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Abstract
The growing menace of global warming and restrictions on access to water in each region is a huge threat to global hydro-
logical sustainability. Hence, the perspective at which hydrological studies are currently being carried out across the world 
to quantify and understand the water cycle modeling requires a further boost. In the past few decades, the theoretical under-
standing of machine learning (ML) algorithms for solving engineering issues, and the application of this method to practical 
problems have made very significant progress. In the field of hydrology, ML has been using for a better understanding of 
hydrological complexities. Then, using ML-based approaches for hydrological simulation have been a popular method for 
runoff modeling in recent years; it seems necessary to understand the application of ML in runoff modeling fully. Current 
research seeks to have an overview for rainfall–runoff modeling using ML approaches in recent years, including integrated 
and ordinary ML techniques (such as ANFIS, ANN, and SVM models). The main hydrological topics in this review study 
include surface hydrology, streamflow, rainfall–runoff, and flood modeling via ML approaches. Therefore, in this study, the 
author has critically reviewed the characteristics of machine learning models in runoff simulation, including advantages and 
disadvantages of three widely used machine learning models.
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Introduction

In recent years, methods involving data-driven models and 
machine learning (ML) have been developed to predict run-
off (Nourani et al. 2011, 2021; Mohammadi et al. 2020a, 
c). The relationship between hydrologic cycle variables and 
runoff in theoretical system models is approached directly 
without considering the physical processes involved (Okkan 
et al. 2021; Alizadeh et al. 2021). Also, this type of black-
box model may consider some unpredictable hydrological 
terms during the modeling process, and they can be under-
stood as the hydrological phoneme in view of data-driven 
knowledge. Nonetheless, such ML (black-box) methods have 
been proved to have impressive accuracy in runoff simulat-
ing (Mohammadi and Mehdizadeh 2020; Sang 2013; Abbot 
and Marohasy 2012).

In hydrological modeling studies, accurate runoff mod-
eling is the main research topic that affects water resources 

planning, including dam design, water resource allocation 
plans, catchment area management, and flood management 
(Nourani et al. 2009; Zhou et al. 2019; Chadalawada et al. 
2020; Mohammadi et al. 2020b). It is scientifically proven 
that due to the physical processes and natural changes related 
to the river system, then the prediction of the river system 
and its runoff behavior is particularly difficult to analyze. 
In hydrological applications, the need to improve the reli-
ability and accuracy of hydrological variable prediction has 
attracted much attention (Niu et al. 2019). In the process 
of the research plan carried out by hydrometeorological 
researchers, no one has been determined yet. Due to dif-
ferent physical phenomena, such as the pattern, periodicity 
or randomness in model input and target data, and natural 
randomness in general, a method that can usually be used to 
simulate hydrological processes under different conditions 
is ML approaches (Sharafati et al. 2020; Mohammadi et al. 
2021a). Considering this point of view can also be assumed 
that there is no general model that performs better than other 
models under various hydrological conditions and differ-
ent catchment characteristics (Adnan et al. 2021). Due to 
model instability and runoff dynamics, including extreme 
events in historical data, a large number of models cannot 
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make consistent predictions (Oppel and Schumann 2020). 
Because of these limitations, researchers prefer to study and 
develop more robust and general models to improve perfor-
mance using available historical data. Besides, researchers 
must consider the benefits of complex and rapidly evolving 
computing power that can enhance modeling methods and 
threshold accuracy in hydrological forecasting applications. 
In addition, the researchers also applied complex modeling 
theorems and newly developed ML approaches (Oppel and 
Schumann 2020; Tripathy and Schwefel 1982).

