
Vol.:(0123456789)1 3

Sustainable Water Resources Management (2022) 8:56 
https://doi.org/10.1007/s40899-022-00606-3

ORIGINAL ARTICLE

Precipitation and streamflow trends in Michigan, USA

J. E. Manzano1 · B. D. Barkdoll1 

Received: 10 August 2021 / Accepted: 5 January 2022 / Published online: 5 March 2022 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
Precipitation and streamflow trends may be changing due to changing climate. Therefore, data for these in the state of Michi-
gan, USA, are examined through the use of statistical methods. Data from 117 precipitation stations were used, along with 
data from 143 streamflow gages. Data time periods varied among the stations with the longest record dating back to 1901. 
These methods include the linear regression best-fit line for the whole data set and also for before and after a two-sample 
change point analysis, moving mean, and moving standard deviation. It was found that mean precipitation for 90% of the 
locations and mean streamflow for 76% of the locations increased over the period of record. The moving standard deviation 
for precipitation increased for 54% of the locations, while 28% of the streamflow locations had an increase. Values of pre-
cipitation P(T ≤ t) two-tail, precipitation linear regression slope, and streamflow P(T ≤ t) two-tail at a 0.05 significance level 
occur in concentrated regions. 97% of the precipitation data sets and 92% of the streamflow data sets exhibited a distinct 
change. These results have implications for future management of flood control, recreation, water supply, and irrigation.
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Abbreviations
MI  Michigan, USA
NOAA  National Oceanic and Atmospheric 

Administration
NWS  National Weather Service
TUW   Lumped rainfall–runoff model with the structure 

of the HBV model (Lindström 1997)
U,P  Upper Peninsula of Michigan
USGS  United States Geographic Survey
WFO  Weather Forecast Office

Introduction

State of Michigan geography and climate

Michigan is located in the Northern US, centrally located 
east to west (Fig. 1). Michigan has two parts, or peninsulas, 
northern and southern. The southern peninsula is surrounded 
by Lake Michigan on the west and Lake Huron to the east. 
It is north of the states of Indiana and Ohio. The Northern 

Peninsula or sometimes called the Upper Peninsula (U.P.) 
is disconnected from the lower peninsula by the portion of 
lake that connects Lakes Michigan and Huron. The U.P. is 
connected to the state of Wisconsin to the south and Lake 
Superior to the north.

The climate is characterized as a Humid Continental 
Climate (NWS 2021), which means that it has distinct sea-
sons and an annually even rainfall distribution throughout 
the year. The mean annual temperature ranges from 24.5° 
Fahrenheit in January to 73.5° in July for the largest city of 
Detroit, located in the southern portion of the Lower Pen-
insula. Precipitation is primarily snow in the winter, while 
showers and thunderstorms are frequent in the summer. 
Michigan is unique in that it is significantly surrounded by 
Great Lakes and is therefore particularly subjected to pre-
cipitation and related streamflow phenomenon. Michigan 
has 5292 km (3288 miles) of freshwater shoreline, thereby 
making it the state with the most such shoreline in the US 
(State of Michigan 2021).

Literature review of precipitation and streamflow 
trends

There have been several studies on precipitation and stream-
flow, a partial list of the most recent and most relevant 
of which is in Table 1. Of note is that of Hagedorn and 
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Meadows (2021) which studied only the undisturbed water-
sheds in Michigan. The current study is unique in studying 
all the Michigan watersheds.

Study purpose

The purpose of this study is to analyze the trends for pre-
cipitation and streamflow throughout the State of Michigan 
to shed light on the following questions:

1. Are precipitation and streamflow increasing, as shown 
by increasing linear trend lines of the data?

2. Are the extremes of precipitation and streamflow 
increasing, as shown by increasing slopes of the mov-
ing average and moving standard deviation of the data?

These questions have implications for future management 
of watershed for flooding, transportation, recreation, and 
water supply. The novelty of this work is that nobody has 
done this kind of analysis for the State of Michigan before.

Materials and methods

Description of data

The state of Michigan has 548 precipitation stations, as 
shown in Fig. 1. There are multiple types of precipitation 
stations with some measurements taken automatically and 
some manually (NOAA 2021). Within all Michigan water-
sheds, there are 209 streamflow gaging stations, as shown in 
Fig. 2. Streamflow gaging stations are managed by the U.S. 

