exerted by the executive 
branch on a repressed scientific community resulting in a 
loss of the capacity to achieve synergistic cooperation which, 
instead, turns into a mechanism of worsening of efficiency 
and creativity which generates unclear ideas and disruption 
of mutual perception (Mani et al. 2013; Poege et al. 2019). 
For instance, policy-makers tend to achieve the sustainable 
development goals by seeking quick and cost-effective scien-
tific advice which forces researchers, therefore, to base their 
orientations on parametric evaluation models, the simplest 
and most popular, but which often suffer from both insuf-
ficiency and cumbersome in terms of time and resources 
(Allouche et al. 2017; Salhi 2008). In this regard, guide-
lines should henceforth address three specific keys to deci-
sion making: namely time, cost, and location. Furthermore, 
even if some papers produce reliable results, they require 
advanced skills in analysis and assimilation of cartographic 
and explanatory data which policy-makers do not, neces-
sarily, have. Therefore, despite many ingenious assessments 
that can carefully incorporate all key parameters, constraints 
are still identifiable with respect to the level of explicit detail 
(cartographic and alphanumeric), consistency of applicabil-
ity to any hydrogeological setting, and post-vulnerability and 
risk assessment actions. As a result, policy-makers often 
express great ambiguity in relation to the actions to be taken 
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and the response times (Benabdelouahab et al. 2018; Gray 
et al. 2014; Salhi et al. 2020b; Tziritis et al. 2020; Zwahlen 
2003).

With this in mind, the contribution of this paper is to con-
sider both the scientific and decisional dimensions to provide 
a new relevant tool that simplifies the substantial assessment 
into clear and concrete practical actions. We carefully docu-
ment the rationale for obtaining this tool and the steps for 
its application. Also, there is a section about the results of 
implementation in a case study later in the paper.

Materials and methods

This paper suggests a user-oriented Groundwater Protec-
tion Model (GPM) for application in land use and environ-
mental management, and that is scientifically legitimate 
using appropriate definitions. The GPM is designed to be 
meaningful to a broad audience and targets feasible protec-
tive measures and the time available to activate them. The 
purpose is to improve the practicality of groundwater pro-
tection through a screening tool to identify where detailed 
field investigation and priority protection measures are most 
needed to counter a pollution threat. In short, it has been des-
ignated a tool that provides two key elements: the response 
time and the protection measures to be taken.

Time of response estimate

First of all, the assessment depends on the cartographic frag-
mentation of the landscape, hence the importance of defin-
ing the effective mesh size. The latter is inversely propor-
tional to the level of precision required, to the costs and to 
the complexity of the lithological variations. For this reason, 
it is recommended to use a dynamic mesh size according 
to the available economic and technical means, and to the 
variation of land use and lithological patterns. For instance, 
a 1 km mesh is recommended in monolayer homogeneous 
aquifers with sparse anthropogenic activities and/or scarce 
technical and economic resources. Alternatively, a smaller 
mesh (200–500 m) should be considered. The location of 
the pixel in the mesh must be indicated unambiguously. An 
alphanumeric positioning language that can be assimilated 
by the general public should be favored over a conventional 
coordinate system (Fig. 2).

The response time is estimated proportionally according 
to the retention time of the contaminant in the unsaturated 
zone. Indeed, the retention time is proportional to the thick-
ness and inversely proportional to the hydraulic conduc-
tivity (Akpan et al. 2015; Christiansen et al. 2014; Kirsch 
2006; Luoma et al. 2017). In most models, both parame-
ters are essentially extracted from borehole data which are 
often scarce or poorly distributed (Fig. 1). Alternatively, 

geophysical prospecting (e.g. resistivity methods) can pro-
vide both accurately and rapidly, especially since hydraulic 
conductivity is inversely proportional to clay content, which 
is proportional to electrical conductivity in detrital aquifers 
(Kalinski et al. 1993; Kirsch 2009).

According to SGD model, the aquifer protection depends 
on water capacity of the soil (AWC), percolation rate factor 
(W), rock type factor (R), and thickness of the unsaturated 
zone (T) (Hölting et al. 1995). The last two parameters can 
easily, even upon request, be obtained from geophysical data 
(in complementarity with borehole logs). AWC can logi-
cally be excluded from the assessment since it is based on 
natural soil protection down to 1 m depth which is, in urban 
and built areas, generally removed. Furthermore, soil spatial 
information is often unavailable and/or inaccurate in devel-
oping countries (van Zijl 2019). W factor could be assessed 
based on the available field data (artificial recharge rates 
and/or climatic records) or online products (e.g. Rainfall rea-
nalysis) through well-known ways (Custodio and Llamas 
1976; Szilagyi and Jozsa 2013).