For instance, Mohammadi et al. (2020a) showed ML 
models have excellent performance for simulating stream-
flow time series in four rivers in Canada and the United 
States. They implemented four different types of data-
driven models by the name of bi-linear, multi-layer percep-
tron (MLP), MLP coupled by particle swarm optimization 
(MLP-PSO), and MLP-PSO coupled with the multi-verse 
optimizer (MLP-PSOMVO). Their results ranged R2 
between 0.90 to 0.99, and they resulted in ML models can 
understand SF phoneme, and then they can have a suitable 
runoff simulation. Tikhamarine et al. (2020a) compared 
some different types of ML models, including, MLP, and 
Least Squares Support Vector Machine (LSSVM), and 
MLP and LSSVM integrated with PSO and Harris Hawks 
Optimization (HHO) optimization algorithms. They pre-
sented the best results were related to LSSVM–HHO and 
LSSVM–PSO by NS = 0.737. Safari et al. (2020) employed 
Reproducing Kernel Hilbert Space (RRKHS), radial basic 
function (RBF), and Multivariate adaptive regression splines 
(MARS) approach for streamflow simulating in the Haldizen 
watershed (Turkey). They reported the RRKHS had the best 
performance by NS = 0.944 for runoff modeling. Some of 
reviewed articles provided by Table 1.

In the past two decades, the motivation for applying 
machine learning techniques to predict river flow (stream-
flow) has attracted significant attention to hydrology (Jothip-
rakash and Magar 2012; Kentel 2009; Terzi and Ergin 2014; 
Valipour and Montazar 2012a, b). Machine learning has 
made big changes in hydrological forecasting issues and han-
dling the complexity of missing data issues in hydrological 
science (Wen et al. 2019). ML-based methods such as opti-
mization algorithms, logical methods, classification meth-
ods, statistical learning methods and probability methods 
are widely used. The three subcategories of machine learn-
ing are particularly widely used in the hydrology and runoff 
fields: (i) adaptive neuro-fuzzy inference system (ANFIS) 
(Jang 1993), (ii) artificial neural networks (ANN) (Haykin 
2004), and (iii) support vector machine (SVM) (Cortes and 
Vapnik 1995).

In hydrological research, the most widely used ML meth-
ods are ANFIS, ANN, and SVM models. The current study 
focuses on reviewing journal articles with high impact fac-
tors written about runoff modeling in different worldwide 

case studies. Also, this study seeks to provide the advantages 
and disadvantages of mentioned models in different regions. 
The schematic flowchart of current research is shown in 
Fig. 1.

Rainfall–runoff modeling via machine 
learning

Application of the ANFIS in runoff simulation

This method was developed first in 1993 by Jang (1993). 
Different researchers have developed various methods/mod-
els to simulate precipitation and runoff processes, so reliable 
models suitable for effective planning and management of 
catchment areas must be selected. ANFIS is one of these 
popular methods, and it is a type of artificial neural network 
based on the Takagi–Sugeno fuzzy system. Figure 2 shows 
the structure of the ANFIS model.

The aim of creating a model has always been for maxi-
mizing its application, for having a high accuracy result and 
overcoming the complexity of the modeling process. Gener-
ally considering the greater uncertainty is a reason for reduc-
ing the complexity of the model and increase the robustness 
of the model. Zadeh (1965) introduced a fuzzy set theory, 
the main advantage of applying this theory is that it allows 
having a minimum uncertainty of modeling process. This 
was done by looking at input variables related to prefer-
ences to make the modeling unique, or by looking at interval 
data rather than input variables in the form of complex data 
to make the modeling more explicit (Wedding 1997). They 
exist because of the ambiguity and inaccuracy of the system 
input data (Kreinovich et al. 2000).

The fuzzy theory has been widely used for improving 
accuracy of runoff modeling process in various studies. In 
another study by Chang and Chen (2001), they considered a 
type of the fuzzy network, which was a combined approach 
via fuzzy system and ANN (namely, CFNN). This model 
(CFNN) was employed for developing some hydrological 
models and it created a rainfall-based model for predicting 
the amount of streamflow. The form of triangular was used 
as a membership function for the original CFNN, which is 
replaced by the Gaussian function in this study. Understand-
ing and predicting hourly runoff successfully was the biggest 
advantage of the proposed model (Chang and Chen 2001).