Fig. 1  All precipitation stations in Michigan (solid black dots represent stations with more than 20 data points; hollow dots represent neglected 
stations due to insufficient data. Study area is where dots occur.)
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Geological Survey (USGS) and measure the water elevation 
which is used in conjunction with a stage-streamflow rating 
curve to calculate the streamflow (USGS 2021a). It can be 
seen that the spatial coverage of measurement stations is 
broad. Only data sets with 20 or more data points were used, 
to ensure meaningful statistical value.

Methods

All available precipitation data from the first year of record 
for a particular precipitation station were obtained from the 
National Oceanic and Atmospheric Administration (NOAA) 

online weather database for all precipitation stations in 
Michigan (NOAA 2021). All available streamflow data were 
obtained from the United States Geological Survey (USGS) 
website for all Michigan Watersheds dating back to 1901 
(USGS 2021b). Precipitation and streamflow stations with 
fewer than 20 data points were discarded, since they contain 
insufficient data.

The mean, standard deviation, and coefficient of varia-
tion of all data were calculated and recorded for each station. 
These data were plotted as precipitation over time for each 
individual station and the slope linear regression slope was 
recorded. The slope of the linear regression line represents a 

Table 1  Recent and relevant 
studies on precipitation and 
stream flow trends

Citation Location Precip Strmfl

Adib and Tavancheh (2019) Kelani River basin, Sri Lanka X X
Al-Hasani (2019) Tigris River Basin, Iraq X
Ali et al. (2019) Yangtze River, China X
Asarian and Walker (2016) NW California and SW Oregon X X
Balistrocchi et al. (2021) Central Italian alps X X
Dariane and Pouryafar (2021) Zarrinehrood River basin in Iran X
Fleming et al. (2021) Chesapeake Bay X X
Fooladi et al. (2021) Shahpour River basin in the south of Iran X X
Guo et al. (2018) Gongshui River, China X
Gu et al. (2021) China X X
Gupta et al. (2020) Jharkhand state, India X
Hagedorn and Meadows (2021) Undisturbed watersheds in Michigan X
Henn et al. (2018) Sierra Nevada X X
Kelly et al. (2016) Unstated X X
Kuriqi et al. (2020) Central India X
Lee and Yeh (2019) River basins in northern Taiwan X X
Leuthold et al. (2021) S.W. Montana X X
Lucas et al. (2021) Sao Francisco river basin. Brazil X X
Ma et al. (2019) S.W. China X X
Mallakpour et al. (2018) California X
Nkhonjera et al. (2021) Olifants River basin, Africa X
Penn et al. (2020) Rio Grande headwaters X X
Shrestha et al. (2021) Permafrost region, Canada X
Sidibe et al. (2018) West and Central Africa X
Swain et al. (2021) Brahmani, Baitarani R. catchments, E. India X
Talchabhadel et al. (2021) West Rapti River basin, Nepal X X
Tan and Gan (2017) Canada X X
Tan et al. (2021) Yarlungzangbo River, Tibet X
Vijay et al. (2021) Kerala, India X
Wen et al. (2021) Huai river basin, China X X
Xu et al. (2021) Amu Darya River Basin, Central Asia X
Yan et al. (2017) Miyun Reservoir Basin, China X X
Zeleňáková et al. (2017) Košice, Slovakia X
Zeng et al. (2021) US X
Zhang et al. (2017) Upper Sang-kan basin, China X X
Zhang et al. (2020) Loess Plateau, China X X
Zhong et al. (2021) Yellow R., China X
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long-term trend. An assumption of linear regression is nor-
mality, which may introduce some error in the regression line 
slope values. Future analysis can be done with the Mann–Ken-
dal test, for example, that does not assume normality. When 
the nonparametric Theil–Sen slope estimator is applied, 
instead of linear regression, the results are similar to linear 
regression on streamflow data (Wasko et al. 2020), Trend 
were sought, however, not exact values for predictive pur-
poses. The number of stations with positive slopes (increas-
ing tends) was counted and expressed as a percentage of the 
total number of stations that contain more than 20 precipita-
tion data points. The 11-day moving average (also a metric of 
long-term trends) and moving standard deviation, which is a 
metric of long-term trends in extreme values, were calculated 
as well. These are hereafter referred to as the “moving statis-
tics.” The moving statistics were also plotted over time for 

each individual station and the slope of their linear regressions 
were recorded. Again, the number of positive slopes between 
all of the stations was summed and expressed as a percentage 
of the total amount of pertinent precipitation stations.

