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Abstract
A simple technique for prediction of suspended sediment concentration (SSC) or total suspended matter in the Himalayan 
Bhagirathi river is presented. Artificial neural network models have been developed using short time period data of discharge 
(Q) and SSC during the high activity monsoon period of June to October 2004, when variations are maximum. Two modeling 
approaches have been employed, a daily approach and a three hourly approach. Although the time period considered is the 
same in both the approaches, the modeling performance is marginally better in the three hourly approaches where there is 
a sixfold increase in the data set. The Levenberg–Marquardt optimization algorithm has been improved with NARX [non-
linear autoregressive with exogenous input] architecture and high values of coefficient of determination have been obtained 
[0.89–0.97]. This study shows that short duration time series data can be used for successfully predicting geo-hydrological 
variables in the highly complex Himalayan river scenario.
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Introduction

The Q–SSC relationship in the Bhagirathi river of the Hima-
laya is highly complex and nonlinear involving interplay of 
several socio-geo-hydrological parameters varying in space 
and time. The Q and sediment load variations observed in 
the river affect downstream habitation, engineering struc-
tures and landuse, necessitating modeling and prediction in 
the Bhagirathi river basin. The river drains through a great 
range of relief and climate, active tectonic zones and easily 
erodible rocks of the Himalaya. Its hydrology is immensely 
affected by the monsoons when large variations in Q and sed-
iment load are observed in a relatively short time span [June 
to October]. The physical weathering rate [PWR ~ 907 tons/
km2/year] of the river is much higher than the global aver-
age PWR of 156 tons/km2/year despite its relatively small 
catchment [~ 7.8 × 103 km2] because of predominantly sili-
cate lithology undergoing intense physical breakdown under 

high gradient, (Chakrapani and Saini 2009). Landslides and 
breach floods (Hewitt 1998) are frequent along the river 
which further contribute to surges in sediment load in the 
river. In addition to the above, haphazard developmental 
activities in the Bhagirathi valley, like construction of dams 
and highways also impact sediment load variations in the 
river basin. Therefore, it becomes pertinent to model SSC 
in the Bhagirathi river. Understanding the SSC–Q relation-
ship in the Himalayan scenario with the ANN technique can 
be quite interesting and challenging. Here, the rivers carry 
large sediments load draining through a great range of relief 
and climate, active tectonic zones and easily erodible rocks 
(Hasnain and Thayyen 1999). In the past, ANN has been 
generally been applied in modeling geo-hydrological vari-
ables using continuous time series data of long durations. 
Many studies in the recent times have indicated the potential 
advantage of artificial neural networks (ANN) in sediment 
modeling (Abrahart and White 2001; Cigizoglu and Kisi 
2006; Nagy et al. 2002; Isazadeh et al. 2017). ANN is a data-
driven, self-adaptive flexible mathematical structure with an 
inter-connected assembly of simple processing units known 
as artificial neurons which are arranged in an architecture 
inspired by the human brain (ASCE 2000a, b). The working 
of ANN and its internal structure has been very frequently 
argued in the literature and detail like Hassoun 1995; Hertz 
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et al. 1991 may be referred for the same. In the areas of 
hydrology and water resources, the application of ANNs 
is comprehensively reviewed and provided by the Maier 
and Dandy (2000) and ASCE (2000a, b). In the last 2 dec-
ades, ANN has been most commonly applied for modeling 
rainfall-runoff processes (Minns and Hall 1996; Smith and 
Eli 1995, 2002; Shamseldin 1997; Zhang and Govindaraju 
2003; Tokar and Johnson 1999; Rajaee et al. 2010; Kisi et al. 
2008; Khan et al. 2016a, 2019a, 2019b). Advances in the 
field of suspended sediment modeling have also been made 
by several workers (Rai and Mathur 2008; Sinnakaudan et al. 
2006; Boukhrissa et al. 2013).

However, still the most common learning method used 
for supervised learning with feedforward neural networks 
(FNNs) is back propagation (BP) algorithm. The BP algo-
rithm calculates the gradient of the network’s error with 
respect to the network’s modifiable weights. However, the 
BP algorithm may result in a movement toward the local 
minimum. To overcome the local minimum problems, many 
methods have been proposed. A widely used one is to train 
a neural network more than once, starting with a random set 
of weights (Park et al. 1993; Iyer and Rhinehart 1999). An 
advantage of this approach lies in the simplicity of using 
and applying to other learning algorithms. Nevertheless, this 
approach requires more time to train the networks.