The ANFIS model is also widely used for runoff mod-
eling; for example: El-Shafie et  al. (2007) developed 
the ANFIS model. It is recommended to forecast the 
monthly runoff (El-Shafie et al. 2007). The characteristic 
of the ANFIS model is that it can handle the inaccuracy 
and uncertainty in the input of the streamflow database, 
because the input data can be split by a fuzzy subspace 
and into a linear function for predicting streamflow. They 
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Table 1   Information of literature reviewed about black-box models (ML-based models) in this study

Reference Models used Timescale Study area Suggested model

Abudu et al. (2010) Artificial neural networks 
(ANN), autoregressive 
integrated moving average 
(ARIMA), seasonal ARIMA 
(SARIMA)

Monthly Kizil River, China Similar results were reported

Adamowski et al. (2012) Multivariate adaptive regres-
sion splines (MARS), ANN, 
Wavelet-ANN

Daily The mountainous watershed of 
Sainji in the Himalayas

MARS, Wavelet-ANN

Mohammadi et al. (2020c) Adaptive neuro-fuzzy infer-
ence system (ANFIS), 
ANFIS–Shuffled frog leaping 
algorithm (SFLA)

Monthly Vu Gia Thu Bon basin, Viet-
nam

ANFIS–SFLA

Humphrey et al. (2016) ANN Monthly South Australia Hybrid ANN approaches
Kisi et al. (2012) ANN, ANFIS, Support vector 

machine (SVM), Local linear 
regression (LLR), Dynamic 
LLR (DLLR)

Daily Ergene River and Seytan 
Stream, Turkey

ANN, ANFIS

Liu et al. (2014) Support vector regression 
(SVR), W-SVR

Daily and monthly Fork White River and Eel 
River, United State of 
America (USA)

W-SVR

Uysal et al. (2016) MLP, RBF Daily Karasu River, Turkey MLP
Abdollahi et al. (2017) ANN, Gene expression pro-

gramming (GEP), W-ANN, 
W-GEP

Daily Behesht-Abad and Joneghan 
river, Iran

W-ANN

Siqueira et al. (2018) Extreme learning machine 
(ELM), Echo state network 
(ESN), MLP, Partial autore-
gressive (PAR)

Monthly Brazilian hydroelectric plants ESN

Hadi and Tombul (2018) ANN, Multigene genetic 
programming (MGGP), 
W-ANN, W-MGGP

Monthly Goksu-Gokdere Basin, Turkey MGGP

Tongal and Boiij (2018) ANN, SVM, Random forests 
(RF)

Daily North Fork, Chehalis, Carson 
and Sacramento rivers

ANN, RF

Al-Sudani et al. (2019) Multivariate adaptive regres-
sion splines (MARS), 
LSSVR, MARS–Differential 
evolution (DE)

Monthly Tigris River, Iraq MARS–DE

Tikhamarine et al. (2020b) ANN, SVR, Multiple linear 
regression (MLR), ANN–
GWO, SVR–Gray wolf 
optimization (GWO), MLR–
GWO

Monthly Aswan High Dam, Iraq SVR–GWO

Qu et al. (2021) Regularized extreme learn-
ing machine (RELM), SVR, 
Gray wolf optimizer, particle 
swarm optimization, and 
genetic algorithm coupled 
with regularized extreme 
learning machine (BGWO/
BPSO/GA-RELM)

Monthly Two basins in the USA BGWO–RELM

Parisouj et al. (2020) ANN, ELM, and SVR Monthly/ daily Four rivers in the USA SVR
Mohammadi et al. (2021b) Two hydrological models, 

ANFIS, SVM, and group 
method of data handling 
(GMDH)

Monthly Four rivers in Indonesia Hydrological model coupled 
by machine learning model

Parvinizadeh et al. (2021) MLP and supervised brain 
emotional learning (SBEL)

Daily Dez Dam watershed (Iran) MLP
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used 130 years of monthly inflow historical database for 
training the ANFIS approach and testing the performance 
of ANFIS for runoff simulation. Finally, they compared 
ANFIS’s result with the MLP model; the ANFIS showed 
consistently high accuracy in predicting runoff events, 
and its accuracy in predicting extreme streamflow event 
was significantly higher than the MLP model. Reliable 

performance in runoff prediction showed identification and 
application of the effective input patterns for model train-
ing can increase accuracy of runoff simulation (El-Shafie 
et al. 2007).

