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Abstract
A delineation of groundwater potential zones was performed and an urban infiltration potential index (IPI-Urban) was 
proposed. The pilot site was the Paranhos and Salgueiros water galleries and surroundings in Porto City (NW Portugal). 
An integrated approach combining hydrogeomorphology and GIS was developed applying multiple layers of information 
(tectonic lineaments, hydrogeotechnical units, slope, drainage, land use, sewage and stormwater networks, water supply 
system and rainfall). Different ranks were assigned to thematic layers and classes received different weights according to 
their contribution to define groundwater potential areas using the AHP methodology. Two scenarios, Summer and Winter, 
were computed. 81% of the region is covered by urban and industrial areas and streets. Three areas were identified for major 
potential direct groundwater recharge (SE of Arca d´Água site, E-SE of Burgães site and W-NW of Lapa site). A Moderate 
to Low IPI-Urban prevails, and the High and Very high IPI-Urban appear mainly along the three cited valleys. A low to 
very low recharge was estimated, with less than 50 mm/year and 6% on the Winter scenario. Aquifer potential yields in the 
Winter scenario are in the range of 1–2 L/s/km2. The IPI-Urban is a valuable tool for integrated water resources manage-
ment in urban areas.
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Introduction

In the context of climate change, severe climate variability 
and population growth, increase in water demand, deple-
tion of available water resources, and supply variability 
require the increase of water resources and consequently 
the introduction of new research strategies and policies into 

the present urban water management systems (Rathnayaka 
et al. 2016). Urban development has a profound impact on 
hydrological systems (Schirmer et al. 2013; Howard 2015; 
Afonso et al. 2016). One of the key components of the urban 
water cycle, which is crucial to integrated water resources 
management, is groundwater recharge.

Recharge takes place when, after infiltration into the soil, 
water percolates across the unsaturated zone and reaches the 
water table. Total recharge includes four processes, which 
overlap and are not mutually exclusive (e.g. Massing et al. 
1990; Lerner 1997; Garcia-Fresca and Sharp 2005; Wiles 
and Sharp 2008): direct, indirect, artificial and localised. 
Direct groundwater recharge may be reduced in urban 
areas, since the increased impervious surfaces lead to a 
decrease in evapotranspiration, increased runoff and limit 
the rain recharge (e.g. Lerner 2002; Sharp 2010). Besides, 
other factors decreasing recharge include the infiltration to 
sewer, water pipes and storm sewers, and the extraction and 
export to other basins (e.g. Lerner 1990; Hibbs 2016). Direct 
recharge occurs mostly in unpaved areas and, on a smaller 
scale, through the cover generally recognised as impervious 
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(e.g. asphalt, cement, and brick; Wiles and Sharp 2008; 
Hibbs and Sharp 2012).

Several features mark the occurrence and movement of 
groundwater, including geomorphology, lithology, weath-
ering degree, geological structures, porosity, slope, drain-
age patterns, landform, land use/land cover, and climate. 
Moreover, urban underground can be referred as an “urban 
karst”, since it comprises a complex system of man-made 
infrastructure, such as trenches, tunnels, and other buried 
structures that modify the pre-urban porosity and permeabil-
ity structure in a manner like natural karst systems (Sharp 
et al. 2001).

Focusing on flow in urban areas should be the first step 
for a better understanding of the quantitative and qualitative 
influence of underground structures on groundwater, and 
the cumulative impacts of underground structures must be 
assessed at the decision-making level and regarding hydro-
geological constraints (Attard et al. 2016).

Along with other computer-based tools, recent years were 
full of major advances in GIS, remote sensing and map-
ping techniques, making them a valuable tool for several 
sciences, such as groundwater management. The integrated 
use of these techniques as a vanguard tool is a time and cost-
effective means to assess and manage groundwater resources 
(e.g. Chowdary et al. 2003; Jaiswal et al. 2003; Jha et al. 
2007; Yeh et al. 2009; Ballukraya and Kalimuthu 2010; Jha 
2011; Teixeira et al. 2013, 2015; Chaminé 2015; Chaminé 
et al. 2015, 2016). The multicriteria approach, using several 
information layers, has been greatly enhanced by GIS analy-
sis, and is applied to different water management areas, such 
as infiltration, vulnerability, or groundwater flow modelling 
studies (Ettazarini 2007). GIS technology can be very useful 

to delineate groundwater infiltration and recharge poten-
tial zones, to combine the factors of groundwater recharge 
potential, and to provide proper weight relationships (e.g. 
Krishnamurthy et al. 1996; Sener et al. 2005).

