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Abstract
Global climate changes are becoming main threats to hydrological cycle, which thus influence environmental, social, and 
economic systems. Climate change studies using global climate models (GCMs) are mostly used for mitigation and adap-
tation strategies regarding the changing climate. The current GCMs’ data are, however, too coarse to use directly at the 
regional and local scales for climate change studies. Two widely used statistical downscaling methods, namely LARS-WG 
and SDSM models, were used to study the current and future climate change of Tana Basin, Ethiopia. Four GCMs (GFCM21, 
HadCM3, MPEH5, and NCCCS) for LARS-WG and two GCMs (HadCM3 and CanESM2) for SDSM with different emission 
scenarios were evaluated. Overall results indicated an acceptable response of the models to simulate and forecast climatic 
variables under HadCM3 and CanESM2 GCMs. Rainfall results downscaled by LARS-WG from the four GCMs indicated 
high intermodal variabilities and non-consistence; Increasing trend of rainfall showed on three of the GCMs while one 
GCM showed a decreasing trend in the range of − 9.6% to 45.2%. The four GCMs rainfall average ensemble value showed 
an increasing trend ranging from 3.9% to 18.8%, which is also consistent with HadCM3 projections ranging from 4.1% to 
19.2%. However, the downscaled results from all four models showed increasing maximum and minimum temperature for 
all time periods. The mean annual maximum and minimum temperature change increased from 0.9 °C to 2.9 °C and 0.6 °C 
to 2.5 °C, respectively, while annual mean relative change of rainfall ranged from 9.9% to 44.7%. Both SDSM and LARS-
WG methods were obtained good monthly rainfall data series than daily rainfall data series in the study area. However, both 
models with the selected GCMs (HadCM3 and CanESM2) performed reasonably well to simulate temperature than rainfall.

Keywords Statistical downscaling model · GCMs · LARS-WG · SDSM · Tana basin · Ethiopia

Introduction

Climate change is becoming one of the significant environ-
mental, economic, and social threats to the world. Since 
1950, a decrease in the amount of snow, a heating ocean, and 
rising sea levels have been noticed as results of climate sys-
tem warming (Intergovernmental Panel on Climate Change 
[IPCC] 2014). This changing climate affects water resources, 
especially in tropical regions (Beecham et al. 2014). The cli-
mate system has been influenced by human-induced forces 

activities for centuries. However, the impact of human activ-
ities started to extend to a global scale since the start of 
the industrial revolution (Cubasch et al. 2001; IPCC 2013). 
According to a 2013 IPCC report, global average tempera-
ture will rise between 1.4 °C and 5.8 °C by 2100 with a 
doubling of the CO2 concentration in the atmosphere. Sea-
level rise, change in precipitation pattern (up to ± 20%), and 
change in other local climate conditions are also expected 
(Cubasch et al. 2001). Research has shown that warming is 
likely to occur faster in Africa, especially sub-Sahara coun-
tries, compared with the global average (Cubasch et al. 2001; 
Hulme et al. 2001). For example, even though the trend is 
different geographically, warming is occurring in almost all 
seasons as with the temperature and precipitation remains 
highly variable, unpredictable, and likely associated with 
changes in the climate (Conway et al. 2004). As a result, 
shifts in the crop-growing season and increased frequency of 
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extreme events such as flood and drought are recent evidence 
of climate-change-related hazards in the region.

Because the entire African continent is the least studied 
region in terms of ecosystems dynamics, climate change, 
and its impact, the primary mechanisms associated with 
coupled climate‐human‐ecosystem changes are not well 
understood (Hely et al. 2006; IPCC 2013; Shongwe et al. 
2009; Anyah and Qiu 2012; Endris et al. 2013). The IPCC 
(2013) report indicated that Ethiopia will be more vulnerable 
to climate change due to its less flexible economic struc-
ture and its dependence on rain-fed agriculture. Changes in 
seasonal patterns and precipitation distribution, timing, and 
pattern, as well as temperature, are already being witnessed 
in most parts of the country (Bewket and Conway 2007). In 
many parts of the country, precipitation is becoming more 
unpredictable every season and every year.

Tana Basin is one of the largest populated basins in the 
country and is highly dependent on a rain-fed agriculture 
economy, which may be influenced by the changing cli-
mate and variability of water resources (Setegn et al. 2011). 
Hence an assessment of the possible future impact of climate 
change in the region is needed to enhance the knowledge and 
understanding of the complex interaction between climate 
change and its potential effects on agro-ecological sectors 
that directly impact the livelihood of the large population 
of Ethiopia.

Climate models are appropriate tools for climate variabil-
ity and change assessment (Endris et al. 2013). The global 
climate model (GCM) is a type of climate model used to 
simulate changes in atmospheric circulation and forecast 
climate changes (Shongwe et al. 2009). Nowadays, there is 
interest from a range of decision-makers and researchers in 
climate change information at a high spatial resolution on 
local and regional scales. However, their coarse resolution 
(100–250 km) prevents GCMs from capturing the detailed 
climatic processes at the regional and local scale (Giorgi 
et al. 2009). The coarser resolution also prevents GCMs 
from providing precise information about extreme events, 
which is of fundamental importance for users looking for 
climatic information to determine the regional-scale impact 
of climate variability and change.