Nayak et al. (2007) enhanced two different machine learn-
ing approaches (i.e., ANN and ANFIS) to simulate the pro-
cess of rainfall–runoff effectively. The results showed their 

Table 1   (continued)

Reference Models used Timescale Study area Suggested model

Siddiqi et al. (2021) ANN and ELM Monthly Tarbela Dam (Indus River 
basin, Pakistan)

ELM

Fig. 1   The schematic diagram of current study

Fig. 2   The structure of ordinary 
the ANFIS model
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proposed approach (namely, hyper-ellipsoid fuzzy clustering 
method (HIS)) that HIS can be selected as an alternative 
rainfall–runoff method, because HIS proved it can be imple-
mented by minimum required parameters in the minimum 
time (Nayak et al. 2007). Özger (2009) simulated the run-
off time series with Takagi Sugeno Fuzzy Inference System 
(TS). The TS rule was based on a set of linear functions for 
runoff forecasting. All the uncertainty and complexity of 
the proposed model were considered in the TS relationship 
function, the correlation between the observation and the 
prediction values was acceptable (Özger 2009).

Because of the complexity and the non-linearity behav-
ior of the runoff phenomenon and also, due to the lack of 
suitable historical data in all regions, it is difficult to model 
the required runoff with physics-based models. Pramanik 
and Panda (2009) studied two machine learning methods 
(ANFIS and ANN) that use upstream flow data to esti-
mate downstream flows. For evaluating the performance 
of ANFIS and ANN, the daily runoff from the reservoir 
upstream of the dam was used. Two methods are used to 
evaluate models with different input combinations to obtain 
the best accuracy of runoff modeling. The importance of 
two upstream tributaries in assessing dam runoff was also 
evaluated. Studies have shown that the performance of the 
conjugate neural gradient network is better than the Leven-
berg–Marquardt and gradient descent algorithms and ANFIS 
showed it could have more accurately runoff estimation in 
outlier data conditions (Pramanik and Panda 2009).

Katambara and Ndiritu (2010) reported a hybrid con-
cept fuzzy inference model to simulate the streamflow in 
the South Africa. The development of the fuzzy concept 
hybrid model successfully applied for simulating dynamic 
behavior of streamflow. The study described developing a 
hybrid model of fuzzy calibration concepts and examined 
its ability to reproduce natural and human processes. The 
performance of this model proved  a satisfactory result about 
modeling of hydrological system complexity and its impact 
on daily streamflow. The performance of streamflow simula-
tion in the downstream direction was improved, and an inde-
pendent process fuzzy model was successfully implemented. 
The conclusion showed that for complex river systems with 
a lack of data, the fuzzy concept hybrid model can be used as 
an capable machine learning model for reliable streamflow 
simulation and operation analysis (Katambara and Ndiritu 
2010).

Sanikhani and Kisi (2012) developed two different 
ANFIS models for simulating monthly streamflow values. 
First, two types of ANFIS models were proposed in the men-
tioned study, namely ANFIS with sub-clusters (ANFISSC) 
and ANFIS with separated grids (ANFISGP). Both proposed 
approaches were used to predict the flow rate 1 month in 
advance, and the impact of periodicity on the model's pre-
diction performance is examined. Another step of this study 