This study attempts to define urban groundwater potential 
zones by using integrated hydrogeomorphology and geo-
graphic information systems (GIS) for a pilot area in Porto 
City. An innovative urban infiltration potential index (IPI-
Urban) is proposed for the development of a rational model 
for groundwater potential in urban environments. Several 
layers of information, such as tectonic lineaments, hydrogeo-
technical units, slope, drainage, land use, sewage network, 
stormwater network, and water supply system and rainfall, 
were integrated with weighted overlay in GIS. The study 
results may be used to formulate an efficient groundwater 
management plan for the sustainable utilisation of urban 
water resources.

Porto urban area and the springs 
of Paranhos and Salgueiros

Porto City is located in the NW Portugal and has been 
settled on the granitic hill slopes of Douro River banks, 
adjacent to the Douro River mouth and the Atlantic Ocean 
(Fig. 1). Porto City is one of the oldest cities in Europe, its 
history dates back at least to the sixth century, since the days 
of the Suevians, and became an important metropolis in the 
twelfth century (de Oliveira Marques 1972). Porto City has 
an area of 41.3 km2 and a population of 237,559 inhabitants 
(INE 2011).

Fig. 1  Regional setting of Paranhos and Salgueiros water galleries (Porto, NW, Portugal)
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Porto City has a temperate climate, with a dry and warm 
summer (Köppen climate classification Csb). The average 
annual temperature is 15.2 °C. The region has a water deficit 
from June to September, particularly in July and August. The 
average annual rainfall is 1236.8 mm/year, reaching 181 mm 
in December (the wettest month) and 20.4 mm in July (the 
driest month), (IPMA 2018).

The water supply of Porto City was held through foun-
tains fed by several springs (e.g. Bourbon e Noronha 1885; 
Carteado Mena 1908; Fontes 1908; Chaminé et al. 2014; 
Freitas et al. 2014; Afonso et al. 2016 and references therein) 
for more than six centuries. More than 60 water galleries 
were excavated throughout centuries to transport water from 
these springs. Paranhos and Salgueiros water galleries were 
two of the main galleries. The principal gallery is nearly 
3.2 km long and stands at a maximum depth of − 20 m below 
ground level.

The regional hydrogeologic units described in Porto City 
correspond to the main geological features (e.g. Afonso et al. 
2007). Alluvia and other fluvial and marine deposits, mainly 
constituted by sandy, gravely, silty and clayey sediments, 
constitute the most important porous media. Yet, since these 
deposits are generally of limited extent and their thicknesses 
are usually less than 6 m, they represent shallow aquifers 
with lesser significance (COBA 2003). The fractured media 
comprise granitoid rocks, mainly granites and gneisses, 
and metasedimentary rocks, like micaschists, schists, and 
metagraywackes. Granitic rocks dominate the study area, 
predominantly the two-mica, medium to fine grained facies, 
the so-called “Porto granite” (Almeida 2006). The granitic 
substratum is, generally, weathered to different grades, 
from fresh rock to residual soil in short distances, show-
ing highly variable conditions, resulting in arenisation and 
kaolinisation, which may reach depths of more than 30 m 
(e.g. Begonha and Sequeira Braga 2002; Gaj et al. 2003). 
These residual soils play a significant role in the local aqui-
fer recharge (Afonso et al. 2007). At a local scale, the hydro-
geotechnical units in the surrounding area of Paranhos and 
Salgueiros water galleries are (Afonso et al. 2010a; Chaminé 
et al. 2010):

• Alluvial deposits—consist mainly of sands and silts with 
low to moderate permeability (< 2 m/day); these depos-
its outcrop but were not identifiable inside the galleries, 
perhaps because of their small thickness (< 6 m) and, 
mostly, by the fact that in the areas where the galleries 
cross the alluvia, the galleries are reinforced by stone 
walling and/or concrete.

• Saprolite soils—most of these are kaolinitic silty sands 
firmly related to the Porto granite (Begonha and Sequeira 
Braga 2002) with very low permeability (< 0.1 m/day);

• Porto granite—this unit is intersected by crushed 
quartz veins ranging from millimetres to several cen-

timetres in thickness and occurs weathered to different 
grades (ISRM 1978, 1981), from fresh rock to slightly 
weathered  (W1–2) to highly weathered  (W4–5), but pre-
dominantly, moderately weathered  (W3). Its fracturing 
intercept degree (Afonso et al. 2010a, b) is, dominantly, 
moderate  (F3) to wide  (F1–2). The permeability is low to 
moderate (< 1 m/day).