The main controlling factors for sediment load (which 
is the product of discharge and sediment concentration) are 
relief, tectonic disturbances, lithology and rainfall (Chakra-
pani 2005; Khan et al. 2016a; Khan and Chakrapani 2016b; 
Panwar et al. 2016). Himalaya, in general, is prone to vio-
lent crustal movements responsible for high erosion rates 
(Valdiya 1998). The steep channel gradients result in higher 
hydraulic efficiency, higher stream energy per unit area and 
greater competence (Kale 2003). Tectonics are active in the 
area owing to the presence of deep seated weak zones and 
high seismicity (Seismic zone IV). Landslides caused due 
to high magnitude rainfall events not only add a tremendous 
amount of sediment to the river, but also block the river with 
debris resulting in massive floods when they fail. The river 
drains through easily erodible lithologies like quartzites, 
dolomitic limestones and metabasic formations. Rainfall 
in the monsoon season leads to huge water flows, which 
account for a considerable amount of the annual water flow 
and subsequently high sediment discharges. Also, the sum-
mer months experience more supraglacial melting, which 
increases discharge and competence of the river resulting 
in greater sediment transport. The contribution of humans 
to erratic changes in sediment discharge can be seen in the 
form of haphazard developmental activities like unplanned 
construction, mountain-toe cutting for road construction, 
mining activities and deforestation. All these factors account 
for the temporal and spatial changes in concentration of sedi-
ment in the Ramganga river basin.

The primary focus of the present study is to create ANN 
model(s) with the potential to forecast SSC of Bhagirathi 
river at Maneri, up to a high level of precision. The study 
gained vital significant in the backdrop of the recent ava-
lanche of cloud burst occurred in 2013 in the Uttarakhand 
region of the Himalayas in which sediment and debris are 
mainly responsible for changing of river routes, thus leading 
to loss of flora and fauna. This has been achieved by under-
standing the underlying hydrological processes, controlling 
factors of sediment load variations, statistical analysis of 
time series data followed by model development, training 
and evaluation.

Study area

The Bhagirathi river originates at an altitude of 3892 m 
above sea level (asl) at the snout of Gangotri glacier (Gou-
mukh) in the higher Himalayas. It flows for around 225 km 
draining through easily erodible lithologies like quartzites, 
dolomitic limestones and metabasic formations (Valdiya 
1998; Bickle et al. 2003) across the Himalayas before its 
confluence with the Alaknanda river at Devprayag to form 
river Ganga. The upstream length of Bhagirathi river at 
Maneri (Fig. 1) is around 75 km. The study area has high 
relief, with deeply incised valleys and steep slopes of the 
order of 50.0 m to 3.0 m per km in the upper reaches (AHEC 
Report 2011).

Its annual Q and SSC are 4.91 × 1012  l/year and 
1.24 × 103 mg/L, respectively (Yadav and Chakrapani 2011). 
Bhagirathi river transports, on an average, 81% of its annual 
sediment load in (July and August) monsoon season. Also 
the summer months experience more supraglacial melting 
which increases Q and competence of the river resulting in 
greater sediment transport.

Methodology

Hydrological time series data has been used to carry out 
ANN modeling at Maneri. High frequency (daily and three 
hourly) time series data for Q and SSC from Maneri during 
the high activity monsoon period of June to October of the 
year 2004 has been used for modeling [Data source-Uttaran-
chal Jal Vidhyut Nigam Limited (UJVNL)]. To understand 
the internal data structure and variations, the trends in the 
data have been studied (Fig. 2). Descriptive statistics pre-
sents a quick look into the performance of a substantial data 
set in terms of symmetry, shape and dispersion (Table 1).

It is observed that onefold increase in Q leads to 
two–threefold increase in SSC. Q data shows a maximum 
value of 45,011 km3/s in the month of August and minimum 
value of 4432 km3/s during late October. SSC values vary 
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from a high of 3329 mg/L in August to a low of 35 mg/L in 
late October. The scatter plot (Fig. 2, inset) between Q and 
SSC shows a high degree of association between them.

Model development

Neural network (NN) tool in MATLAB (R2013a) have 
been used to develop the models to estimate the process of 

hydrologic flow at Maneri. Six ANN models [T1–T6] have 
been developed using daily water Q–SSC data pertaining 
to high activity monsoon period of June–October, 2004, 
when maximum variations in Q and SSSC are reported. 
These models have been compared with six corresponding 
models [T1a–T6a] using high frequency three hourly data 
of the same variables in the same time period. Although 
the time period remains the same in both the approaches, 
data volume is nearly sixfold increases in the case of 
three hourly data. A comparative analysis of the modeling 
response of short duration-daily data and high frequency, 

Fig. 1   Map showing location of study area in the Bhagirathi river basin; digital elevation model showing relief

Fig. 2   Line graph for variation in daily Q (m3/s) and SSC (ppm) from 
June–October 2004 at Maneri. (Inset) Scatter plot showing relation-
ship between Q (m3/s) and SSC (ppm) in the Bhagirathi river at Man-
eri