evaluated the effectiveness of the ANFIS method in assess-
ing the flow rate. The results show that the ANFISSC model 
is slightly better in predicting rivers. ANFISGP model (San-
ikhani and Kisi 2012). Greco (2012) studied the gradual 
pattern of the spread of runoff process on a daily scale. The 
mentioned study employed a hybrid of the autoregressive 
(AR) model and via the fuzzy inference system. The AR 
model is specifically used to identify the mainstream, and 
a set of fuzzy rules is determined based on the knowledge 
of the basic physical characteristics of the rainfall process, 
which limits the number of relevant parameters of the model. 
The daily inflow into the catchment area after 5 days is cal-
culated based on the weighted average of the precipitation 
data of six rain gauges distributed in the catchment area, 
which are collected every day or more than 5 days. The 
missing values for precipitation time series data were filled 
by resetting the precipitation recorded during several obser-
vation months, resulting in wrong runoff peak times. The 
results showed that the introduced approach had a suitable 
performance in runoff simulating for both minimum and 
maximum water level conditions. The results prove that it 
is not a residual analysis of white noise, indicating that the 
model does not fully identify the causal relationship between 
rainfall and runoff (Greco 2012).

According to a review article on using the ANFIS meth-
ods to predict runoff, the fuzzy inference system is used 
because it can handle missing data and complex data that 
characterize the runoff time series. It is difficult to describe 
accurately, so an approximation method (fuzzy set) was 
proposed for obtaining a reasonable result in runoff mod-
eling. In addition, several studies stated that the advantages 
of ANFIS allowed them to have a high accuracy result for 
runoff modeling in different time scales.

Application of ANN in runoff simulation

The ANN is a large-scale distributed parallel information 
analyzing theory, which has some performance character-
istics similar to the human brain biological neural network 
(Haykin 2004). It is inspired by human cognition and neu-
robiology by a mathematical model, ANNs are technologi-
cally advanced, and they can do lots of huge computing 
in minimum time. The base of ANN’s structure follows 
some rules: (i) exchanging of information occurs in the 
independent elements by the name of neurons, (ii) signals 
are transmitted between neurons via the transfer functions, 
(iii) every transform function corresponds to the weight 
representing its adhesive strength, and (iv) each neuron 
usually employees for a non-linear transfer function to 
its network input for determining the output. Generally, 
an artificial neural network consists of three parts: (a) an 
input layer containing multiple input nodes, (b) one or 
more hidden layers containing trigger functions, and (c) 
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multiple output layer nodes. The current is modeled using 
forward feedback (FFBP), RBF, and generalized regres-
sion neural network (GRNN) algorithms. FFBP is argu-
ably the most widely used ANN for engineering problems 
regarded as non-linear general approximations (Hornik 
et al. 1989). Figure 3 shows the ordinary ANN’s structure.

A new dynamic ANN method developed by Chiang 
et al. (2004) simulated rainfall–runoff by the impact of 
time dimension on the dataset. The proposed method has 
a profound effect on network learning. They compared the 
evaluation results of the dynamic ANN with an ordinary 
static ANN. The proposed method showed a more stable 
input current prediction and positive performance than 
static ANN. Furthermore, the repetitive real-time learn-
ing algorithm helped for updating the ANN again and 
again for the training phase, which had advantages when 
recording time changes in the process of rainfall–runoff 
modeling (Chiang et al. 2004). Cigizoglu (2005) reported 
an investigation on the effectiveness of GRNN for daily 
runoff modeling. Cigizoglu used GRNN as a boosting 
tool for enhancing ability of ordinary FFBP. GRNN can 
handle the local minimum problem, and it was a suitable 
boosting approach for improving the accuracy of runoff 
prediction. This is because GRNN predictions are limited 
to the extreme values of the observation, which prevents 
the training of network for providing predictions that are 
physically impossible (Cigizoglu 2005).

To study new measures for improving the precision of 
machine learning-based runoff models, Hu et al. 2005 devel-
oped the ANN by the name of target programming neural 
network for simulation of the streamflow phenomenon and it 
has a successful result. They did three fundamental improve-
ments: (a) Clearly integrating the previous hydrological 

knowledge into the training of the neural network; (b) A 
modification on the objective function of ANN; and (c) 
Reducing the network's sensitivity to input variables errors 
(Hu et al. 2005).