Over the past years, many researchers used GCMs (IPCC 
2013) to simulate past climate change and future climate pro-
jection (Christensen et al. 2007; Giorgi et al. 2009; Mearns 
2009). World climate research programmers worked to 
organize the Coupled Model Intercomparison Project Phase 
(CMIP; Cubasch et al. 2001). Nowadays, a new generation 
of the CMIP (CMIP5) has proven to be a significant contri-
bution to the IPCC AR5 report. In CMIP5, efforts included 
more complete representations of external forcing, more 
types of scenarios, more diagnostics, and higher resolution 
in a large number of models, compared with the climate 
models in CMIP3 that were used in the IPCC AR4 (Knutti 

and Sedláček 2013). CMIP5 comprises new scenarios, or 
representative concentration pathways (RCPs), which better 
reflect atmospheric concentrations of greenhouse gases in 
the climate change convention and promote understanding 
of the possible climate and future socioeconomic develop-
ments. Various studies of climate change projection have 
used the dataset of the climate model in CMIP5 with dif-
ferent RCPs and concluded that CMIP5 models performed 
better than CMIP3 models (Kharel and Kirilenko 2018; King 
et al. 2012; Kumar et al. 2014; Jha et al. 2014; Singh and 
Goyal 2016; Su et al. 2013; Wu et al. 2013). However, the 
GCMs are coarse scale and can hardly be applied directly 
to climate change and hydrological impact studies at the 
regional level (Tofiq and Guven 2014). To obtain the desired 
information in terms of hydrometeorological variables at a 
very fine spatial resolution or station scale, dynamic and 
statistical downscaling approaches have been developed 
and proposed. In dynamic downscaling, regional climate 
models (RCM) are nested within the coarser-scale GCMs 
to downscale climatic projections. The major drawbacks of 
RCM are its complex design and computationally expen-
sive (Hewitson and Crane 1996). In statistical downscaling, 
a statistical relationship is established between large scale 
atmospheric variables (predictors) with local (station) scale 
meteorological variables (predictands) (Harpham and Wilby 
2005; Jain et al. 2009). The statistical downscaling approach 
has shown an advantage over dynamic downscaling as it is 
faster and simpler in use, and less computationally expen-
sive. Therefore, the Statistical downscaling method becomes 
a commonly used downscaling tool to determine the future 
meteorological variables due to climate change at a particu-
lar site (Semenov and Barrow 2002; Harpham and Wilby 
2005; Smid et al. 2018; Gagnon et al. 2006; Hashmi et al. 
2011; Ebrahim et al. 2013; Hassan et al. 2014; Mekonnen 
and Disse 2018).

In recent years, two widely recognized statistical down-
scaling tools, namely SDSM and LARS-WG, were applied 
to fix the problem of mismatch of spatial and temporal 
scales between large scale features of the GCMs with 
regional-scale variables. SDSM uses a regression-based 
method (Wilby and Dawson 2004), whereas LARS-WG 
is based on a stochastic weather generator (Semenov and 
Barrow 2002). The methods have been tested in differ-
ent regions with various climate conditions of the world 
(Akbari et al. 2015; Daksiya et al. 2017; Ebrahim et al. 
2013; Gagnon et al. 2006; Hashmi et al. 2011; Hassan 
et al. 2014; Mekonnen and Disse 2018; Vallam and Qin 
2017). Therefore, the objective of this study is to evaluate 
and compare SDSM and LARS-WG models in terms of 
their ability to simulate and forecast rainfall and tempera-
ture, which is vital to develop climate change informa-
tion that can be used for hydrological and overall climate 
change impact assessment in Tana Basin.
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Materials and methods

Study area description

The Amhara National Regional State (ANRS) is located in 
Ethiopia’s north-western and north-central parts (latitude 
8°–13°45′ N and 36° and longitude 40°30′ E). According 
to Central Statistical Agency of Ethiopia (CSA 2008), the 
region has a total area of around 170,000 km2 and cat-
egorized into 12 administrative zones and 105 woredas 
with different characteristics of the physical landscape, 
i.e., valleys, rugged mountains and gorges with elevation 
ranging from 700 m a.s.l to 4600 m.a.s.l in the eastern and 
the northwest part, respectively. The Lake Tana basin is 
the largest sub-basin in the Amhara region, covering an 
area of 15,096 km2, including the lake area (Fig. 1). The 
average annual rainfall and evapotranspiration of the Basin 
are approximately 1280 mm and 1036 mm, respectively 
(Allam et al. 2016).

The annual climate is classified into two major sea-
sons, viz. the rainy and the dry season. The rainy season 
also divided into a minor and major rainy season, which 
lasts from March to May (Belg), and June to September 
(kiremt), respectively, and the dry season, lasts from Octo-
ber to February (Bega). As a result of its diverse nature of 
the region with altitudes ranging from 1327 to 4009 m.a.sl, 
the Basin contributes national importance because of its 
high potentials for irrigation development, high-value 

crops, hydroelectric power development, livestock pro-
duction, and ecotourism (CSA 2008).

Lake Tana, among one of the Blue Nile River’s main 
source, is Ethiopia’s largest lake and the third-largest in the 
Nile Basin. It is about 84 km long and 66 km wide in the 
north-western highlands of the country. The lake is one of 
the natural freshwaters, at an elevation of 1800 m, covering 
an area of 3000–3600 km2. Gumera, Ribb, Gilgel Abay, and 
Megech Rivers are among the main feeding the Lake Tana. 
These four rivers contribute to the annual water budget of 
the lake to more than 65% inflow (Setegn et al. 2008). The 
only surface outflow is the Blue Nile River, measured at the 
Bahirdar gauge station with an annual flow volume of 4BCM 
is sourced from Lake Tana.

According to the Abay River Master plan study conducted 
by BCEOM (1998), land use in the study area is classified 
as the following: Agriculture covers approximately 51.37%, 
Agro-pastoral (21.94%), Lake (20.41%), wetland (0.13%), 
Pastoral (5.47%), Sylvicultural (0.15%), silvopastoral 
(0.03%) and the urban area covers 0.11%.

Data sources and methods of analysis

Observed data

The Ethiopian meteorological service agency provided basic 
climatic variables such as daily maximum and minimum 
temperature and rainfall from 1980 to 2015. To examine 
the impact of changing climate on basic climatic variables, 

Fig. 1  Spatial distribution of stations
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the period from 1980 to 2005 is considered as the refer-
ence period, and the period 2011–2100 considered as the 
future. Hence, in this paper, climate change assessment uses 
a 36-year reference period to the 95-year future period. Cli-
mate modeling data includes rainfall maximum and mini-
mum temperature model output were downscaled and com-
pared with observed datasets obtained from the National 
Meteorological Agency of Ethiopia for ten stations (Table 1) 
in Tana basin.