Materials and methods

The basic data collection techniques of geology, geomor-
phology and hydrogeology have been applied in this study 
(e.g. Assaad et al. 2004; Dykes et al. 2005; Peterson 2009; 
Scesi and Gattinoni 2009; Smith et al. 2011; Gustafson 
2012; Norbury 2016). The terminology and recommenda-
tions of the Geological Society Engineering Group (GSE 
1995), the Committee on Fracture Characterisation and 
Fluid Flow (CFCFF 1996), and the International Society for 
Rock Mechanics and Rock Engineering (ISRM 1978, 1981, 
2007, 2015) were followed. A geodatabase was created in a 
GIS environment and the methodology adopted within the 
study area is summarised in the flowchart shown in Fig. 2.

The data, collected from several sources and at different 
scales, were divided in two main groups, namely the vector 
data (e.g. contour lines, stream lines, land use) and raster 
data (e.g. satellite imagery, aerial photography, geologi-
cal map). This geodatabase allowed the creation of several 
thematic maps, to assess the spatial distribution of all the 
factors controlling groundwater infiltration in urban areas.

The identification of the explaining factors was compiled 
and revised from the reference bibliography (e.g. Krishna-
murthy et al. 1996; Babar 2005; Jha et al. 2007, 2011; Yeh 
et al. 2009; Teixeira et al. 2013, 2015). The relative weight 
and score for each factor was calculated using the analyti-
cal hierarchy process (AHP), a theory and methodology for 
relative measurement, where the main interest is to know the 
proportions between quantities, rather than the exact meas-
urement of them (e.g. Saaty 2008, 2012). The inner scores 
were mainly assessed from data obtained from fieldwork. 
According to Brunelli (2015) and Mu and Pereyra-Rojas 
(2017), the relative measurement theory suits particularly 
well problems where the best alternative must be chosen. 
Besides, when attributes of alternatives are intangible, it is 
difficult to create a measurement scale and the analysis is 
simplified using relative measurements. The final scope of 
the AHP is to use pairwise comparisons between alternatives 
as inputs, which compare all the criteria to one another, to 
estimate a rating or weighting of each of the criteria that 
describes the importance of each of these criteria in con-
tributing to the overall objective. Several papers have been 
published in recent years applying the AHP methodology 
to groundwater issues, namely, Kim et al. (2009), Agarwal 
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et al. (2013), Şener and Davraz (2013), Teixeira et al. (2013, 
2015), Şener and Şener (2015), Pani et al. (2016), Sahoo 
et al. (2016), Huang et al. (2018), and Şener et al. (2018).

The input maps related to the basic geological descrip-
tion, the geographical and hydrological characteristics, the 
hydrogeological and hydrogeomorphological features, and 
the hydraulic and sanitation features (see Fig. 2) have been 
used, along their specific weight, to calculate the urban infil-
tration potential index (IPI-Urban). The grid data structure 
was used with a pixel of 1 × 1 m2. The result of this GIS 
analysis is a map, which reflects the spatial variation of the 

infiltration potential, ranging from 0 to 100, where the high-
est values represent a combination of favourable character-
istics in most explaining factors.

In this study, two scenarios were computed, Summer and 
Winter, and the weight of the explaining factors was changed 
accordingly (Table 1), along with all the immutable char-
acteristics of the study area (tectonic lineaments density, 
hydrogeotechnical units, slope, drainage density, land use 
areas, sewage network density, stormwater network density 
and water supply network density). Since the study area 
is hot and dry in the Summer (P < 21 mm in the warmer 

Fig. 2  Flowchart showing data 
and methods employed for the 
present study
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month), the Summer scenario was computed without the 
stormwater network density map. The resulting maps were 
then overlaid with the geomorphological map and other 
hydrogeological inventory features, to produce an hydrogeo-
morphological map for this urban area.