To investigate the presence of change points in precipitation 
and streamflow, a two-sample change point analysis using a 
visual inspection was performed to identify the appropriate 
point in the given data set that best represents a split in the 
data. A change point is defined here as a point in time where a 
change in trends occurred. The change could be from a lower 
slope to a higher one or vice versa. For some cases, this point 
was chosen to be where data gaps exist, if any. The prefixes 
“pre” and “post” were used to identify the data prior to and 
after, respectively, the determined change point. T tests that 
assume unequal variances were conducted for all pertinent pre-
cipitation and streamflow stations using the Excel spreadsheet 

Fig. 2  All streamflow gaging stations in Michigan watersheds (solid black dots represent stations with more than 20 data points; hollow dots rep-
resent neglected stations due to insufficient data. Study area is where dots occur.)
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T test function. The t test also assumes normally distributed 
data, which may not be true here. The hypothesized mean dif-
ference was set to zero, since it was assumed that the “pre” 
and “post” data for each station originate from the same data 
set. Alpha, the correlation coefficient, was set to equal 0.05, 
since it is a commonly accepted value for statistical analy-
sis. The amount of precipitation and streamflow stations that 
had P(T ≤ t) two-tail values less than 0.05 were counted and 
expressed as a percentage of the total amount of t tests per-
formed. The amount of t Stat values greater than t Critical 
two-tail values was also counted, as well as the amount of sta-
tions that had both the P(T ≤ t) two-tail values less than 0.05 
and t Stat values greater than t Critical two-tail values. These 
summations were both expressed as a percentage of the total 
amount of t tests that were conducted. The plots of streamflow 
over time were examined and unnatural data sets were flagged. 
This included data that appeared to be cyclic and/or not scat-
tered. The amount of flagged data sets was recorded. Change 
point analysis assumes a sudden change, which may or may 
not be true for climate change. The climate is changing more 
gradually due to the increase in greenhouse gas emissions. 
Nevertheless, many studies have used change point analysis 
to gage trends in data.

A contour map was created of the precipitation P(T ≤ t) 
two-tail values obtained from the t tests and of the slope of 
the linear regression line of the dataset for each station. In 
order to construct this, the latitude and longitude coordinates 
of each precipitation station were taken from the NOAA “Find 
a Station” data tool webpage. The P(T ≤ t) two-tail and linear 
regression slope contour maps use a contour interval of 0.05 
and 0.01, respectively, while the respective amount of color 
classes for each contour map are 5 and 32. Each streamflow 
gaging station was examined to determine if any upstream 
dams exist that would potentially affect the streamflow data. 
Any notable structures were recorded with the corresponding 
gaging station.

A compilation was created of all Michigan watershed maps. 
A map of the state of Michigan was shown alongside each 
watershed map with the location of the watershed marked. The 
gaging stations within each watershed were marked as were 
any dams and rivers/streams. An arrow was placed pointing 
to each gaging station to identify the corresponding slope of 
the linear regression of the streamflow data for each location. 
These are all given in the Supplemental Information related 
to this article.

Results

Precipitation

In total, there are 548 precipitation stations within the 
state of Michigan. Of these 548 stations, 117 have at least 

20 data points. The precipitation station at the Marquette 
Weather Forecast Office (WFO) in Michigan will be used 
as an example in the following results as it is a good rep-
resentation with an ample amount of data and it is located 
relatively close to the streamflow gaging station that was 
used as an example in Sect. 3.2.

The mean of all precipitation data points for each sta-
tion ranges from 28.46 inches in Houghton Lake, MI, to 
40.34 inches in Niles, MI. The lowest standard deviation 
is found at the Gaylord Otsego County Airport in Michi-
gan at 3.22 inches, while the highest standard deviation is 
7.02 inches in Herman, MI. The Gaylord Otsego County 
Airport station also has the lowest coefficient of variation 
of precipitation data at 0.11, while the largest coefficient 
of variation is 0.21 at the Harbor Beach 1 SSE, MI, sta-
tion. Figure 3 shows the precipitation data plot for the 
Marquette WFO, MI, station. This type of plot was created 
for all 117 gaging stations and can be found. The linear 
regression for this particular location displays a slope of 
0.0902 in/year.

Of all precipitation stations, the slope of the linear 
regressions ranged from − 0.1448 in/year in Morenci, 
MI, to 0.4039 in/year at the Gaylord 9SSW, MI, station. 
Positive linear regression slopes appear to be in 89.74% 
of the stations. When this slope is divided by the average 
streamflow of each particular location and multiplied by 
100, both of these stations, respectively, had the smallest 
and largest value of this statistic with the smallest being 
− 0.3860/year and the largest being 1.0532/year. It was 
found that 89.74% of the 117 stations had positive values 
of linear regressions divided by average streamflow values.