Reanalysis predictor data

Twenty-six daily reanalysis different atmospheric variables 
obtained from the National Center for Environmental Pre-
diction/National Center for Atmospheric Research (NCEP/
NCAR) for the period 1961–2001/2005 for HadCM3/
CanESM2 GCMs were used to calibrate and validate 
SDSM. To downscale the large scale predictor variables 
of HadCM3 and CanESM2 with emission scenarios (A2, 
B2, and RCP2.6, RCP4.5 and RCP8.5, respectively) on the 
period 1961–2099, the validated SDSM was used. The data 
is usually regraded with a resolution of 2.5° (longitude) by 
2.5° (latitude). All scenario data were uniformly regraded to 
identical resolution with NCEP to reduce Bias due to vary-
ing scale.

The model data are provided from both phase three of 
the Coupled Model InterComparison Project (CMIP3) 
and phase five of the Coupled Model InterComparison 
Project (CMIP5). The focus is primarily on evaluating the 
past performance and projection of future coupled atmos-
phere–ocean general circulation models (AOGCMs). There-
fore, in the study area, the statistically downscaling model 
(SDSM) and the Long Ashton research station weather gen-
erator (LARS-WG) were used to generate future maximum 
temperature, minimum temperature, and rainfall. Figure 2 
shows a schematic diagram of both models.

The reason for selecting the GCMs, specially CanESM2 
and HadCM3, was that they are models that made daily 

predictor variables freely available to be directly fed into 
SDSM as input, covering the study area with a better reso-
lution. Additionally, Both are widely the most used GCMs 
of climate change impact studies such as Dibike et al. 
(2008), Dile et al. (2013), Hassan et al. (2014), Yimer 
et al. (2009) and Mekonnen and Disse (2018). The NCEP 
predictor variables of canESM2 and HadCM3 GCM output 
contains 26 daily predictor variables, and each are listed in 
Table 2. The required daily meteorological data were col-
lected from the Ethiopian National Meteorological Agency 
(ENMA) for ten selected stations in the Basin.

Description of SDSM

The SDSM describes a combination of transfer function-
based regression and the stochastic weather generator 
(Wilby et al. 2004). It performs spatial downscaling using 
multiple linear regression through daily predictor-pre-
dictand relationships to generate local weather condition 
predictands. The regression-based method is well-known 
and mostly used downscaling technique (Harpham and 
Wilby 2005; Wilby et al. 2004). To simulate the present 
and future projection of meteorological variables using 
SDSM, daily data corresponds to local predictand (e.g., 
maximum and minimum temperature and rainfall) and 
large-scale NCEP/NCAR and GCM of a grid box nearby 
the stations is required. Wilby et al. 2002 developed an 
SDSM tool using a combination of stochastic weather 
generator and multivariate regression method to generate 
local weather variables from the statistical relationship 
between large-scale predictors and local climate variables. 
The following equation gives the relationship between the 
predictors of large scale and local climate variables as the 
following:

where, R is local climatic variables (predictand), L large 
scale climate variables (predictor), and F is a determin-
istic function that empirically estimated from historical 
observations.

To construct daily local rainfall, maximum and mini-
mum temperature using SDSM, CanESM2 obtained from 
the Canadian Center for Climate Modelling and Analysis 
that represents CMIP5 and HadCM3 from United King-
dom Hadley Center that represents CMIP3 were used. Data 
from the National Center for Environmental Prediction 
(NCEP) over the period 1961–1990 from its resolution of 
2.5° (lat.) × 2.5° (long.) were interpolated to the same grid 
as HadCM3 of spatial resolution 2.5° (lat.) × 3.75° (long.) 
and canESM2 2.8125° (lat.) × 2.8125° (long.). The gen-
eration of scenarios produced synthetic weather data for 

(1)R = F(L)

Table 1  Detail of stations

No. Stations Latitude Longitude Altitude Period

1 Bahir Dar 11°71′ 37°50′ 1800 1980–2015
2 Gondar 12°63′ 37°45′ 2133 1980–2015
3 Woreta 11°55′ 37°42′ 1828 1980–2015
4 DebreTabor 11°86′ 38°02′ 2706 1980–2015
5 Dangla 11° 25′ 36°74′ 2122 1980–2015
6 Kemer Dengay 10° 92′ 37°25′ 2560 1980–2015
7 Injibra 11° 70′ 38°43′ 2672 1980–2015
8 Wegera 12° 75′ 37°63′ 2796 1980–2015
9 Addis Zemen 12°12′ 37°81′ 1815 1980–2015
10 Maksegnet 12° 39′ 37°56′ 1794 1980–2015
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Fig. 2  Diagram of a SDSM, b LARS-WG

Table 2  HadCM3 and 
CanESM2 NCEP variables

* Refers predictors variable found only in HadCM3, # indicates predictors only found CanESM2 and ** 
refers different atmospheric level (p_, p8, p5 represents variables near, 850 hPa height and 500 hpa height, 
respectively

Variable Description Variable Description

p500 Geopotential height at 500hpa Prec# Precipitation
p850 850 hpa Geopotential height **_f Airflow strength
s500# 500hpa Specific humidity **_z vorticity
s850# 850 hpa Specific humidity **_u Zonal velocity
r500* 500 hpa Relative humidity **_v Meridional velocity component
r850* 850 hpa Relative humidity **_zh Divergence
Temp* Mean temperature at 2 m **_th Wind direction
mslp Mean sea level pressure shum Near surface specific humidity



 Sustainable Water Resources Management (2020) 6:77

1 3

77 Page 6 of 17

HadCM3 A2 and B2 scenarios from the year 1961 to 2099 
and for CanESM2 RCP2.6, RCP4.5 and RCP8.5 scenarios 
from the year 2011–2100 were projected.

