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Abstract
The information on suspended sediments of river is considered to be crucial for issues concerning water management and 
the environment. The abrupt quantity and nature of sediment loads can be best studied by simultaneously considering the 
governing variables contributing towards this physical phenomenon. Artificial Neural Network (ANN) is one of the suitable 
data-mining technique which helps in carrying out the modelling of this phenomenon. In this study, ANNs are employed 
to approximate the monthly mean suspended sediment load for Ramganga River. Three simulations with rainfall and water 
discharge data were carried out to predict the suspended sediment load. In terms of the selected performance criteria, three 
algorithms were evaluated and the results so obtained are presented. It has been found that rainfall values were not sufficient 
to correctly predict the suspended sediment load. However, considering water discharge values as input improves the per-
formance of all the three considered algorithms.
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Introduction

Prediction of sediment load is essential for a broad range 
of problems related to hydrological, agricultural, and envi-
ronmental engineering such as water quality, soil erosion, 
design of dams, and transportation of sediment, which may 
aid the spread of pollutants in the river, non-point pollu-
tion of water resources, mortifying of aquatic environments, 
watershed management and problems relating to reservoir 
damage due to heavy discharge of sediments, and water 

emanating from natural streams. Sediment load is not only 
dependent on flow, discharge and rainfall, but also on other 
parameters and characteristics of drainage basin. Therefore, 
a rough estimate of sediment load can be assessed utilizing 
data-mining algorithms like ANNs.

The prime concern and objective while designing any 
reservoir is that it must be potentially equipped to cater a 
large volume of water and sediments generally referred to as 
“dead storage”. With due design consideration taking care 
of the expected sediment load to be accommodated in these 
reservoirs over a specific period of time would considerably 
reduce the damages emanating because of natural calamities. 
The good estimation of sediment load would further assist 
designers to deal with stochastic events occurring in nature 
to prevent loss of human life under the abrupt collapse of 
an improperly designed reservoir. On the other hand, the 
estimation of sediment load plays a key role in the area of 
environmental engineering-related problems and helps in 
analyzing the pollutants transported by streams in the form 
of suspended sediment load. The major causes of contami-
nation of bottom sediments with toxic materials are the 
releasing of agricultural and industrial wastes into it. Con-
sequently, these polluted sediments reach the downstream 
of the river when a river changes its juncture. Therefore, 
predicting the distribution of these contaminated sediments 
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is the primary step for preventing water pollution and sub-
sequently improving the water quality.

Modelling the complete course of transportation of sedi-
ment load in rivers has not been completely succeeded by 
the conventional approach of hydromechanics because of the 
chaotic nature of river flow along with the random move-
ment of particles within the river flow regime. In recent 
times, neural networks have been successfully applied to 
numerous branches of science. This modelling technique 
is becoming an effective tool to provide hydrological and 
environmental engineers with adequate information for man-
agement practices and design purposes. The ANN technique 
may be exceptionally useful in situations, where it is diffi-
cult to formulate any mathematical relationship between the 
dependent and independent variables concerning any physi-
cal phenomenon. ANN is non-linear model that is easy to 
use and understand compared to statistical methods. ANN 
is non-parametric model, while most of statistical methods 
are parametric model that need higher background of statis-
tic. ANN with back-propagation (BP) learning algorithm is 
widely used in solving various classifications and forecast-
ing problems. Even though BP convergence is slow, but it is 
guaranteed. ANN are suitable for inverse modelling when 
the numerical relations between input and output variables 
are unknown, and cannot be established. Quite a good esti-
mation of the modelled parameters can be done by ANNs 
using the past data. Sediment load estimation and forecast-
ing may provide important information on the uncertainty 
pertaining to the estimation of some major variables of river 
systems.