With this adjustment, an efficient improved model is 
obtained, especially in built-up areas, with a set of required 
parameters easily found even in areas with scarce data. The 
overall protection efficiency (P) is calculated according to 
the following equation:

where, W is the percolation rate factor (unitless), R is the 
rock type factor (unitless), and T is the thickness (in meters) 
of the corresponding layer of the unsaturated zone (Voigt 
et al. 2004). First, the electrical resistivity of the different 
layers of the subsoil can be interpreted (in correlation with 
borehole logs) into types of rock according to the grain size 
classes, from which the R factor is deduced according to 
Table 1. Second, the R factor of each layer is multiplied by 
its thickness in meters, then we sum them all. Third, after 
calculating the annual recharge (mm/year), the value of the 
factor W, concluded from Table 1, is multiplied by the sum 
to obtain the value of P. The latter is subdivided into five 
classes which are correlated to different approximate reten-
tion intervals within the unsaturated zone (Table 1) (Hölting 
et al. 1995; Kirsch 2009; Voigt et al. 2004).

With this in mind, the response time is a logical ratio 
proportional to the estimated retention time. In general, man-
agement plans are divided into three intervention phases: 
immediate, short term and medium to long term (Dehghani 
et al. 2019; Kutter and Neely 1999; USDA 2014). According 
to the same logic, when the retention time does not exceed a 
few months to a maximum of 3 years, immediate interven-
tion should be required taking into consideration that this 
intervention is likely to undergo a bureaucratic process of 

(1)P = W ⋅

n
∑

i=1

R
i
⋅ T

i
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Fig. 1  Critical review of the common empirical models. There is a 
large array of empirical models to assess the intrinsic groundwater 
vulnerability based on hydrogeological parameters which, later, are 
combined through a cartographic process by the assignment of inter-

vals and/or classes to produce a vulnerability index map. The applica-
tion of empirical models is often complicated due to their limitations 
or to the deficiency of accurate and well distributed data. The geo-
physical models are simpler and reliable

Table 1  Assessment of the response time corresponding to the 
approximate retention time in the unsaturated zone calculated based 
on the multiplication of the rock type factor (R), the percolation rate 

factor (W), and the thickness of rock cover above the groundwa-
ter table (T) according to Eq.  1 (adapted from Hölting et  al. 1995; 
Kirsch, 2006; Voigt et al. 2004)

Grain size class R factor Groundwa-
ter Recharge 
(mm/y)

W factor P classes Approximate retention 
time in the unsaturated 
zone

Response time (starting from the 
settlement of pollutant activities)

Clay 500  < 100 1.75  > 4000  > 25 years In 5 to 10 years (mid-term plan)
Clayey loam 300 100.1–200 1.50 2000.1–4000 10–25 years
Clayey silty loam 240 200.1–300 1.25 1000.1–2000 3–10 years Within 3 years (short-term plan)
Sandy loam 180 300.1–400 1.00 500.1–1000 Some months to 3 years Immediate action
Sandy silt 120  > 400 0.75  ≤ 500 Some days to 1 year
Loamy sand 90
Slightly loamy sand 60
Sand 25
Gravel and/or breccia 5
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planning and implementation which may last a few months. 
Under better circumstances, response time can be planned 
over multiple budget years, when retention time spans more 
than three years (Table 1). Of course, the response time is 
calculated from the moment of installation of the polluting 
activity. Thus, it is important to learn about this variable 
when deducting the intervention deadline.

The close link between land use management and ground-
water protection has long been recognized, but not con-
cretely translated into integrated policies and interventions, 
as the utopia of scientific assessment converges on summary 
orientations while planning and management require con-
crete guidance fragmented in space and time (Foster 2018; 
Salhi et al. 2020a; Yu et al. 2018). With this in mind, our 
scientific responsibility enables us to objectively link the 
response times with the retention time of the contaminant 
at the level of the unsaturated zone (Fig. 2). The goal is to 
adapt the intervention times reasonably to provide the pos-
sibility of temporally programming the protective measures 
according to the real conditions (in case of existing activi-
ties) and future projections. This temporal phasing is accom-
panied by a package of measures per location as shown in 
the next section.