The downscaling procedure for the SDSM model follows 
a series of discrete processes given by (Wilby et al. 2004; 
Wilby and Dawson 2013) (1) pre-screening possible predic-
tor variable (2) calibration of the model and determine the 
parameters (3) weather generation, generating of synthetic 
daily weather series based on the given predictor variables 
(4) future ensemble data generated using the predictor vari-
ables from the GCM (5) analysis and compare both observed 
and downscaled data using statistical characteristics. The 
most critical stage in the statistical downscaling process is to 
screen the significant predictor variables for model calibra-
tion. It is a fundamental level to develop statistical downscal-
ing models. Therefore, the success of the statistical down-
scaling model using SDSM is primarily determined by the 
selection of suitable predictor variables (Wilby et al. 2004).

To build downscaled data from the given predictand 
and selected predictor variables on the multiple regression 
equations, SDSM model calibration was used. The model 
was structured as daily and monthly rainfall, maximum 
and minimum temperature downscaling. Adjustment of 
modeled data to reflect the observed data using bias cor-
rection was carried out. The weather generator makes ideal 
use of independent data to validate the calibrated model. 
This operation generates synthetic daily weather data sets 
for the given time together with a parameter file prepared 
during model calibration using regression model weights. 
Finally, SDSM provides a summary with statistics func-
tion to compare the observed and simulated data function 
that summarizes the observed and simulated data results. 
In this climate change study, for the pre-screening pur-
pose, all twenty-six large-scale predictor variables from the 
National Center for Environmental Prediction (NCEP) were 
used. For model calibration and validation between predic-
tor and predictand data in SDSM, the period was divided 
into two; from 1980 to 1995/1980 to 2000 for calibration 
and 1996–2001/1996–2005 for validation of HadCM3/
CanESM2 GCMs, respectively were used. Following vali-
dation and summary statistics, the model used to generate 
future three-time slice predictions as 2030 (2011–2040), 
2050 (2041–2070), and 2080 (2071–2100) with scenarios 
available for each GCM. Rainfall and temperature change 
of future trends for a given time slice are calculated as the 
following.

(2)ΔP =
(Sm.P − Obs.P) × 100

Obs.P

(3)ΔT = Sm.T − Obs.T

where, Sm.P and Sm.T indicate simulated precipitation 
and temperature, respectively. Obs.P and Obs.T indicates 
observed precipitation and temperature, respectively.

Description of LARS‑WG

LARS-WG is a stochastic weather generator based on a 
series approach to weather data simulation under the current 
and future climate conditions (Semenov and Barrow 2002, 
1997). It can produce synthetic daily rainfall, maximum tem-
perature, minimum temperature, and solar radiation for a 
single site (Giorgi et al. 2009; Semenov and Barrow 1997). 
In this study, to generate simulated weather data correspond-
ing to observed data, four GCMs (HadCM3, GFCM21, 
NCCCS, and MPEH5) with the available emission scenario 
were used. The weather generator needs the required mete-
orological variable in the form of a daily time series. As 
a result, empirical distribution is developed by LARS-WG 
to simulate dry and wet spell length, daily rainfall (mm), 
minimum and maximum temperature (°C), and solar radia-
tion (MJ/m2/day) (Hassan and Harun 2011; Semenov and 
Barrow 2002).

The statistical parameter is used to simulate synthetic cli-
mate data ensembles from the historical input record. Input 
data of the LARS-WG model are a series of daily observed 
data (rainfall, minimum temperature, and maximum temper-
ature) of the base period (1980–2010). To adjust future cli-
matic variables under selected Representative Concentration 
Pathway (RCP), the modified data calculated from the base-
line period (1980–2010), which are adjusted by the change 
factor, was used. The monthly change was computed as rela-
tive change and absolute change for rainfall and temperature, 
respectively (Semenov and Barrow 2002, 1997). The model 
performs three main steps through calibration, validation, 
and generation of climate scenarios. Synthetic weather data 
corresponding to observed data are generated during the 
calibration process. Following calibration, weather genera-
tor performance was computed by comparing the mean and 
standard deviation between observed and simulated data. 
Finally, future climatic variables using LARS-WG from 
HadCM3, GFCM21, NCCCS, and MPEH5 GCMs with the 
common A2, B1, and A1B scenarios were generated with 
the 2030 s, 2050 s, and 2080 s period.

Model performance evaluation metrics

During the calibration and validation of the downscal-
ing model on time series, a simulation of mean daily and 
monthly rainfall, maximum and minimum temperature 
was checked using the coefficient of determination (R2), 
root mean square error (RMSE), Nash–Sutcliffe efficiency 
(NSE), and Bias(B) defined as;
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The coefficient of determination (R2) is essential to make 
a comparison between the explained variance of modeled 
data with the total variance of the observed data

RMSE is described as the difference between simulated 
and observed values. The mathematical representation is 
given:

NSE determines the relative magnitude of the variance 
of residues and measured data, which ranges from − ∞ to 
1. It gives as:

where Xi is th observed data, Yi is the simulated data.
Besides, statistical tests, namely equally weighing met-

rics and varying weighing metrics using metrics of MAE, 
RMSE, and Bias, were computed for model performance 
comparison. These methods are the most widely acceptable 
numerical metrics to evaluate the comparative performance 
of downscaling models on the basis of long term monthly 
average precipitation (Goly et al. 2014; Hashmi et al. 2011; 
Singh and Goyal 2016). Measures such as the coefficient of 
determination and coefficient of efficiency are not included 
due to oversensitive to extreme values of the measures. 
The following are steps applied for the equally weighted: 

(4)R2 =

∑n

i=1
(yi − x)2

∑n

i=1
(xi − x)2

(5)RMSE =

�

∑n

i=1
(xi − yi)

2

n

(6)NSE = 1 −

∑n

i=1
(xi − yi)

2

∑n

i=1
(xi − x)2

(7)Bias =

∑n

i=1
xi

n
−

∑n

i=1
yi

n

(i) comparing performance metric values among the mod-
els and ranking for every station. The value 1 gives for the 
model that shows smaller value, value 2 gives for the middle 
between, and the value 3 provides the model that has a larger 
value. (ii) Summing up each model score across all the sta-
tions. (iii) The model is ranked based on the total score, the 
model has smaller total metrics score 1, and the model has 
larger total metrics scores 3.