After calculating the 11-day precipitation moving aver-
ages, moving standard deviations, and moving coefficient 
of variations, it was seen that 46 stations had at least 20 
data points and could be further evaluated. The slope of 
the linear regressions for moving average data sets ranged 
from − 0.0891 in/year at the Pellston Regional Airport in 
Michigan to 0.2671 in/year at the Caro Wastewater Treat-
ment Plant in Michigan. Additionally, 76.09% of the 46 
stations had positive linear regression slopes for moving 
averages. The moving standard deviation linear regres-
sion slopes ranged from − 0.1465 in/year at the Manis-
tee 3SE, MI, station to 0.1262 in/year at the Detroit City 
Airport in Michigan. Out of the 46 precipitation stations, 
54.35% of them had positive linear regression slopes for 
the moving standard deviations. The Manistee 3SE, MI, 
station and the station at the Detroit City Airport both also 
have the smallest and largest slope of moving coefficient 
of variation regression at − 0.0053/year and 0.0040/year, 
respectively. Of the 46 precipitation stations, 41.30% had 
positive linear regression slopes for moving coefficient of 
variations.
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An example of splitting the data into two datasets 
based on a visual inspection of changing slopes is shown 
in Fig. 4 for the Marquette WFO, MI, station. For this 
example, the “pre” data have a slope of 0.5679 in/year 
and the “post” data exhibit a slope of 0.2634 in/year. This 

corresponds to a change of 53.62%. The mean percentage 
of change between all of the “pre” and “post” precipita-
tion slopes was found to be − 123.13%. Table 2 displays 
the results of the t test for this precipitation station, where 
the first three rows of column one are for the “pre” data 

Fig. 3  Precipitation data for the example station at Marquette WFO, MI
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Fig. 4  “Pre” (circle) and “post” (triangle) precipitation data for the example station at Marquette WFO, MI
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and the first three rows of column two are representative 
of the “post” data. A summary of all the statistics for all 
precipitation gage locations in given in Table 3.

In total, there were 43 precipitation stations, or 36.75%, 
that had P(T ≤ t) two-tail values less than 0.05. Three of 
these stations also had t Stat values greater than t Critical 
two-tail values; therefore, the hypothesis that the data of 
each individual precipitation station come from a singular 
dataset is rejected for 2.56% of the 117 precipitation sta-
tions that t tests were run for.

Figure 5 shows the contour map that was created using 
all of the obtained precipitation P(T ≤ t) two-tail values. 
Similarly, Fig. 6 shows the contour map that was created 
using the slope of the linear regression of each station’s 
precipitation values.

Table 2  Precipitation T test results for the example station at Marque-
tte WFO, MI

Statistic Pre-data set Post-data set

Mean 36.42 36.28
Variance 54.58 33.49
Observations 23 35
Hypothesized mean differ-

ence
0

df 39
t Stat 0.0764
P(T ≤ t) one-tail 0.4697
t Critical one-tail 1.6849
P(T ≤ t) two-tail 0.9394
t Critical two-tail 2.0227

Table 3  Summary of precipitation statistical results for all gages

μm 11-day moving average, σm 11-day moving standard deviation

Statistic n > 20 count % Gages m > 0 μm count % Gages μm > 0 % Gages σm > 0 % Gages increasing trend in pre and post m values

Value 117 90 46 89 79 39

Fig. 5  Contour map of precipitation P(T ≤ t) two-tail values (each black dot is a precipitation station and the contour lines are colored with the 
red lines representing the highest P(T ≤ t) two-tail values and the purple lines representing the lowest. Study area is where dots occur.)
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A map of the Escanaba River Basin is shown in Fig. 7 
with the precipitation stations marked. Each station is 
labeled and those that had enough data include the value 
of the slope of the linear regression of the respective sta-
tion’s data.

Streamflow

In total, there are 209 streamflow gages in Michigan water-
sheds. Of these 209 gages, 143 of them have at least 20 data 
points. The Escanaba River Basin will be used as an example 
in the following results as it is a good representation with mul-
tiple streamflow gaging stations and dams. The analysis for all 
watershed is given in the supplemental data.