Wu et al. (2005) predicted runoff in the river basin by 
application of a multi-layer neural network. Two models 
have been developed: (i) four steps ahead or 1 hour ahead 
(with a resolution interval of 15 min) for streamflow fore-
casting and (ii) flood forecasting in advance times using 
upstream station’s maximum streamflow data. They used a 
data set such as the precipitation with seven lag times and 
the streamflow data with three lag-time values to predict 
the runoff in four steps (1 h with a resolution of 15 min). 
However, it is found that the model's accuracy gradually 
decreases as the number of prediction steps increases. 
Therefore, the result of one-step prediction is more accurate 
than the result of two-step prediction. In addition, research 
showed that the proposed technique effectively solved runoff 
peak time prediction, especially in predicting flow and water 
volume in near real time (Wu et al. 2005).

Kişi (2007) used different ANN algorithms to exam-
ine short-term daily runoff forecasts. Four different ANN 
algorithms were applied on the streamflow time series data, 
namely backpropagation, Levenberg–Marquardt, cascade 
correlation, and conjugate gradient, algorithms. The results 
showed that the Levenberg–Marquardt algorithm requires 
only a small part of the time required (by minimum data 
requirement) for the other three algorithms to train the ANN, 
then LM provided a more accurate result for runoff time 
series prediction (Kişi 2007). Jain and Kumar (2007) devel-
oped a new coupled ANN model for having the better train-
ing for the ordinary ANN. The proposed method includes 
a general modeling framework, which was a hybridization 

Fig. 3   The structure of the 
ordinary ANN model
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of traditional methods and ANN methods (Jain and Kumar 
2007).

Sedighi et al. (2016) employed ANN and SVM for run-
off simulating in a snow-covered watershed (in Iran). First, 
they showed the machine learning model can be used in 
snow-covered regions by acceptable accuracy for runoff 
modeling. Second, they resulted in the best condition ANN 
simulated runoff by the coefficient of determination equal 
0.77 for validation section (Sedighi et al. 2016). Another 
study was provided by Toth and Brath (2007) on the runoff 
real-time prediction capabilities by ANN models. Results 
of two runoff real-time simulations showed the yield can 
be achieved by increasing the lead time and analyzing the 
impact of the modeling calibration process. The results show 
that if there is a large amount of hydrometeorological data 
available for analysis, the neural network has proven to be 
an excellent approach for rainfall–runoff simulating in a con-
tinuous period of time (including low, medium and peak run-
off). Compared with data-driven methods that focus on flood 
forecasting, conceptual formulas can significantly improve 
forecasting, especially when the availability of calibration 
data is limited (Toth and Brath 2007).

Mutlu et al. (2008) employed two different types of ANN 
models, namely MLP and RBF, to predict the streamflow of 
four different stations. Different lag times were considered 
as input of models and compared based on their ability to 
predict river flow. These models performed satisfactorily 
in predicting the streamflow of several discharge stations. 
However, the MLP model is better than the RBF model 
(Mutlu et al. 2008). Kagoda et al. (2010) used RBF in 2010 
to generate a one-day runoff forecast. Because some river 
basins may not always have the data needed to apply many 
complex machine learning models successfully. Researchers 
have shown that depending on the situation, RBF can more 
accurately predict the time curve area by selecting the objec-
tive function; for example, when predicting small currents is 
important. The results show that artificial neural networks 
can do a lot in predicting rivers (Kagoda et al. 2010).

The ANN model and its implementation in river predic-
tion are summarized by the literature review mentioned 
above. ANNs have some obvious shortcomings and limi-
tations, such as local minimums, learning rates process, 
over-fitting problems, and trivial manual interventions such 
as learning. However, the researchers by considering some 
ANN settings can fix all mentioned issues and have a high 
accuracy in the runoff modeling process.