To estimate the urban recharge, an analysis of the aver-
age monthly rainfall was performed. The dry period is from 
June to September and the rainfall value used for Summer 
scenario was the total precipitation for these 4 months, i.e. 
165.1 mm. For the Winter scenario, the remaining months, 
corresponding to the wet period, were used with a total 
precipitation of 1071.7 mm. Then, an initial recharge value 
of 8% was used, according to regional studies (e.g. Afonso 
et al. 2007; Afonso 2011). The groundwater recharge (mm/
year) was obtained multiplying each pixel of the IPI-Urban 
map by the precipitation considered for each scenario. Addi-
tionally, the groundwater recharge rate (%) was achieved 
dividing each pixel of the groundwater recharge map (mm/
year) by the effective precipitation for each scenario, i.e. 8% 
of the total precipitations. To assess the aquifer potential 
yields map, a basic mathematical operation was performed 
to convert the units of groundwater recharge from mm/year 
to L/s/km2.

Results and discussion

The description of all eight thematic layers—tectonic line-
aments density, hydrogeotechnical units, slope, drainage 
density, land use areas, sewage network density, stormwater 
network density, and water supply system density—along 
with their spatial distribution in the study area is presented 
in this section (Figs. 3, 4).

Regarding tectonic lineaments, most of the area (ca. 93%) 
has a density of 7–14 km/km2, the highest density being 
14–21 km/km2, located around Burgães and Lapa sites.

Hydrogeotechnical units play a key role in groundwater 
occurrence in this area. Highly weathered  (W4–5) granite is 
the most representative (ca. 55%), while fresh to slightly 
weathered  (W1–2) granite with wide spaced fractures  (F1–2) 
and moderately weathered  (W3) granite with moderately 
close spaced fractures  (F3) occupy in total nearly 30% of 
the area.

About slope, most of the area has a gentle to very gentle 
slope (< 5°, ca. 51%) to moderate to strong slope (5–15°, 
ca. 40%); the highest gradients, > 25°, are located around 
Lapa site.

Drainage density is frequently below 3 km/km2 (ca. 77%) 
and the highest densities are sited around Arca d´Água and 
Lapa sites.

Land use plays a very important role in this area. Urban 
and industrial areas cover the larger part (ca. 68%). Besides, 
streets correspond to 12.7% of the study area and among 
these 7.8% correspond to concrete/bituminous pavements 
and 4.9% to granite paving blocks. However, green spaces 
(public gardens and backyards) and agricultural sites rep-
resent nearly 19% of the total area. This means that, in the 
surrounding area of Paranhos and Salgueiros water galler-
ies, surfaces of low to very low permeability prevail that are 
responsible for the decrease in direct groundwater recharge.

Concerning the sewage network, most of the area has 
a density of 14–21 km/km2 (ca. 62%), and densities of 
7–14 km/km2 occupy the second position (ca. 35%).

For stormwater network, densities < 5 km/km2 are preva-
lent (ca. 58%) in the area, while densities of 5–10 km/km2 
are the second most frequent (ca. 32%). The highest values 
are located to the east and southwest of Lapa site.

Finally, the dominant water supply system classes are 
21–28 km/km2 (ca. 42%) and 14–21 km/km2 (ca. 36%).

To identify the potential areas of direct groundwater 
recharge, the pervious cover in the area was assessed. In cit-
ies, direct recharge takes place by percolation into unpaved 
areas, and to a lesser extent through “impervious” surfaces. 
Consequently, the intersection between green spaces and 
agricultural sites with the hydrogeotechnical units was per-
formed. Therefore, considering that alluvial formations gen-
erally have higher permeability than granite, the primary 
zones will correspond to those in which alluvia and green 
and/or agricultural spaces co-occur. However, it would be 
too simplistic to consider only these areas, so other minor 
areas have also been considered, specifically, green and agri-
cultural spaces covering the granite (Fig. 5).

Hence, considering these areas, as well as the geo-
morphological characteristics of this region, namely its 
location in the western border of the highest plateau of 
Porto City, it is possible to verify that the potential areas of 
direct groundwater recharge are located relatively close to 
the water galleries, namely along the following valleys: (1) 
NNW–SSE alignment, located SE of Arca d´Água site; (2) 

Table 1  Criteria and weights given for the two scenarios examined in 
the study

n.a. not applicable

Criteria Weight (%)

Summer Winter

Tectonic lineaments density 14.6 16.2
Hydrogeotechnical units 25.8 25.1
Slope 15.3 13.2
Drainage density 5.7 4.7
Land use areas 22.1 15.8
Sewage network density 6.3 5.9
Stormwater network density n.a. 5.9
Water supply system density 10.2 13.2
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NNE–SSW orientation, located E–SE of Burgães site; and 
(3) NE–SW direction, located W–NW of Lapa site, where 
Salgueiros water gallery is placed and where the junction 
of this gallery with Paranhos water gallery is located.