Table 1   Descriptive statistics of data variables considered at Maneri

Variable Q (m3/s) SSC (in ppm)

Mean 16,584 1028
SE 814 65
Median 14,970 936
Mode 5910 138
SD 10,037 796
Kurtosis − 1 0
Skewness 1 1
Range 40,579 3294
Min 4432 35
Max 45,011 3329
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three hourly data has been attempted. Levenberg–Mar-
quardt back propagation algorithm was employed using a 
pure linear function and a nonlinear log-sigmoidal trans-
fer function in the output layer and hidden layer, respec-
tively. The normalization of the data is important so that 
the range of input for each variable should lie in between, 
(0 and 1). The procedure of normalization was carried 
out after collecting the data of each variable viz, SSC and 
Q by using the following equation: Xnorm = (Xi − Xmin)/
(Xmax − Xmin) where Xnorm is the normalized value of the 
observed variable Xi, Xmin is the minimum value of the 
variable; and Xmax is the maximum value of the variable 
(Rajurkara et al. 2004). A series parallel NARX [nonlinear 
autoregressive with exogenous input] architecture has been 
used to improvised the feedforward backpropagation algo-
rithm, wherein the error between the actual and computed 
value as SSC outputs were fed back into the inputs dur-
ing training improving the network response. SSC (ppm) 
at the present time-step, S(t), was the output in all the 
models while the inputs were a combination of present 
Q (m3/s) and/or one, two antecedent time step Qs [i.e., 
Q(t), Q(t − 1), Q(t − 2)] and/or present, one, two anteced-
ent time step SSCs (ppm) (i.e. S(t − 1), S(t − 2). The details 
of model architecture are given in Table 2. The data, in 
all the models, were divided into training (70% of whole 
data set) and evaluation (30% of whole data) subsets. Data 
training was carried out, and the models were configured 
from time to time by changing training parameters such as 
no. of inputs, no. of hidden layer neurons, learning rate, 
momentum, no. of epochs, etc. The evaluation data subset 
was not employed during training and was kept as a sepa-
rate subset of the whole data to be used for later model 
evaluation.

Results and discussion

Regression plots were drawn between targets (observed) 
and output (ANN predicted) values for training and test-
ing data subsets for all the models. The goodness of fit 
were evaluated on the basis of R [correlation coefficient], 
R2 [coefficient of determination] and MSE [mean square 
error] values. The R value was obtained by performing lin-
ear regression between the ANN-predicted values and the 
targets. ANN performance is considered good when R and 
R2 values are closer to one and MSE values are nearer to 0. 
The regression plots obtained during testing of data for mod-
els in both the approaches (T–T6 and T1a–T6a) are shown 
in Fig. 3. The performance is best for model T6 (R2 = 0.970) 
[Table 3]. Overall, the range of coefficient of determination 
is 0.891–0.970 which indicates that the overall performance 
of the models is good, and the SSC values have been closely 
predicted.

It can be seen that as an average, that the three hourly 
approach models tend to perform relatively better than the 
corresponding daily approach models [Avg. R2 in daily 
approach = 0.93; Avg. R2 in three hourly approach = 0.94]. 
It is also observed that the use of previous SSC values 
as network inputs enhances model performance. The 
response of all the models was seen with the assistance 
of plots where the observed (target) estimations of SSC 
were plotted with the model ascertained (output) values 
against time. The errors got in the process were likewise 
plotted against time. The training and evaluation response 
plots of best performing models for Maneri, T6 (daily 
approach) and T4a (three hourly approach) are shown in 
Fig. 4. The overall trend of SSC is well captured by the 
models, but there are two important characteristics of the 

Table 2   Parameters used for development of ANN models at Maneri

SSC (mg/L), Q (m3/s); (t)—present time-step, (t − 1)-one previous/antecedent time-step,(t − 2)-two previous time-steps; I–H–O-neurons in 
input–hidden–output layers; FFBP-feedforward backpropagation; LM-Levenberg–Marquardt; Logsig-log sigmoid

Model Input(s) Output I–H–O type Net. Fn. Training Transfer No. of iterations No. of data