Application of SVM in runoff simulation

Recently, many researchers have explored the ability of SVM 
in the runoff modeling process. Dibike et al. (2001) used the 
SVM for rainfall–runoff simulation, they used the daily rain-
fall, evapotranspiration, and streamflow data from three dif-
ferent catchments with different precipitation rates to obtain 
appropriate data formats for SVM and ANN. Three kinds of 
kernel functions are used, namely polynomial kernel, RBF 
kernel, and neural network kernel. In the defect detection 
process, the core parameters such as the parameter ε and 
the capacity factor C corresponding to the defect dead zones 
are set to the optimal value. During the review period, using 
the average SVM method, the accuracy of runoff estimation 
was 15% higher than that of the ANN model. In short, they 
emphasized the difficulty in determining the optimal value 
of the parameter C, called it a "heuristic process", and sug-
gested automating this process (Dibike et al. 2001). Figure 4 
shows the structure of the ordinary SVM model.

Bray and Han (2004) emphasized the use of SVM to 
determine the appropriate model structure and related 
parameters to simulate runoff. Their training and testing data 
were compiled using rainfall and river flow datasets from the 
Bird Creek catchment area. They used scaling factors for 
precipitation and streamflow dataset, due the different units 
and values in the used data. They provided a flowchart for 
the model selection and  modification of LIBSVM software 
to study the relationship between different model structures, 
kernel functions (linear, polynomial, radial, and sigmoidal), 
scaling factors, model parameters (C and epsilon), and the 

Fig. 4   The structure of the 
ordinary SVM model
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composition of the input vector (Bray and Han 2004). The 
SVM was demonstrated for statistically reducing error 
of  rainfall–runoff modeling on the various time scales. 
This method has been used by the Indian Meteorological 
Department (IMD) and tested its effectiveness. The SVM-
based seasonal downscaling (SD) model of high precipita-
tion is developed for each IMD, using principal components 
extracted from predictors as input, and simultaneous obser-
vation of precipitation in IMD as output. The performance 
of SD is better than the traditional reduction model (Tripathi 
et al. 2006). Then, SVM-based SD is used to derive IMD’s 
future precipitation forecast, which uses the second-genera-
tion coupled global climate model (CGCM2) for statistical 
downscaling of artificial neural networks for climate impact 
researches. They concluded that SVMs were ideal for down-
scaling problems because they have good generalization per-
formance in capturing the non-linear regression relationship 
between measured values and predicted values, even though 
SVMs do not have any physically understanding about the 
hydrological phenomenon. Researchers have been develop-
ing many methods to simulate and predict the streamflow 
of rivers in different regions. Therefore, it is necessary to 
determine an appropriate and reliable model for proper plan-
ning of water resources management. 

Li and Cheng (2014) used SVM, ANN, and ELM for 
streamflow forecasting in Manwan Reservoir (in Yunnan 
Province of China) and Hongjiadu Reservoir (in Guizhou 
Province of China). They proved all three machine learning 
approaches had suitable performance for streamflow fore-
casting, and SVM simulated streamflow by correlation of 
0.917 in validation phase. Also, they resulted machine learn-
ing approaches by coupling with wavelet transform can have 
better streamflow simulation (Li and Cheng 2014). Asefa 
et al. 2006 employed the SVM method to perform seasonal 
and hourly predictions of streamflow on several scales. The 
results showed a successful ability for the SVM model for 
modeling water management problems. The SVM’s consid-
ered input was much less than the physical-based model. 
In addition, the seasonal streamflow forecasting had been 
improving by including meteorological variables as input 
of models (Asefa et al. 2006).

As previous studies showed, the fluctuation of the atmos-
phere and ocean will affect the variability of rivers. There-
fore, Carrier et al. (2013) proposed a long-term traffic fore-
cast using a data-driven kernel-based multi-class model. 
This study uses instruments and reconstructed waveform 
data in SVM. The novelty is that it improves the delay 
of flow prediction (Carrier et al. 2013). The SVM model 
can make suitable predictions for selected instruments 
within a lead time of 1–5 years. Compared to using a sin-
gle swing, the use of a swing index helps to achieve higher 
predictability.