ANN has gained wider acceptability among researchers 
working in the area of river flow modelling. Useful contri-
butions have been made in predicting rainfall–runoff rela-
tionship (Minns and Hall 1996; Fernando and Jayawardena 
1998; Rajurkar et al. 2002; Panwar et al. 2016). Rainfall 
forecasting based on past data using ANN demonstrated that 
an ANN-based methodology may be effectively utilized for 
river runoff forecasting (Cigizoglu 2002a, b). Employing an 
ANN model for drought forecasting in the Cansabati river 
basin in India was done by Mishra et al. (2007); Tokar and 
Markus (2000) studied it for rivers: Fraser in Colorado, Rac-
coon Creek in Iowa and Little Patuxent in Maryland, USA. 
In the field of hydrology, discharge prediction for tidally 
affected river using ANN, which was taken up by Hidayat 
et al. (2014) for Mahakam River, Indonesia, revealed that 
ANN model can be used as a tool for data gap filling in a dis-
rupted discharge on a time series scale. Pektas and Cigizoglu 
(2017) examined the employment of two methods, multi-
linear regression (MLR) and artificial neural network (ANN) 
for multi-step ahead forecasting of the suspended sediment. 
In that study, the ANN model performance is superior to 
that of the MLR model, as measured by means of both mean 
square error (MSE) and R2 statistics, although for longer 

ranges, the MLR models provide better accuracies. Predic-
tion of water level using time series data in the Ramganga 
River was done by Khan et al. (2016a) and for the same 
river, Khan et al. (2018) estimated SSC using daily water 
discharge as an input. Govindaraju (2000) suggested that 
ANN can be successfully employed in many hydrological 
processes that exhibit a high degree of non-linearity, chaos, 
conflicting spatial and temporal scales and stream flow esti-
mation under random events governed by the high degree 
of uncertainties. Sari et al. (2017) investigated the use of an 
ANN model for forecasting suspended sediment concentra-
tions (SSC) using turbidity and water level and revealed that 
it is possible to estimate SSC with water level and turbidity 
information, with high efficiency, with ANN-based models 
of ideal complexity, and even with little availability of data 
records for training and verification. Recently Alok et al. 
(2013) used neural network with Alman and Cascade char-
acteristics for predicting the discharge of the river Brahmani 
flowing through the Indian subcontinent. ANN modelling of 
rainfall–runoff for river Amber and Mole, U.K by Dawson 
and Wilby (1998) showed ANN to be an appealing alterna-
tive to conventional lumped or semi-distributed flood fore-
casting modelling. Among other problems related to pre-
diction, some of the important contributions were made by 
stage discharge relation modelling (Sudheer and Jain 2003; 
Bhattacharya et al. 2005), estimation of ground level fore-
casting (Daliakopoulos et al. 2005), tidal predictions (Lee 
2004; Liang et  al. 2008), sediment transport modelling 
(Yitian and Gu 2003), and water-level prediction (Chang 
et al. 2010).

Other ANN algorithms commonly employed for predic-
tion problems include radial basis function (RBF) and gen-
eralized regression neural network (GRNN). These algo-
rithms were recently employed in many prediction problems. 
Furthermore, the accuracy of these two algorithms was 
compared to that of feed-forward backpropagation (FFBP) 
by many researchers (Alp and Cigizoglu 2007; Mehr et al. 
2014). A majority of these researches pertaining to feature 
extraction and subsequent prediction are based on FFBP 
for training the proposed network architecture. According 
to Brikundavyi et al. (2002) and Cigizoglu (2003a, b), the 
performance of FFBP was superior in problems dealing with 
continue flow series prediction. As reported in the literature, 
a major drawback associated with FFBP is the local minima 
problem.

However, still, the most common learning method used 
for supervised learning with feed-forward neural networks 
(FNNs) is backpropagation (BP) algorithm. The BP algo-
rithm calculates the gradient of the network’s error with 
respect to the network’s modifiable weights. However, the 
BP algorithm may result in a movement towards the local 
minimum. To overcome the local minimum problems, many 
methods have been proposed. A widely used one is to train 
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a neural network more than once, starting with a random set 
of weights (Park et al. 1996; Iyer and Rhinehart 1999). An 
advantage of this approach lies in the simplicity of using 
and applying to other learning algorithms. Nevertheless, this 
approach requires more time to train the networks.