Protection measures

It was explained previously that the model implementation 
process starts with the subdivision of the land of interest 
(aquifer) according to a mesh established according to the 
needs and the available means. It is not necessary to apply 
the model on the whole aquifer but only in the pixels where 
dangerous activities are installed or projected (since it is 
addressed the vertical infiltration of pollutants). The first 
step, described above, consists in the acquisition in the 
selected pixels of the geophysical data (prospecting and/or 

borehole logs) necessary for the calculation of the P factor, 
from which the response time is deduced.

It is observed that the other models consider the concept 
of protection as a problem for the future taking into account 
mainly the projected activities. This disregard for activities 
already installed makes the implementation of prospec-
tive management plans ineffective because often the actual 
impact of these activities already exists (Bricker et al. 2017; 
Dillon et al. 2020). For this reason, it is recommended in the 
latter case to calculate the action timing for the concerned 
pixels from the year the activity was installed. (Fig. 2). At 
the mesh level, the location of the pixels where the activities 
are located or projected must be indicated according to the 
same alphanumeric positioning language used when estimat-
ing the response time.

Subsequently, the protective measures to be taken for 
each of the selected pixels must be indicated according to the 
degree of exposure resulting from the corresponding activity 
(Fig. 3). The protection measures will vary according to the 
degree of exposure of the productive aquifer which depends 
on the intrinsic vulnerability (taken into account previously 
in the estimation of the response time) but especially on 
the type of contaminant likely to penetrate from the surface 
following an intentional (or not) anthropogenic spill. There 
are three categories of exposure (low, high, and extreme) 
according to the vulnerability of the productive aquifer, 
which also depends on the type of contaminant likely to 
penetrate (Foster and Garduño 2013). These degrees of 
exposure are:

– Low: when the aquifer is favoured by conditions which 
protect it from most pollutants except the persistent 
agents that are discharged regularly and abundantly. In 
this case, most activities can be allowed under normal 
design conditions, except dangerous chemical activities 
or similar.

Fig. 2  Assessment of the available time of response based on the retention time of the contaminant in the unsaturated zone
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– High: when the aquifer is vulnerable to several pollut-
ants and the conditions do not allow the contaminant to 
slow down so that the unsaturated zone can dissolve or 
transform it. In this case, potentially polluting activities 
must be prohibited or subject to detailed controls, spe-
cific design conditions (depending on the laws in force), 
and continuous inspections.

– Extreme: when the aquifer is vulnerable to the major-
ity of pollutants and the conditions for protection are 
minimal or absent. In this case, all potentially polluting 
activities must be prohibited or, in cases of high strategic 
necessity, allowed at low intensity and under absolute 
containment and continuous inspections.

To facilitate the assimilation of these measures, the mesh 
must symbolize for each pixel the proper protection meas-
ures according to a scale of three colors (green, yellow, and 
red). The simplified legend that will accompany the car-
tographic representation explicitly shows the actions to be 
taken (Fig. 3):

– Green: permission with normal design conditions.
– Yellow: subject to detailed controls and specific condi-

tions.
– Red: discharge firmly prevented.

At the same time, a more detailed explanatory table can 
support the mesh. Finally, managers can get all the informa-
tion necessary to activate preventive or corrective measures 
per pixel (i.e. per place of activity), namely: “what to do”, 
“where” and “when”. The definition of “how to do” will 
obviously have to be defined by the managers themselves 
according to the means in their possession, the law in force 
and the response time available.

Thanks to this model, it is possible to bridge a scien-
tific and above all decision-making gap, by creating a link 
between protection measures and reaction time. To test and 
validate it in reality, the model was implemented in a real 
case study as explained in the following section.

Study area and data

Systematic implementation aims to provide authorities with 
a direct tool to adopt an effective protection strategy and 
raise awareness among citizens of environmental issues. to 
test the efficiency and validity of our model, an example 
of implementation was carried out in the aquifer of Ghis-
Nekor in Morocco where hydrogeological data (permeabil-
ity, transmissivity, recharge, etc.) are scarce and/or poorly 
distributed (Benabdelouahab et al. 2019; Salhi and Ben-
abdelouahab 2017; Salhi et al. 2008). This limitation was 
overcome with abundant well distributed geophysical data 
(154 vertical electrical soundings (VES) and 22 electrical 
tomography profiles (ERT) correlated to 84 borehole logs), 
the detailed description of which and their positions were 
already described in one of our recent articles (Benabdel-
ouahab et al. 2019).