He et al. (2014) used three different types of ML-based 
approaches by the name of ANFIS, ANN, and SVM for 
streamflow modeling in a semi-arid climate. The model 
examines the various combinations of the lag times in 
streamflow time series data and selects the most suitable 
input variables for the modeling process via ML approaches. 
The result of evaluation on performance metrics showed that 
the SVM model was superior in comparing to the ANN and 
ANFIS models in predicting streamflow in semi-arid areas. 
Evaluation of the various documents on the SVM model led 
to several observations (He et al. 2014):

(i) One of the abilities of the machine learning approaches 
is that in addition to the mean square error of the training 
samples, it also minimizes the generalized error of the 
model. (ii) According to Mercer's hypothesis, the corre-
sponding optimization problem is like a bulging (convex), so 
there is no local minimum. (iii) A large number of research-
ers reported that the RBF is the most suitable kernel func-
tion. The reasons are as follows: First, the adjustment param-
eters of RBF kernel are less than the sigmoid and polynomial 
kernels, which increases the complexity of model selection. 
Capture the situation where the relationship between class 
labels and attributes is non-linear rather than linear kernel. 
Third, the RBF kernel usually works well under the general 
smoothing assumption. (iv) Generally, SVM is more suit-
able for long-term runoff simulation than short-term runoff 
simulation. This shows the SVM approach potency and pos-
sibility to define hydrological time series analysis with the 
non-linear factors.

Conclusion

Streamflow simulation is essential for hydrological studies, 
irrigation management, environmental sustainability, water 
resources planning and management. Due to the dynamic 
behavior of streamflow and its interaction with other hydro-
logical variables, streamflow modeling process needs a 
model that can understand these nonlinear complexities 
well. So, researchers have been focusing on developing the 
model that can overcome the complexities of the hydro-
logical cycle (like ML approaches). Then, this study tried 
to analyze the applications of machine learning for runoff 
modeling based on literature reviews. The ML method is 
presented as a powerful tool to provide evidence for runoff 
modeling in different regions with high accuracy. This study 
evaluated literature reviews on the application of ANFIS, 
ANN, and SVM for the runoff time series forecasting on 
under different climate effects. Other available climatic vari-
ables (i.e., precipitation) and the lag times (delay) of runoff 
time series were used as the inputs of predictors models. 
Another purpose of this study was to consider ordinary 
ML models used in different climate conditions for runoff 
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simulating, for finding possible alternatives for runoff mod-
eling in various climates. The modeling process via ML has 
a huge impact on various factors that affect modeling per-
formance. One of the most important of them is that deter-
mining effective input parameters as the key elements to 
achieve optimal performance of ML models. In addition, 
the reviewed articles also showed an overview of optimiza-
tion algorithms that are combined with ML models to form 
hybrid models with high accuracy. This study recommends 
that future potential researchers use the newly developed 
optimization algorithms for optimizing the ability of ML 
models. Several examples in this study demonstrated the 
prediction, classification, and regression capabilities of ML 
related to runoff modeling problems. These examples also 
showed that the non-linear nature of ML should be used 
with caution, as this can lead to over-fitting problems. The 
results of the literature reviewed here indicate that ML has 
many uses in computational hydrology (especially in runoff 
forecasting). Future researchers can conduct research based 
on this framework to develop some new hybrid mechanisms 
and extend machine learning technology to overcome the 
complexity of hydrological predictions. The machine learn-
ing model can provide higher accuracy prediction for runoff 
simulation, and making ML as an efficient tool for water 
resources management. Future potential researchers can use 
hybrid-based models via hydrological and ML models for 
using advantages of physical-based and ML-based models 
for runoff simulation studies.
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