The varying weights technique was applied and calcu-
lated as Eq. (8) (Goly et al. 2014). In this case, the metrics 
are arranged and giving the value to MAE, RMSE and % 
Bias (0.45, 0.4 and 0.15, respectively)

where Wi refers to overall performance measure, and 
0 ≤ Wi ≤ i refers to a downscaling model.

Results and discussion

Predictor variables selection

The success of the SDSM-based downscaling approach 
depends on the choice of predictor variables. Developing 
predictand–predictor relationship is one of the first influen-
tial steps in statistical downscaling procedures. Screening 
of potential predictors was performed on the basis of a cor-
relation matrix between each predictand and the National 
Centers for Environmental Prediction (NCEP) predictor 
variables. Daily data comprising 26 large-scale predictor 
variables derived from NCEP reanalysis (Table 2) were 
used, and the predictors of a high correlation coefficient 
with the predictand were selected for all stations and the 
potential predictor (summarized in Fig. 3). In each station, 

(8)

Wi = W
MAE

MAEi

MAEmax

+W
RMSE

RMSEi

RMSEmax

+W
Bias

Biasi

Biasmax

Fig. 3  Screened variables of NCEP predictors of the two GCMs for observed rainfall, Tmax and Tmin
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the predictor was selected based on the highest correlation 
with the observed predictand (Tmax, Tmin, and rainfall). For 
instance, the set of p_f, p_v, shum, temp r500, and s850 
was a dominant predictor variable of temperature, and rhum, 
r_500, s_850, p8_v, and p_v performed well to predict rain-
fall in the study area. This indicates that each predictor 
variable identified for each GCM controlled different local 
variables of each station. Even if a predictor variable did 
not give good correlations with the predictand in some sta-
tions, it was still selected as a potential predictor variable in 
the other stations, particularly for rainfall as it describes the 
conditional process. On the other hand, as temperature is 
not a conditional process, the selection of predictor variable 
for rainfall was not difficult. As described in Fig. 3, mean 
temperature at 2 m (temp) became a potential predictor of 
temperature (Tmax and Tmin), covering almost all of the 10 
stations of the study area. This variable was expected to 
generate future maximum and minimum temperature sce-
narios as it is believed to be related to temperature (Gulacha 
and Mulungu 2017; Harpham and Wilby 2005; Hasan et al. 
2017; Hessami et al. 2008; King et al. 2012; Maraun et al. 
2010; Wilby and Dawson 2013). Before running the SDSM 
to effectively downscale the future climate conditions with 
GCM outputs, it was necessary to calibrate the relationship 
between observed and simulated climate variables (rain-
fall, Tmax and Tmin). In this study, calibration periods of 15 
and 20 years (1980–1995/2000) of baseline for HadCM3/
CanESM2 GCMs, respectively, were used. Following cali-
bration, the 5-year and 10-year data (1996–2001/2005) were 
used for validation in all stations of HadCM3/CanESM2 
GCMs, respectively.

Calibration and validation of SDSM and LARS‑WG

A simulation of daily and monthly rainfall, Tmax and Tmin, of 
SDSM and LARS-WG results was compared and checked 
with observations during the calibration and validation 
period using graphical representation and statistical param-
eters, namely, coefficient of determination (R2), root mean 
square error (RMSE), and Nash–Sutcliffe efficiency. Table 3 
shows statistical comparison between observed and simu-
lated Tmax, Tmin, and rainfall during the calibration and vali-
dation period under SDSM and LARS-WG models.

The graphical and statistical comparison of rainfall, Tmax 
and Tmin using SDSM and LARS-WG was run to examine 
the performance of the model as shown in Fig. 4 and Table 3 
(average for all stations). Overall results indicated accept-
able response of the model evaluated by different statisti-
cal performance indicators under HadCM3 and CanESM2 
GCMs. With regard to model comparison, both SDSM and 
LARS-WG were not able to capture good daily rainfall data 
series but were able to capture fairly good monthly rainfall 
data series. However, the difference in average of observed 

and simulated daily rainfall by SDSM over the stations was 
0.5–0.7 mm/day and 5.7–9.5 mm/month for the CanEMS2 
and HadCM3 models, respectively. A slightly small dif-
ference in average rainfall over the stations was recorded 
by LARS-WG of HadCM3GCM, with 0.48 mm/day and 
5.5 mm/month (Table 4).

Even though the LARS-WG showed a small difference 
between observed and simulated rainfall and less RMSE 
value than SDSM HadCM3 models, evaluation metrics 
of the RMSE value revealed that SDSM/CanESM2 per-
formed best in simulating the long-term mean rainfall in 
both equally weighted and varying weight metrics (Tables 6 
and 7). Overall, the result proved an excellent performance 
of SDSM and LARS-WG in modeling Tmax and Tmin than 
rainfall during calibration and validation as the value of 
 R2 is higher for temperature than rainfall. This may be due 
to the spatially nonconservative nature of precipitation 
(Gagnon et al. 2006). The result is in line with previous 
studies(Hassan et al. 2014; Huang et al. 2011; Liu et al. 
2011), which indicated a good performance of SDSM and 
LARS-WG for simulating Tmax and Tmin than rainfall.

It can be observed from the results that low RMSE and 
high R2 were found for Tmin (RMSE < 0.51 with SDSM, < 0.7 
with LARS-WG and R2 of 0.87–0.98 with SDSM, 
0.76–0.91 with LARS-WG) and Tmax (RMSE ≤ 0.52 with 
SDSM, ≤ 0.61 with LARS-WG and R2 of 0.85–0.97 with 
SDSM and 0.77–0.84 with LARS-WG) in the HadCM3 
model. However, the maximum  R2 value was obtained dur-
ing the monthly calibration period for Tmax (0.97) and Tmin 
(0.98) under CanESM2 of SDSM. Table 3 and Fig. 4 indi-
cate the models are well-validated, but the accuracy is less 
compared to the calibration result, and the CanESM2 model 
was able to perform better than the HadCM3 GCMs simu-
lated by both SDSM and LARS-WG models regarding all 
climatic variables (rainfall, Tmax and Tmin).