The ASCE task committee (2000a, b) thoroughly 
reviewed other ANN algorithms which may be better over 
conventional FFBP; some of these advanced algorithms for 
ANN training include the RBF, GRNN, and Recurrent Neu-
ral Network (RNN).

Among the most cited works on prediction problems 
using RBF and GRNN, one includes the works of Specht 
(1991); Yingwei et al. (1998), Cigizoglu and Alp (2006); 
Cigizoglu (2005), Alp and Cigizoglu (2007), Tukuda et al. 
(2013), Mehr et al. (2014), Li et al. (2014), Lu et al. (2014); 
Chen and Wang (2014); Bayram et al. (2014) and Singh 
et al. (2014). Cigizoglu and Alp (2006), studied the perfor-
mance of two different ANN algorithms viz., GRNN and 
FFBP for the problem involving estimation of river sus-
pended sediments in Junaita River of Pennsylvania, USA. 
The result of their study revealed that GRNN performs 
much better as it provides close or sometimes even supe-
rior results as compared to FFBP in sediment estimation. 
In another study by Cigizoglu (2005), a GRNN was used to 
predict the daily mean flow forecast and estimation of river 
parameters. In addition, in that study, the GRNN method 
was found superior as compared to conventional FFBP, 
regression, and stochastic method in both prediction and 
estimation of the selected river parameters. Suspended sedi-
ment load prediction using hydrometeorological data using 
FFBP, RBF, and MLR was carried out by Alp and Cigizoglu 
(2007). The results showed that RBF and FFBP provided 
results quite close to each other. In that study, they further 
showed that with FFBP method, different performance cri-
teria were obtained from different FFBP simulations for the 
same network configuration which was because of random 
assignment of initial weights while carrying out the training 
processes. Thus, while using FFBP algorithms, many simu-
lations must be conducted for optimized FFBP performance. 
In contrast to this, RBF provides results with a unique simu-
lation. Recently, Mehr et al. (2014) studied eight different 
stream flow prediction models based upon monthly data of 
two successive stations for Coruh River in Turkey. In the 
first phase, FFBP algorithm was employed for prediction of 
the required parameters, and the result showed that 1 month 
lagged record of successive stations is sufficient to achieve 
an accurate monthly stream flow prediction with more than 
0.97 Nash–Sutcliffe coefficients (NS). Subsequently, in the 
second phase, GRNN and RBF were applied to predict 1 
month ahead successive station stream flow data. The out-
come of the study revealed that the RBF network was much 
superior to GRNN and FFBP technique for prediction which 
is in line with the findings of Kisi and Cigizoglu (2007). 

Due to superiority of the RBF algorithm over FFBP, it has 
been used by Chen and Wang (2014) for prediction of urban 
built-up area. In India’s context, very few studies have been 
reported on the Himalayan Rivers. The ANN modelling for 
Ganga River was carried out for predicting landslide hazard 
zonation (Arora et al. 2004). Keeping in view the scarcity 
of research works on Himalayan rivers, the present study 
has been undertaken to study different ANN models (FFBP, 
RBF, and GRNN) for sediment load prediction using hydro-
meteorological data collected from the Ramganga River.

This study explores three ANN methods or algorithms 
for the prediction of monthly mean total sediment loads at 
the Bareilly gauging site of the Ramganga River, the first 
important tributary of Ganga River in Ganga Foreland Basin 
(GFB). For this purpose, ANN models are developed to pre-
dict sediment load based on rainfall and water discharge data 
collected of the studied area. The ANN models comprised 
three parts: simulation of the total sediment load with rain-
fall data as an input, simulation of the total sediment load 
with water discharge as an input, and simulation of the total 
sediment load with both rainfall and water discharge as an 
input. FFBP, GRNN, and RBF are employed for the assess-
ment of expected sediment load. For FFBP, along with train-
ing parameters, the model has been optimized for hidden 
layer neurons, while for the other two algorithms, GRNN 
and RBF, optimized networks were formulated using spread 
parameter values. Finally, the predicted values obtained 
using the three algorithms were compared with the experi-
mental values and the findings were presented and discussed 
in light of the previous works carried out on the topic.