ERT prospection was carried out under Wenner–Schlum-
berger mixed array configuration with a multielectrode resis-
tivity meter (48 switch) of 480 m line length and a standard 
10-m electrode spacing. Previously, VES monitoring was 
carried out according to the Wenner–Schlumberger mixed 
array configuration using different AB current electrodes 
spacing to allow different depths of investigation (94 VES 
of 3 to 4 km AB spacing, 53 of 6 km, and 7 of 10 km). The 
field data were interpreted on the basis of Resixp (Interprex 
1996) and Res2Dinv (Loke 1997) software (for VES and 
ERT respectively) in correlation with the available adjacent 

Fig. 3  Assessment of the groundwater protection measures according to the degree of exposure of the productive aquifer which depends on the 
type of contaminant likely to penetrate from the surface
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borehole logs. These data have already been used in a recent 
geophysical characterization and are well distributed over 
the entire study area (Benabdelouahab et al. 2019), which 
favours the extraction of the information required by our 
GPM model in the pixels where the potentially polluting 
activities are installed or projected.

The studied aquifer fills a triangular tectonic struc-
ture that opens to the north towards the Mediterranean 
(Fig. 4). It is a 100  km2 multi-layered alluvial system filled 
with deposits of sand, gravel, and pebbles, with frequent 

clay-silt passages. The aquifer plays a major role in meet-
ing the increasing demand for drinking and agricultural 
water supplies to maintain social and economic balance, 
especially in a stressful hydroclimatic context (Salhi et al. 
2019). The intrinsic vulnerability previously assessed 
showed the most sensitive locations and sounded the alarm 
on the serious negative effects of the uncontrolled landfill, 
existing industrial, tourism, socio-economic, and surface 
mining activities and the repercussions they may have on 

Fig. 4  Geographic location of the study area where fieldwork data is 
drawn on a topographic layer retrieved from Google Maps. 1: limits 
of the Ghis-Nekor aquifer; 2: open-air quarries for extracting gravel 

from the river; 3: uncontrolled discharge of solid and liquid waste; 
4: fuel service station; 5: potentially polluting industrial activity; 6: 
slaughterhouse; 7: olive squwisser
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the health, well-being and territorial development (Ben-
abdelouahab et al. 2019; Salhi et al. 2008).

At the local administrative services, we revised the 
archives of industrial and service units located in the study 
area and those planned. A list has been drawn up with infor-
mation concerning the location, dimensions, date of instal-
lation (actual or planned), type of activity and type of poten-
tially polluting materials generated. This information has 
been verified in the field to ensure consistency and correct 
any eventuality.

Results

The study area was divided according to a reduced size pixel 
mesh of 1  km2 into a total of 112 pixels. The non-uniformity 
of its shape made it preferable to even consider the pixels 
which are incompletely part of it. A unique alphanumeric 
marker has been assigned to each pixel to identify its loca-
tion (Fig. 4). The application of the Ground Protection 
Model (GPM) enables the identification of 27 pixels that 
contain potentially polluting activities (Table 3), in which 
we used the aforementioned geophysical outputs to extract 
the data per pixel on the unsaturated zone (grain size class 
and thickness). The latter data have been converted to their 
corresponding values of R (rock type) and T (thickness) fac-
tors (Table 2). In parallel, the annual recharge was assessed 
according to the MODIS-aided net groundwater-recharge 
method at the same pixel-size (Szilagyi and Jozsa 2013). 
From there, the W (percolation rate) factor was deduced 
(Table 2). Consequently, we calculated the factor of the 
overall protection efficiency (P) at the pixel level according 
to Eq. 1. Obviously, the value of P was used to estimate the 
approximate retention time in each pixel (Table 2). Then, 
we compared the retention time with the date of installation 
of the activity, which allowed the assessment of the time 
response (when to act) at the pixel level (Table 3).

Afterwards, the activities were classified according to the 
degree of exposure of the corresponding pixel (i.e., Low, 
High or Extreme), which allowed the identification of pro-
tection measures at the pixel level (Table 3). Consequently, 
9 scattered pixels where classified as of extreme (fuel service 
stations, olive squwisser, uncontrolled discharge of solid and 
liquid waste, slaughterhouse), 13 pixels as of high (open-
air quarries for extracting gravel from the river, airport, 
urban agglomerations, and controlled industrial activity), 
and 5 as of low degree of exposure (extensive agriculture). 
Later, this information was simplified cartographically in 
three colours which indicate the places where the discharge 
is firmly prevented (Red = Extreme), where any discharge 
must be subject to detailed controls and specific conditions 
(Yellow = High), and where permission with normal design 
conditions are allowed (Green = Low) (Fig. 5). Ta
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Therefore, managers have the three key pieces of infor-
mation to solve the puzzle of effective and cost-effective 
management: where to intervene, when and how. The results 
are beyond those of classic vulnerability studies since they 
are both clear and focused.