Future climate variables downscaling

Downscaling with SDSM

After calibration and validation of both SDSM and LARS-
WG, the next step was to downscale the future temperature 
and rainfall using the HadCM3 and CanESM2 in various 
scenarios. The downscaled average annual rainfall maximum 
and minimum temperatures using the Thiessen polygon 
method calculated from all stations is presented in Fig. 5. 
The results from all models under three time slices (2030 s, 
2050 s, and 2080 s) indicate that rainfall will increase until 
2100.

The minimum and maximum change of mean annual rain-
fall are predicted between 9.9% (2030) and 44.7% (2080) 
under the HadCM3B2 and CanESM2 RCP8.5 scenarios, 
respectively, compared with the baseline period (Fig. 5). 
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The maximum and minimum annual rainfall change in 2050 
is projected to be 31.4% and 11.6% under the RCP8.5 and 
B2 scenarios of CanESM2 and HadCM3, respectively. On 

the other hand, the B2 scenario showed a minimum change 
of rainfall over the study area. Similar to annual r change, 
the maximum change of annual Tmax occurred on the time 
slice of 2080 under RCP8.5 whereas minimum change was 
observed on the time slice of 2050 under RCP2.6. The down-
scaled result also revealed that, except for RCP2.6 of 2030 
and 2050, the minimum temperature change generated by 
the CanESM2/HadCM3 GCMs was less than the change of 
maximum temperature all time periods across the study area 
(Fig. 5). The result is in line with studies carried out in dif-
ferent parts of Ethiopia that indicated the highest increasing 
range of maximum temperature than minimum temperature 
(Ayalew et al. 2012; Feyissa et al. 2018).

Figures 6, 7 and 8 present the future percentage change 
of mean monthly rainfall and Tmax and Tmin of the study 
area on the time slices of the 2030 s, 2050 s, and 2080 s 
with reference to a baseline period under HadCM3/
CanESM2 with the available scenarios, respectively. The 
monthly basis result indicates that rainfall decreases in 
both January and February under RCP4.5 and RCP8.5 and 
that monthly rainfall also decreases in the month of March 
as reported by RCP2.4 of CanESM2 GCM, whereas both 

Fig. 4  Calibration and validation result of mean monthly rainfall and 
temperature. Top left and right calibration with SDSM and LARS-
WG, respectively, middle left and right, validation with SDSM and 

LARS-WG, respectively, using HadCM3, and bottom left and right 
indicated calibration and validation result of SDSM using CanESM2

Table 4  Mean observed and simulated rainfall, Tmax and Tmin of the 
baseline period

SDSM LARS-WG

HadCM3 Can ESM2 HadCM3

Daily rainfall (mm)
 Observed 6.8 6.9 6.8
 Simulated 7.5 7.4 7.28

Monthly rainfall (mm)
 Observed 119.1 120.4 119.1
 Simulated 128.6 126.1 124.6

Max temperature (°C)
 Observed 25.91 25.99 25.98
 Simulated 26.01 25.84 26.21

Min temperature (°C)
 Observed 12.01 12.13 12.01
 Simulated 12.24 12.26 12.36
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increasing and decreasing trends of mean monthly rainfall 
were observed on both scenarios of HadCM3 GCM. In 
general, RCP8.5 of CanESM2 indicates a more noticeable 
change of mean annual temperature than do RCP2.4 and 
RCP4.5 on all-time slices.

The future rainfall change on a monthly basis was 
revealed to increase by 84.5% and 58.4% in September 
2080 under RCP8.5 and RCP4.5 of CanESM2, respec-
tively. The result also indicates a relatively small monthly 
rainfall change occurred on HadCM3 GCM compared with 

Fig. 5  HadCM3 and CanESM2 
GCMs relative changes of mean 
annual rainfall, change of mean 
annual Tmax and Tmin down-
scaled by SDSM

Fig. 6  Relative change of mean monthly rainfall (SDSM)
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CanESM2, with a maximum value of 39.6% in October 2080 
under the A2 scenario. In contrast, the maximum reduction 
of rainfall was observed in January 2030 under the B2 sce-
nario of HadCM3 GCM. Generally, the range of monthly 
rainfall change has shown to vary between − 14% and 79%, 
− 19% and 84.5%, and − 21% and 46% under RCP8.5, 
RCP4.5, and RCP2.6 of CanESM2, respectively.

The highest positive change of monthly Tmax was 
observed in May 2080 (3.2 °C under RCP8.5) and (3.0 °C 
under RCP4.5), whereas the lowest positive change of Tmax 
was observed in both July and August (0.4 °C) of 2030 under 
RCP2.6 of CanESM2. Conversely, except for RCP8.5 of 
2030, the change of Tmin was projected to be highest in June 
on both GCMs of all periods. The maximum change of Tmin 
was projected to be 2.7 °C in June 2080 under RCP8.5. The 
maximum reduction (− 0.9 °C) of the mean monthly change 

of Tmax was observed in January 2050 under the B2 scenario 
of HadCM3 GCM. In general, the RCP8.5 scenario shows 
a noticeable future increase of rainfall and temperature over 
the study area in all three time periods.