The mean of all streamflow data points for each gaging sta-
tion ranges from 5.59  ft3/s in Oshtemo, MI, to 4831.24  ft3/s in 
Saginaw, MI. These same gaging stations also hold the lowest 
and highest standard deviations of 0.79  ft3/s and 1224.69  ft3/s, 
respectively. The lowest coefficient of variation of streamflow 
data is found in East Jordan, MI, at 0.05 while the highest is 
found in Palmer, MI, at 0.48. Figure 8 shows the streamflow 
data plot for gaging station 04057800 in the Middle Branch 
Escanaba River located in Humboldt, MI. This type of plot 
was created for all 143 gaging stations and can be found in 

the supplemental information. The linear regression for this 
particular location displays a slope of − 0.1822 cfs/year.

Of all streamflow gaging stations, the slope of the linear 
regressions ranged from − 5.7041 cfs/year in Pembine, WI, 
to 46.09 cfs/year in Banat, MI. Positive linear regression 
slopes appear to be in 75.68% of the gages. When this slope is 
divided by the average streamflow of each particular location 
and multiplied by 100, the minimum of this statistic is found 
in Oshtemo, MI, with a value of − 2.2064/year. This is the 
same gaging station that exhibits the smallest average stream-
flow and standard deviation and also has the smallest value of 
regression slope divided by mean streamflow. This same rela-
tionship does not exist for the largest statistic of linear slope 
divided by mean streamflow; this is found in Hastings, MI, and 
holds a value of 2.6554/year. It was found that 74.58% of the 
143 gaging stations had positive values of linear regressions 
divided by average streamflow values.

After calculating the 11-day streamflow moving averages 
and moving standard deviations, it was seen that 118 gaging 
stations had at least 20 data points and could be further evalu-
ated. The slope of the linear regressions for moving average 
data sets ranged from − 25.767 cfs/year in Pembine, WI, to 
18.0 cfs/year in Grand Rapids, MI. The location in Pembine 
is the same gaging station that had the linear regression with 

Fig. 6  Contour map of precipitation linear regression slope values (the red contour lines represent the highest values, while the purple contour 
lines represent the lowest. Study area is where dots occur.)
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the smallest slope from the raw data. Additionally, 66.10% of 
the 118 gages had positive linear regression slopes for mov-
ing averages. The moving standard deviation linear regression 
slopes ranged from − 7.3222 cfs/year at the same Pembine 
location to 5.0578 cfs/year in Vulcan, MI. This gaging station 
in Vulcan is in the Menominee River, which is the same river 
that the Pembine gage is in. Out of the 118 gages, 27.97% 
of them had positive linear regression slopes for the moving 

standard deviations. The smallest slope of moving coefficient 
of variation regressions is − 0.0081/year in Birmingham, MI, 
while the largest is 0.0047/year in Palmer, MI. This gaging sta-
tion in Palmer is the same one that had the largest coefficient of 
variation of its raw data. Of the 118 gages, 33.05% had positive 
linear regression slopes for moving coefficient of variations.

There were 29 data sets that appeared to have cyclic/unnat-
ural streamflow data, perhaps due to a dam gate opening and 

Fig. 7  Escanaba River Basin precipitation values of the slope of the linear regression values, m, for those gages that had sufficient data Google 
Maps)
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Fig. 8  Streamflow data for gage 04,057,800 in the Middle Branch Escanaba River located in Humboldt, MI

Fig. 9  Example of cyclic data of streamflow at gage 04126740
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closing according to some set algorithm. Regardless, these do 
exist for a percentage of the total gaging stations and it should 
be noted. An example of this data is shown in Fig. 9.

An example of splitting the data into two datasets based 
on a visual inspection of changing slopes is shown in Fig. 10 
for gaging station 04057800 in the Middle Branch Escanaba 
River located in Humboldt, MI. For this example, the “pre” 
data have a slope of 0.2885 cfs/year and the “post” data 
exhibit a slope of 0.0108 cfs/year. This corresponds to a 
change of 96.26%. The mean percentage of change between 
all of the “pre” and “post” streamflow slopes was found to 

be 252.65%. Table 4 displays the results of the t test for this 
gaging station. A summary of all the statistics for all stream-
flow gage locations in given in Table 5.

In total, there were ten streamflow gaging stations, or 
7.09%, that had P(T ≤ t) two-tail values less than 0.05. All 
ten of these gaging stations also had t Stat values greater 
than t Critical two-tail values. Therefore, the hypothesis 
that the data of each individual streamflow gaging station 
come from a singular dataset is rejected for 7.09% of the 
141 streamflow gaging stations that t tests were run for. Fig-
ure 11 shows the contour map that was created using all of 
the obtained streamflow P(T ≤ t) two-tail values.