In fact, the results are consistent with previous outputs 
which compared several empirical vulnerability assessment 
methods (Salhi 2008). These outputs concluded the DRAS-
TIC method as the most recommended although it lacks 
some specific data in our case. The comparison between 

DRASTIC and the new model shows a concordance in terms 
of vulnerability assessment (degree of exposure) because the 
study of the nature and thickness of the unsaturated zone are 
similar even if DRASTIC has a rating system unfortunately 
inapplicable due to lack of data. The new model has the 
advantage of being direct, practical and spatially specific; it 
is not necessary to study the entire aquifer but specific places 
can be targeted by need and emergency.

Indeed, the statistical comparison between the two mod-
els was made at the pixel scale. Taking into account the 

Fig. 5  Protection measure mesh of the Ghis-Nekor area. 1: limits of the Ghis-Nekor aquifer; 2: discharge firmly prevented in this location; 3: any 
discharge must be subject to detailed controls and specific conditions; 4: permission with normal design conditions
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unavailability of recent data on the permeability of the aqui-
fer and that only 5 old reference points are available for this 
parameter, the comparison between the two models shows a 
similarity ranging from 61 to 74% (with and without perme-
ability respectively) between the outputs of DRASTIC and 
GPM. The "nature of the aquifer" parameter is essential for 
DRASTIC even if its effect is late in terms of protection. 
Taking this into consideration, the resemblance between the 
two models decreases from 71 to 59%.

By eliminating the last two parameters of the DRASTIC 
equation (for the reasons mentioned above), we obtain a 
resemblance of 91%. Slight dissimilarities are attributed to 
DRASTIC's rating and weighting system which affects the 
model output.

Discussion

There is a pressing need to support research and innovation 
capacities and to develop knowledge and common innovative 
solutions for integrated water provision and management, to 
make these resources more climate resilient, efficient, cost-
effective, environmentally and socially sustainable, stimulate 
a more sustainable and competitive industry, and to contrib-
ute to solving water scarcity, food security, nutrition, health, 
well-being and migration problems upstream. With this in 
mind, scientific guidelines should not be like a torrent flow-
ing through the valleys, carrying rising foam, because the 
foam vanishes, and as for what is useful, it remains in the 
ground. Therefore, it is crucial to help secure water avail-
ability in terms of quality and quantity, as well as to improve 
sustaining an easy, cost-effective and fast decision-making 
process. This would be only possible through developing 
innovative and efficient solutions promoting their applica-
tion to increase the governance and sustainability of water 
provision, providing environmental benefits and economic 
growth.

In this perspective, we recommend an innovative decision 
support system for planning adaptation to land use change 
and anticipating pollution. This groundwater saving solu-
tion (we call ‘groundwater protection model’ -GPM-) aims 
to alleviate water scarcity and protection management sup-
ported by forecasting systems which monitor the anthro-
pogenic impact on productive aquifers. Current models of 
groundwater vulnerability and risk assessment address the 
entire aquifer system and use exhaustive but scarce or expen-
sive means to produce barely comprehensible guidelines. As 
an alternative, GPM could be a faster and cost-effective tool 
that target only places where there is potential or anticipated 
polluting activities. It was designed to be easier for decision 
makers to understand, and with realistic, timely and measur-
able actions.

While there is a wide debate on the choice of the most 
suitable valuation model especially in small or complex 
aquifers, there is a consensus on the two key parameters 
that govern the protection of groundwater, namely the nature 
and the thickness of the ‘protective layers’ of the unsaturated 
zone (Díaz et al. 2008; Li et al. 2017; Omosuyi and Oseghale 
2012; Stempvoort et al. 1993). By evaluating these layers, 
the idea was to provide a user-oriented tool that would be 
both scientifically valid and easy to understand, free from 
the complexity of certain current paradigms, and from the 
need to choose between methods according to scientific or 
technical criteria that are sometimes unclear or indecisive.

For the optimal implementation of the groundwater pro-
tection model, the following additional instructions must be 
followed (Foster and Garduño 2013):

– The best agricultural and industrial practices must be 
addressed, the use of certain pesticides banned, and 
incentives for land stewardship improved.