Study area

Ramganga River basin (Fig. 1) includes 22, 685 km2 (Khan 
et al. 2016b, c; Khan and Chakrapani 2016; Daityari and 
Khan 2017; Khan and Tian 2018) catchment area and covers 
approximately 8% of the total catchment area of the Ganga 
Basin (Ray 1998). Ramganga is the first major tributary of 
the Ganga River with a mean elevation of 1494 m above 
sea level (a.s.l). It is emerging from Dudhotali Mountain 
in Gairsain village of district Chamoli in Uttarakhand. The 
Ramganga River basin lies in between 30°06′02.22″N to 
27°10′42.11″N and 79°16′59.22″E to 79°50′16″E. The total 
length of the river is 642 km from the point of origin to 
confluence with River Ganga. After covering a length of 
158 km from its starting point, the river emerges out from 
the mountains into the GFB, where Ramganga dam was con-
structed at an elevation of 363 m a.s.l. During its course in 
the GFB, the river crosses major districts of Uttar Pradesh 
like Bijnor, Moradabad, Rampur, Bareilly, Badaun, Shahja-
hanpur, Hardoi, and Farrukhabad (Khan et al. 2016d; Khan 
2018). After covering 484 km in GFB, it finally meets the 
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Ganga River at Farrukhabad district of Uttar Pradesh (CWC 
2012; Khan et al. 2017).

Physiography and relief

Due to contrast between the geomorphology, slope, and 
elevation, the entire catchment area shows a large diversity 

Fig. 1   Map of the Ramganga River Basin
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in weather and climate (Fig. 2). Ranging from 2000 mm of 
precipitation at higher altitudes and 700 mm precipitation 
at the lowest elevation, the catchment area has 1300 mm of 
average annual precipitation and it is controlled by Indian 
monsoon (http://www.india​water​porta​l.org/met_data/).
Ramga​nga River shows large variation on account of eleva-
tion and slope (Fig. 2a, b).

The river varies in elevation from less than 305 m a.s.l 
in the GFP to more than 2438 m a.s.l in the Himalayas 
(Fig. 2a). The same variation is shown in the slope of the 
river. The minimum slope of the river is shown in GFP, 
which is around 0–5%, while in the Himalayas, it is greater 
than 30% (Fig. 2b). The drainage of the catchment area 
shows sub-dendritic nature and the high amount of rainfall 
in the higher elevations during the winter and rainy seasons 
makes the river perennial. The drainage network of the river 
shows very complex in nature with stream order ranging 
from 1 to 6 (Fig. 2d). The map was prepared in ArcGIS 
using 90 m resolution data of Shuttle Radar Topography 
Mission–Digital Elevation Model (SRTM–DEM), and the 
stream is ordered according to Strahler’s number (Strahler 
1952).

Geology

In the mountain, the catchment area constitutes two major 
lithotectonic zones, namely, Sub-Himalayas and Lesser 
Himalayas (Fig. 2c). Sub-Himalayas comprise siltstone, 
clays, sandstones, and boulders show the characteristics of 
molasse sediments of Mid-Miocene to Pleistocene. On the 
other hand, unfossiliferous sequences of low-to-high-grade 
meta-sediments of Paleozoic to Mesozoic are the major com-
ponents of the Lesser Himalayas (Gupta and Joshi 1990).

In Ganga alluvial plain, which is closely associated with 
the extension of the Himalayan orogenic belt, the catchment 
area shows quaternary lithostratigraphic sequence comprises 
(1) Varanasi Older Alluvium with two facies, i.e., sandy 
facies and silt clay facies, (2) Ganga/Ramganga Terrace 
Alluvium, and (3) Ganga/Ramganga Recent Alluvium, the 
latter two constitute the Newer Alluvium.