Downscaling with LARS‑WG

Similar to SDSM, the analysis of climate downscaling using 
LARS-WG was done by classifying future data by three time 
windows (viz., 2011–2040, 2041–2070, and 2071–2100 as 
2030 s, 2050 s, and 2080 s, respectively). The results of 
rainfall prediction using the four GCMs and their ensemble 
under three scenarios (A1B, B1, and A2) are presented in 
Table 5. Relative change in rainfall results revealed that the 
three of the GCMs indicated a clear increasing trend of mean 
annual rainfall over the basin. On the other hand, GFCM21 

Fig. 7  Change of maximum temperature (SDSM)
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GCM was found to have unstable results in the direction and 
magnitude of mean annual rainfall, particularly for the 2030 
and 2080 time periods. An increase of mean annual rainfall 
was shown on the other three GCMs with a maximum rise 
by MPEH5 GCM, while the highest reduction was regis-
tered by GFCM21 (Table 5). The A1B scenario of MPEH5 
showed a maximum relative change of mean annual rainfall 
during 2030, while the A2 scenario indicated a maximum 
change in 2050 and 2080. Relative change of mean annual 
rainfall during the 2030 s is projected between − 3.9% and 
9.8% for the A1B, − 3.4% and 8.4% for the B1, and − 3.2% 
and 13.4% for the A2 scenario. The relative change of mean 
annual rainfall in the 2050 s was projected between − 14.8% 
and 17.2%, − 9.6% and 21.4%, and − 2.6 and 22.6%, and 
in the 2080 s the relative change of rainfall may project 
between − 6.1% and 24.3, − 4.3% and 29%, and 16% and 
45.2% under the A1B, B1, and A2 scenarios, respectively. 
However, such increasing trends are not obvious in the case 
of mean monthly rainfall. The mean monthly rainfall of 

HadCM3 (during December and November) and MPEH5 
(during December) on all scenarios showed a decreasing 
relative change of rainfall. In general, the relative change of 
annual rainfall obtained from the model average showed an 
increasing trend of rainfall between 3.9% and 18.6%, which 
also showed the closest result with HadCM3 GCM (4.2% 
and 19.2%) as shown in Table 5.

Tmax calculated from the ensemble mean shows a result 
consistent with that of HadCM3 GCM (A2 and A1B scenar-
ios) and MPEH5 GCM (A2 scenario) in all three time peri-
ods of the future. Similar to Tmax, the change of mean annual 
Tmin is also projecting an increase by 4.2 °C, 2.3 °C, and 
1.8 °C under the A1B, A2, and A2 scenarios by 2080, 2050, 
and 2030, respectively. The HadCM3 A2 scenario showed 
the closest result to the ensemble mean in all three time 
periods of the future. This indicates that from the selected 
CMIP3 GCMs, HadCM3 performed better to represent local 
climatic variables, which is in agreement with previous stud-
ies in the study area and different parts of Ethiopia (Dile 

Fig. 8  Change in minimum temperature (SDSM)
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et al. 2013; Feyissa et al. 2018; Mekonnen and Disse 2018). 
Generally, the results showed that the maximum increase 
is projected by NCCCS GCM (4.6 °C and 4.2 °C) and the 
minimum increase by GFCM 21 (0.3 °C) for both Tmax and 
Tmin, respectively.

Comparison of SDSM and LARS‑WG results

As a result of differences in their downscaling strategy and 
basic concepts, the future result of the two models may show 
a different output with the same observed input data. SDSM 
uses changes in atmospheric circulation models in terms of 

large-scale predictors, which can be considered more reli-
able. LARS-WG, on the other hand, uses relative change 
factors that derive from the direct climatic variable produc-
tion of a GCM (Chen et al. 2011; Harpham and Wilby 2005). 
Therefore, in this study, the emphasis has been given to the 
comparative performance evaluation of the two downscaling 
methods with several statistical metrics and graphical tests. 
In addition to the statistical performance evaluation meth-
ods described above, equally-weighted score and varying 
weighted score methods were evaluated and ranked at each 
site shown in Table 6 for RMSE, and the same was done for 
other metrics described as Fig. 7.

Table 5  The six GCMs 
Relative change of mean annual 
rainfall, change in maximum 
and minimum temperature 
downscaled by LARS-WG

GCM/scenario Observed 2030 2050 2080

1215 (mm) A1B B1 A2 A1B B1 A2 A1B B1 A2

Mean annual rainfall (%)
 GFCM21 4.1 -3.4 -3.2 -14.8 -9.6 -2.6 -6.1 -4.3 16
 HadCM3 7.2 4.1 13.1 8.2 10.8 15.3 14.8 17.2 19.2
 MPEH5 9.8 7.6 8.4 17.2 21.4 22.6 23.4 29 45.2
 NCCCS 3.9 8.4 9.3 13.2 16.6 18.6 24.3 26.7 28.6
 Model average 6.8 3.9 12.7 10.3 11.3 17.6 15.8 18.0 18.8

Mean Tmax (°C) 25.3 (°C)
 GFCM21 0.4 0.3 0.6 1.1 1.4 1.5 2.6 2.2 2.2
 HadCM3 0.6 0.5 0.7 1.7 1.8 1.9 3.8 3.2 3.5
 MPEH5 0.6 0.5 0.70 1.8 2 2.1 4 3.5 3.9
 NCCCS 0.8 0.7 0.95 1.9 2.1 2.4 4.6 4.1 4.1
 Model average 0.6 0.6 0.80 1.7 1.9 2 3.7 3.2 3.6

Mean Tmin (°C) 14.1 (°C)
 GFCM21 0.4 0.3 0.4 0.9 1.1 1.3 2.5 1.8 2.2
 HadCM3 0.5 0.4 0.6 1.4 1.5 1.8 3.5 3.3 3.3
 MPEH5 0.5 0.6 0.6 1.6 1.9 2.1 3.8 3.7 3.8
 NCCCS 0.7 0.6 0.7 1.8 1.6 2.4 4.3 3.1 3.9
 Model average 0.5 0.5 0.6 1.5 1.4 2 3.4 3.2 3.2

Table 6  Performance and ranking of the models during the baseline period for RMSE performance metrics