In addition, these zones overlap tectonic lineaments, 
which may act as privileged pathways of precipita-
tion through the granitic rock mass. A proportion of the 
impervious cover should be treated as permeable, as 

Fig. 3  Tectonic lineaments den-
sity, hydrogeotechnical units, 
slope, and drainage density in 
the study area
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some infiltration takes place through pavements. Wiles 
and Sharp (2010) consider that urban pavements are per-
meable and estimate that 21% of mean annual rainfall is 
available as potential recharge. Moreover, green spaces 

and agricultural sites are also key areas for the artificial 
recharge, since they are irrigated, particularly in the sum-
mer period. Finally, these potential areas of direct ground-
water recharge should be added to the areas of localised 

Fig. 4  Land use areas, sewage 
network density, stormwater 
network density, and water 
supply system density in the 
study area
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Fig. 5  Potential areas of direct 
groundwater recharge in the 
surroundings of Paranhos and 
Salgueiros water galleries
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recharge, corresponding to the several non-tight ventila-
tion shafts of the water galleries, as well as the artificial 
recharge, spread throughout the region through the storm-
water and sewage networks and the water supply system.

Considering the hydrogeological inventory, among the 
identified five springs, three are in the potential areas of 
direct recharge and two are close to secondary potential 
areas of direct recharge. Besides, these springs are also 
correlated with the tectonic lineaments (see Figs. 3, 4). 
Moreover, these springs are shallow groundwater that 
respond quickly to precipitation events (Afonso et  al. 
2010b). Therefore, although springs represent areas of 
groundwater discharge, these springs are situated near the 
local recharge areas.

The urban infiltration potential index (IPI-Urban) was cal-
culated for Summer and Winter scenarios (Fig. 6). For a bet-
ter understanding of the distribution of infiltration potential 
in the study area, one must have in mind the combination of 
criteria with greater weights (cf. Table 1). Therefore, about 
80% of the total weight corresponds, in both scenarios, to 
hydrogeotechnical units, tectonic lineaments density, slope, 
and land use areas. Consequently, it is possible to achieve 
that in both scenarios, a Moderate to Low (40–60) IPI-Urban 
is prevalent, corresponding to 67% and 74% of the entire 
study area, for the Summer and Winter scenarios, respec-
tively. Moreover, the High (60–80) and Very high (80–100) 
indexes, particularly the first one, arise mainly along the 
three valleys previously mentioned. These geomorphologic 

Fig. 6  Urban infiltration 
potential index (IPI-Urban) for 
Summer and Winter scenarios 
in the surroundings of Paranhos 
and Salgueiros water galler-
ies; I, II, and III: inset detailed 
maps of the Summer scenario 
for Arca d´Água, Salgueiros and 
Lapa sites
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features correspond mostly to alluvial formations, usually 
with moderate to gentle gradients (< 15°), where green 
spaces and/or agricultural areas are present. The highest 
values are most frequent in the Summer scenario, since the 
land use areas criterion has a higher weight than in the Win-
ter scenario. Additionally, other areas with a high index may 
be identified, corresponding to the fractured granite  W1–2, 
also with low gradients (< 15°) and, in the case of Burgães 
site, where one of the highest densities of tectonic linea-
ments arises.

Considering the hydrogeological inventory, it is possible 
to see that three of the springs are in areas of High to Very 
High infiltration potential, while two are in areas of Moder-
ate to Low infiltration potential.

Considering the evaluation of urban recharge, this com-
ponent was evaluated in mm/year and as a percentage of 
precipitation for the Summer and Winter scenarios (Fig. 7).