T-1 Q(t) S(t) 1/10/2001 FFBP LM Logsig 50,000 152
T-1a Q(t) S(t) 1/12/2001 FFBP LM Logsig 50,000 865
T-2 Q(t), Q(t − 1) S(t) 2/14/2001 FFBP LM Logsig 50,000 152
T-2a Q(t), Q(t − 1) S(t) 2/12/2001 FFBP LM Logsig 50,000 865
T-3 Q(t), Q(t − 1), Q(t − 2) S(t) 3/14/2001 FFBP LM Logsig 50,000 152
T-3a Q(t), Q(t − 1), Q(t − 2) S(t) 3/14/2001 FFBP LM Logsig 50,000 865
T-4 Q(t), Q(t − 1), S(t − 1) S(t) 3/20/2001 FFBP LM Logsig 50,000 152
T-4a Q(t), Q(t − 1), S(t − 1) S(t) 3/16/2001 FFBP LM Logsig 50,000 865
T-5 Q(t), Q(t − 1), Q(t − 2), S(t − 1) S(t) 4/15/2001 FFBP LM Logsig 50,000 152
T-5a Q(t), Q(t − 1), Q(t − 2), S(t − 1) S(t) 4/14/2001 FFBP LM Logsig 50,000 865
T-6 Q(t), Q(t − 1), Q(t − 2), S(t − 1), S(t − 2) S(t) 5/13/2001 FFBP LM Logsig 50,000 152
T-6a Q(t), Q(t − 1), Q(t − 2), (S(t − 1), S(t − 2) S(t) 5/14/2001 FFBP LM Logsig 50,000 865
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observed (target) and ANN predicted (output) SSC val-
ues which can be seen in the performance plots. Initially, 
when the size of values is littler, the fluctuation or varia-
tion in it is likewise low. This can be seen amid the before 
and later part of the curve. Furthermore, when the size 
is more noteworthy, the variation is additionally bigger. 

This compares to the center part of the curve. The execu-
tion plots demonstrate that the network error, i.e., con-
trast among observed and ANN predicted SSC is normally 
larger when values of observed SSC are higher, around the 
time of July and August when Q and SSC and extremely 
high in the Bhagirathi river. Errors in the period before 
and after that are smaller and so are the observed values 
of SSC. This time corresponds to the onset (June) and 
waning (September–October), respectively, of monsoons 
in the study area. Also interesting to note is, there is a 
general under-prediction during the high SSC period of 
July–August (observed values are mostly higher than pre-
dicted ones, as can be seen in the performance plots) and 
there is a general over-prediction in the low SSC period of 
June, September and October (observed values are lesser 
than predicted values). Nevertheless, despite the high vari-
ation during the peak monsoon period, ANN has been able 
to closely predict the SSC values.

Fig. 3   Regression plots for twelve ANN models (T1/1a to T6/6a) during testing of data at Maneri. The relationship between observed (target) 
and model calculated (output) values of SSC can be seen in the ordinate label

Table 3   Results of ANN models performance after training and test-
ing

R2-coefficient of determination; MSE-mean square error

ANN models R2 MSE

T1/1a 0.902/0.950 0.009/0.002
T2/2a 0.938/0.944 0.002/0.004
T3/3a 0.891/0.938 0.0016/0.0004
T4/4a 0.937/0.956 0.009/0.0019
T5/5a 0.958/0.942 0.0008/0.004
T6/6a 0.970/0.933 0.005/0.0001
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Conclusion

ANN modeling using daily Q against SSC and three 
hourly Qs against SSC at Maneri on Bhagirathi river is 
analyzed using NN. The total time period considered in 
both the approaches remains the same i.e., the monsoon 
period of June to October when occurrence of high Q 
related floods is maximum. In the present study, the inputs 

increase from model T1/1a to T6/6a and a clear increasing 
trend of coefficient of determination with this increase is 
observed except T3. It can be said that using a larger data 
set, even if representing a short duration, leads to a rela-
tive improvement in model performance. In general, it is 
a rather difficult proposition to generalize any criteria of 
determining the optimum network architecture in ANNs. 
ANN modeling is largely area and problem dependent, 

Fig. 4   Response plots of the best performing models T6 (daily approach) and T-4a (three hourly approach) showing a close match between 
observed and model calculated values of SSC (ppm) during training at Maneri. The variation in error through time can also be seen
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and hence, no two study areas can be modeled with similar 
ANN architectures.

It has been successfully established that ANN can model 
and predict SSC in the highly nonlinear Bhagirathi river 
system of the Himalaya. In the study, a systematic, step-by-
step approach has been used for modeling wherein the pre-
modeling understanding of the study area and data analysis 
has been stressed upon. The models have been trained, and 
tested using an improvised Levenberg–Marquardt backprop-
agation algorithm [NARX] to predict values of SSC. The 
coefficient of determination values obtained are extremely 
high (0.89–0.97) which implies that predicted output values 
are very close to the target values. Overall, the average per-
formance is better in the three hourly approach which could 
be due to an almost sixfold increase in data numbers. The 
advantage of using ANN is that every step of the modeling 
process can be configured and improved based upon model 
performance. This increases flexibility and also the under-
standing of the procedure which is otherwise rather complex 
to comprehend. This study shows that short duration geo-
hydrological time series data can also be predicted by ANN 
modeling with substantial accuracy. Prediction would not 
just help in filling gaps in hydrological data but will also 
enable continuous monitoring of SSC which is difficult in 
the Himalayan Rivers where floods and other such eventuali-
ties commonly occur.
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