Stations RMSE Equally weighted score Varying weights score

SDSM/
CanESM2

SDSM/
HadCM3

LARS-WG SDSM/
CanESM2

SDSM/
HadCM3

LARS-WG SDSM/
CanESM2

SDSM/
HadCM3

LARS-WG

Addis Zemen 7.2 14.7 17.3 1 2 3 0.16 0.33 0.40
Bahir Dar 8.2 10.9 8.8 1 3 2 0.37 0.4 0.32
Gondar 8.7 18.6 11.7 1 3 2 0.18 0.40 0.25
Maksegnet 12.7 9.4 16.3 2 1 3 0.31 0.23 0.40
Woreta 14.8 23.8 9.4 2 3 1 0.25 0.40 0.16
DebreTabor 11.3 18.1 14.4 1 3 2 0.25 0.40 0.32
Dangla 8.9 23.3 10.2 1 3 2 0.15 0.40 0.18
Kemer Dengay 13.8 24.3 13.1 2 3 1 0.22 0.40 0.22
Injibra 16.7 14.6 13.6 3 2 1 0.4 0.35 0.33
Wegera 12.8 23.3 16.2 1 3 2 0.21 0.40 0.28
Overall score 15 26 19 2.5 3.71 2.85
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The scores for each model were summed up and ranked 
accordingly as presented in Table 7. The results show that 
CanESM2 of SDSM performed best in simulating long-term 
average values in both evaluation metrics. For the compari-
son of the two statistical downscaling methods (SDSM and 
LARS-WG), the A2 scenario of HadCM3 GCM was used 
with both the LARS-WG and SDSM methods to test how 
the GCM results were influenced by the different downs-
caling method with the same forcing scenario. The results 
obtained from the two downscaling methods were found to 
be comparable, and generally increasing trends in rainfall, 
Tmax and Tmin was shown on both methods. However, the 
magnitude of future change in climatic variables downscaled 
by the two methods, as presented in Fig. 9 indicates that 
LARS-WG over predicts rainfall (for all the periods) and 
temperature (for 2050 and 2080) compared with SDSM. The 
relative change associated with mean annual rainfall using 
LARS-WG is about 19.2%, and the average increase in mean 
annual Tmax and Tmin is about 3.5 °C and 3.3 °C, respectively, 
in the 2080 s. Conversely, changes in mean annual rainfall, 
Tmax and Tmin predicted by SDSM with the same period were 
about 16.5%, 2.4 °C, and 1.8 °C, respectively. Hence this 
contrasting future implication behind the two models is the 
result of the differences in their downscaling strategy and 
basic concepts as described above.

Therefore, more caution is required to downscale rainfall 
through LARS-WG as it is not very reliable in simulating 
by GCMs due to GCM-induced output error, which will 
propagate the error of downscaling (Dibike and Coulibaly 
2005). The good performance of CanEsm2 downscaled by 
the SDSM model shows a better agreement with previous 
studies conducted in Ethiopia (Ebrahim et al. 2013; Mekon-
nen and Disse 2018).

Conclusions

Climate models and method of downscaling are among 
many factors linked with the simulation of future climate-
change-related uncertainty analysis. In this climate change 
study, a multimodal approach based on different GCMs was 

employed, particularly focused on two well-established sta-
tistical downscaling methods, SDSM and LARS-WG. The 
performance of the models was evaluated in terms of their 
ability to simulate current and downscale the future rainfall 
and temperature. The comparative analysis using different 
statistical measures between the two models with the given 
GCMs indicates that CanESM2 GCM by SDSM performs 
very well at most of the stations and ranks first of the others 
for all climatic variables. This may be due to the fact that 
increasing performance of models across the generations 
since IPCC AR5 developed a new set of radiative forcing 
scenarios that replaced the special report of emission scenar-
ios. Large intermodal differences were shown downscaled 
from the four GCMs used in LARS-WG. One GCM reported 
that future rainfall will decrease whereas three GCMs indi-
cated a future increase of rainfall in all three time windows. 
The model average from LARS-WG and the individual 
model result from SDSM showed a general increasing trend 
for all three climatic variables (rainfall, Tmax and Tmin) in all 
three time periods (2030,2050 and 2080).

The SDSM, particularly with CanESM2 GCM, approxi-
mates the observed climate data series corresponding to 
the present climate series reasonably well and performs 
well to downscale Tmax and Tmin during the calibration and 

Table 7  Ranking of 
downscaling models for 
statistical measures (RMSE, 
MAE, and Bias) during the 
baseline period

The numbers in the table show the total ranking scores average from 10 stations

Equally weighted overall score Varying weights overall score

Metrics SDSM/
CanEsm2

SDSM/
HadCM3

LARSWG Weight SDSM/
CanEsm2

SDSM/HadCM3 LARS-WG

RMSE 15 26 19 0.4 2.5 3.71 2.85
MAE 14 24 16 0.45 3.1 4.91 3.31
Bias 12 18 13 0.15 1.13 1.50 1.24
Total 41 68 48 1.0 6.73 10.12 7.4
Rank 1 3 2 1 3 2

Fig. 9  HadCM3 GCMs relative change of mean annual rainfall, 
change in maximum and minimum temperature with the common A2 
scenario of SDSM and LARS-WG for three time periods of the study 
area
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validation periods in contrast to LARS-WG. Even though 
the A2 scenario of HadCM3 GCM was used by the two 
models in common, the downscaled rainfall and temperature 
were not the same. There was a relatively small change of 
Tmax and Tmin during the 2050 s and 2080 s and of annual 
rainfall during all time windows as compared with LARS-
WG. It can be concluded from the downscaled results that 
all the stations in the study area will face higher rainfall and 
hotter temperatures compared to the current climate. This 
change of future rainfall can be a good advantage for rain-
fed and irrigation agriculture to maximize agricultural pro-
duction. Conversely, the maximum positive rainfall change 
may occur during a major rainy season (April–July), when 
about 70% of annual rainfall occurs, which could pose a 
potential threat of flood and related hazards. In general, this 
study has shown that future climate change will likely occur 
that may change the hydrology of the study area. On the 
basis of the results obtained in this study, the CMIP5 model 
(CanESM2) can simulate the present and project the future 
better than the CMIP3 (HadCM3 and others) GCMs. Both 
SDSM and LARS-WG models can be adopted for future 
climate change impact assessment studies with reasonable 
confidence. However, the climate data downscaled using the 
two methods indicates that LARS-WG projected a relatively 
higher increase range than the SDSM. Therefore, SDSM is 
more preferred to asses climate change related studies in 
the study area.
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