Most of the area has a low to very low recharge, espe-
cially in the Summer scenario. Values under 8 mm/year and 
under 50 mm/year are estimated in 77% of the area in the 
Summer scenario, and 74% of the area in the Winter sce-
nario and these numbers correspond to recharge percentages 
of less than 1% and 6%, respectively, in the Summer and 
Winter scenarios. The highest values befall primarily around 
alluvial formations and secondly on the fractured granite 
 W1–2 to  W3. Nevertheless, in the surroundings of Lapa site, 
particularly in the Winter scenario, higher values occur, 
although the outcropping granite is  W4–5. This should be 
ascribed to higher densities of tectonic lineaments, drainage, 
sewage and stormwater networks, and water supply system. 
Garcia-Fresca and Sharp (2005) reveal that in Austin City 
(USA), a significant indirect recharge occurs and that nearly 
8% of Austin water main flow is lost to become recharge. 
Moreover, Vázquez-Suñé et al. (2005) assume that in Barce-
lona City (Spain) the main contributors to total recharge are 
the water supply network losses (22%), the sewage network 
losses (30%), rainfall, concentrated in the non-urbanised 
areas (17%), runoff infiltration (20%), and the Besòs River 
(11%). Additionally, the key role of losses in sewage system 
on the quality of Paranhos and Salgueiros groundwater sys-
tem is demonstrated in Afonso et al. (2016).

The evaluation of aquifer potential yields was also carried 
out for the Summer and Winter scenarios (Fig. 8). In the 
Summer scenario, 76% of the area has potential yields of less 
than 0.25 L/s/km2 and the median value for the entire area is 
0.2 L/s/km2. On the other hand, in the Winter scenario, 96% 
of the area has potential yields in the range 1–2 L/s/km2 and 
the median value for the entire area is 1.4 L/s/km2.

The groundwater yields in Paranhos and Salgueiros water 
galleries were not yet possible to quantify, since the water 
flows in a gutter pipe, in the floor, and from the ceilings of 
the galleries.

However, 130 years ago, Ferreira da Silva (1889) pre-
sented values evaluated in the summer time (August) of 
1887. Flow rates of 288 m3/day (≈ 3.3 L/s) and 54 m3/day 
(≈ 0.6 L/s) were mentioned for Paranhos spring and Sal-
gueiros spring, respectively. Instead, 19 years later, Fontes 
(1908) stated a value of 500 m3/day (≈ 5.8 L/s) for the total 
flow of Paranhos and Salgueiros springs. Moreover, almost 
100 years later, COBA (2003) concluded that in 75% of the 
cases for Porto granite, which may include from residual 
soils to unweathered rock, flow rates of 0.8 L/s are not 
exceeded, with mean and maximum values of 0.7 L/s and 
3.1 L/s, respectively. It is possible to argue that the mean 
and the maximum values are similar to those reported by 
Ferreira da Silva (1889) for the Salgueiros spring and Para-
nhos spring, respectively. In addition, one of the boreholes 
of the hydrogeological inventory located to the east of Arca 
d´Água site has a yield of circa 0.6 L/s (Afonso 2011), which 
is coherent with the previous estimated values.

Conclusions

Aquifer recharge is often the most difficult parameter to 
evaluate in urban hydrological environments. The evalua-
tion of recharge in these environments is different from that 
in natural systems, because recharge sources are totally dif-
ferent and less knowledge is still available. A suitable assess-
ment of groundwater quantity comprises the quantification 
of overall recharge, as well as water quality assessment of 
the various sources involved.

GIS techniques have provided an efficient and practical 
environment for the assessment of the spatial distribution 
of relevant parameters controlling water infiltration into 
the soil, percolation in the unsaturated zone, and aquifer 
recharge in urban areas.

Lithology, tectonic lineaments, slope, land use, and water 
supply system have a significant role in the definition of 
the urban infiltration potential index (IPI-Urban) and on 
the delimitation of potential areas of direct groundwater 
recharge. A Moderate to Low IPI-Urban is prevalent in the 
pilot site. Additionally, High and Very high index values val-
idate most of the key areas of direct groundwater recharge. 
Most of the pilot area has low to very low urban recharge 
with less than 50 mm/year and less than 6% of precipitation 
in the wet season. Aquifer potential yields are low in most of 
the pilot sites and lower than 2 L/s/km2. The most important 
groundwater potential zones are mainly concentrated along 
the three valleys located SE of Arca d´Água site, E–SE of 
Burgães site and W–NW of Lapa site, due to their gentle 
terrain nature, with alluvial formations and the presence of 
green spaces and/or agricultural areas having relatively high 
infiltration capacity.
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This study can serve as a guideline for planning and 
implementing future urban groundwater interventions and 
is broadly applicable to other urban areas to guarantee 

sustainable groundwater use. It is also a valuable tool that 
allows policy makers quick decision-making in sustainable 
water resource management.

Fig. 7  Urban recharge for the 
Summer and Winter scenarios 
in the surroundings of Paranhos 
and Salgueiros water galleries: 
a mm/year and b %
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