Twenty percent of streamflow gaging stations were found 
to have nearby dams. It is possible that these dams impact 
the streamflow data and any related calculations.

The Escanaba watershed is shown in Fig. 12. The stream-
flow gaging stations are pointed out with their respective 
values of the slope of the linear regression for particular 
streamflow gaging station.

Discussion

The results of this study, namely that precipitation is increas-
ing, agree with climate change theory that says there will be 
more precipitation in this region of the world as the climate 

Fig. 10  “Pre” (circle) and 
“post” (triangle) streamflow 
data for gage 04057800 at Mid 
Branch of the Escanaba River at 
Humboldt, MI
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Table 4  Streamflow T test results for gage 04057800

Statistic Pre-data set Post-data set

Mean 61.05 52.49
Variance 278.89 205.10
Observations 28 32
Hypothesized mean differ-

ence
0

df 54
t Stat 2.1200
P(T ≤ t) one-tail 0.0195
t Critical one-tail 1.6700
P (T ≤ t) two-tail 0.0389
t Critical two-tail 2.0000

Table 5  Summary of streamflow statistical results for all gages

μm 11-day moving average, σm 11-day moving standard deviation

Statistic n > 20 count % Gages m > 0 μm count % Gages μm > 0 % Gages σm > 0 % Gages increasing trend in pre and post m values

Value 143 75 118 60 28 31
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warms. The results the river flowrate is not increasing agrees 
with hydrology theory in that surface storage is able to 
absorb some of the increased precipitation.

This study quantified changing trends in precipitation and 
streamflow using the statistical methods of the linear regression 
best-fit line for the whole data set and also for before and after 
a change point, moving mean, and moving standard deviation. 
There are other statistical methods that could have been used 
and were used in other studies. These include frequent patterns 
mining and Random Forest methods (Zeng et al. 2021), the 
Budyko hypothesis and the TUW model (Zhong et al. 2021), 
the annual time series of 7-day average minimum streamflow, 
the scaled average deficit at or below the 2% mean daily stream-
flow value relative to a base period, and the annual number of 
days below the 2% threshold (Fleming et al. 2021), different 

nonparametric Mann–Kendall trend tests (Adib and Tavancheh 
2019; Yan et al 2017; Asarian and Walker 2016), gridded data 
set comparison (Henn et al. 2018), Mann–Kendall and Pettitt's 
test and double mass curve method (Guo et al. 2018), mul-
tiple linear regression (Shrestha et al. 2021), wavelet transfer 
methods (Zhanget al. 2017), detrended fluctuation analysis 
and multifractal DFA (Tan and Gan 2017), and m-DMC and 
m-SCARQ approaches (Swain et al. 2021).

Conclusions

A statistical analysis of all precipitation and streamflow data 
for the entire state Michigan shows the following:

Fig. 11  Contour map of streamflow P(T ≤ t) two-tail values (each black dot is a streamflow gaging station and the contour lines are colored with 
the red lines representing the highest P(T ≤ t) two-tail values and the purple lines representing the lowest)



Sustainable Water Resources Management (2022) 8:56 

1 3

Page 13 of 15 56

1. The vast majority of gaging locations in Michigan have 
increasing precipitation (90%) and streamflow (76%).

2. A lower, yet still significant, percentage, of precipitation 
gage locations have increasing moving standard devia-
tion values (54%).

3. A minority of streamflow gage locations have an increas-
ing moving standard deviation (28%).

4. The hypothesis that precipitation and streamflow are 
increasing is, therefore, confirmed.

Greenwood; m= -0.03

Greenwood; m= -0.12

Humboldt; m= -0.18

Palmer; m= -0.10 Cornell; m= -2.64Princeton; m= -0.69

5 mi 

Fig. 12  Escanaba River Basin streamflow with slope of streamflow linear regression, m (Google Maps). The rest can be found in the Supplemen-
tal Information (the rivers/streams are blue lines, orange dots represent the streamflow gaging stations, and black rectangles represent dams)
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5. The hypothesis that extremes of precipitation are 
increasing is also confirmed.

6. The hypothesis that extremes of streamflow is not con-
firmed.

7. Dams and reservoirs help absorb some precipitation 
from reaching rivers, thereby reducing the possible 
effects of changing climate on water management.

8. Values of precipitation P(T ≤ t) two-tail, precipitation 
linear regression slope, and streamflow P(T ≤ t) two-tail 
occur in concentrated regions.

9. Water managers may need increased budgets in the 
future to handle greater streamflow values for flooding, 
transportation, recreation, and water supply.
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