– The previously indicated measures concern both existing 
and new development activities, but additional controls 
should be phased in through negotiation for existing 
ones.

– The highly toxic, excessively mobile and persistent con-
taminants must be firmly prevented in terms of discharge.

Considering the context of climate change, the scarcity 
of resources, demographic growth, contamination, deserti-
fication, degradation of arable lands and loss of biodiver-
sity and recently the pandemic, there is an urgent need to 
invest in improving the productivity, sustainability and learn 
from the lessons of nature and life. For instance, every day, 
the pandemic crisis teaches us eloquent lessons and gives 
us an opportunity to review our development strategies to 
ensure sustainability and efficiency. Disaster management 
plans need to evolve, taking into account the commandments 
learned from our tiniest enemy: anticipating the prepared-
ness transcribed in detailed action protocols with certainty 
that (1) time is life, is better than wasting time naively fin-
gers crossed to fall, lastly, into hesitant, improvised, unmeas-
ured and cloned reactions that worsened infection and death 
statistics. We learned the hard way that (2) it is never enough 
prepared. The quarantine was globally admitted as the solu-
tion to face the spread of infections, and governments deci-
sively imposed what it takes to persist with less bureaucracy, 
more coordination and supremacy. (3) For unusual threat, 
drastic measures. The pandemic impact seems selective 
according to the vulnerability of the infected, but this is a 
matter of perception because (4) everyone is vulnerable with 
different shapes and scales. Nations, communities and indi-
viduals saw the real value of things; everything could wait 
but (5) priorities first. Few of the decision-makers were tak-
ing scientists seriously while (6) it seems that the matter is 
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proceeding with the adoption of convincing scientific argu-
ments to prepare for the risks and mitigate them. Develop-
ment patterns have produced wealth together with dangerous 
socio-economic gaps. In contrast, disasters can uncomfort-
ably be helpful to learn improving infrastructure and build 
social resilience; (7) in every opportunity there is a threat, 
in every threat there is an opportunity.

Conclusions

Groundwater storage plays a fundamental role in shap-
ing water security especially under global change stresses 
and increasing demand scenarios (Foster and MacDonald 
2014). Furthermore, preventive measures are known to be 
more accessible and cost effective than attempts to reverse 
groundwater pollution, but the application of these meas-
ures raises several issues that border on policy, which poses 
a major challenge for planners as it requires options and 
actions that are locally tailor-made to suit different areas 
(Clemens et al. 2020; Lerner and Harris 2009). However, 
policymakers often express great ambiguity about what 
actions to take and when to respond, which creates an urgent 
need to simplify scientific guidance while preserving the 
accuracy and efficiency of the assessment. In the midst of 
the global pandemic crisis, the spread of infections has an 
exponential, unpredictable and spatiotemporally indeter-
minate curve. A new era lookup with profound social and 
economic changes to affect the international community at 
all levels; international cooperation, lifestyles, consumption 
and exchange modes will never be the same as one year ago. 
Consequently, the risk management schemes need to evolve 
based on this crisis explicit lessons. To this regard, scientists 
should adapt their guidance to meet the three required ele-
ments for decision making of any given action: time, cost 
and location. Obviously, scientific expertise will be of little 
use if it does not have a primary role in responsible decision-
making, especially given the great complexity of groundwa-
ter protection topic.

In this article, we want to urge hydrogeologists to contrib-
ute actively and realistically to the growing interdisciplinary 
debate about water conservation. The assessment model that 
we suggest (GPM) has evolved to consider decision mak-
ers’ perception and provide simple and direct guidance. It 
is based on the conviction of the need to frequently review 
disaster management plans, based on lessons learned from 
past events (Crowley 2017). It is useful to improve it locally 
by defining clear roles and responsibilities and by aligning 
and/or incorporating it into established directives.

GPM is a flexible screening tool which identifies where 
detailed field investigation and priority protective measures 
are most needed. It is a user-oriented alternative to clas-
sic models that targets realistic and measurable actions in 

a timely manner. It is reasonably suited to evolve alongside 
management plans by implementing protective measures 
that adapt to existing conditions and future projections.

It was tested in a case study in Morocco with results con-
sistent with previous classic studies and with the advantage 
of being cost-effective, spatially specific, and meaningful to 
policymakers. Its broad application should improve ground-
water management and protection, especially where there is 
a lack of means or data.
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