NN algorithms

Feed‑Forward Back‑Propagation (FFBP) algorithm

The mainly widespread rule for learning the multi-layer 
perceptrons is the back-propagation algorithm (BPA) for 
giving a training stage to input–output data. BPA consist 
of two stages viz., a feed-forward phase and a backward 
phase. In feed-forward phase, the computing of output 
information gesture at the output component is done 
when the peripheral input gesture at the input nodes is 

propagated forward, whereas in the case of backward 
phase, the modification to the correlation potency is pre-
pared based on the dissimilarities between the observed 
and the computed information signals at the output units 
(Eberhart and Dobbins 1990). In that study, the structure 
of the neural network comprised a three-layer learning 
network viz., an input layer, a hidden layer, and an output 
layer. Levenberg–Marquardt technique was employed for 
optimization. According to Hagan and Menhaj (1994); 
El-Bakyr (2003) and Cigizoglu and Kisi (2005a), the 
Levenberg–Marquardt technique is more influential than 
the conventional gradient descent technique. The gradient 
descent method is a steepest descent algorithm in case of 
backpropagation. The Marquardt algorithm is extremely 
competent if the weight of the training network is up to a 
few hundred (Hagan and Menhaj 1994). For each of the 
iterations of the Marquardt algorithm, the higher computa-
tional obligation is needed. This is particularly true for the 
requirement of the highest precision. Hagan and Menhaj 
(1994) showed that in many cases when the backpropaga-
tion failed to converge, the Marquardt algorithm success-
fully converged.

The radial basis function (RBF)

Broomhead and Lowe (1988) introduced RBF networks in 
the literature of neural networks. The locally tuned reac-
tion observed in biological neurons is the motivation of 
RBF network. Poggio and Girosi (1990) showed that in 
several parts of the nervous system, a locally tuned reac-
tion characteristic of neurons can be found, like cells in 
the visual cortex sensitive to bars oriented in a certain 
direction or other visual features within a small region of 
the visual field. In small range of input space, the response 
characteristics of these locally tuned neurons can be 
shown. The basis of RBF lies theoretically in the area of 
exclamation of multivariate functions. For the clarifica-
tion accurate interpolation, RBF mapping exceeds through 
each data point (xs, ys). In the occurrence of noise, the 
accurate resolution of the exclamation problem is normally 
a function fluctuating between the specified data points. 
The magnitude of basis functions is equivalent to the mag-
nitude of data points and it is another problem with accu-
rate interpolation procedure and subsequently calculating 
the contrary of the N _ N matrix Ф becomes obstinate in 
practice. Study of Taurino et al. (2003) reveals that the 
interpretation of ANN with RBF method is consisting of 
three layers: an input neuron layer which feed the feature 
vectors to the network; a layer of hidden RBF neurons 
and an output neuron layer. The different numbers spread 
constant and different neurons in hidden layers were tried 
in this study.

http://www.indiawaterportal.org/met_data/).Ramgang
http://www.indiawaterportal.org/met_data/).Ramgang
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Fig. 2   Characteristics of the study area: a ground elevation; b ground slope; c geological map; and d drainage map
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Generalized Regression Neural Network (GRNN)

It was proposed by Specht (1991). Just like the FFBP 
method, the procedure of iterative training is not required in 
the GRNN. However, any arbitrary function can be approxi-
mated with the help of GRNN between input and output 
vectors and it can draw function estimate directly from the 
training data. Moreover, it is very reliable; that is, the set of 
the training data becomes large with only gentle limitations 
on the function, the estimation error approaches zero. Specht 
(1991), presented full information about GRNN with a sche-
matic diagram of GRNN structure. The pattern of GRNN is 
consisting of four layers. First units include of input units, 
pattern units are in the second layer, the outputs of the sec-
ond layer are agreed on to the summation units in the third 
layer, and the output units are covered by fourth layer.

Statistical analysis of the data

Monthly means of water discharge and total sediment load 
data at the Bareilly gauging site of the Ramganga River, 
Uttar Pradesh, India, were used in this study. The data were 
taken from Central Water Commission (CWC), Government 
of India. The rainfall data of Ramganga River were down-
loaded from the website of India water portal (http://www.
india​water​porta​l.org/met_data/).

The observation period for the monthly mean water dis-
charge, rainfall, and sediment load data was 15 years (from 
1 January 1988 to 31 December 2002). The data were pro-
vided by CWC. Table 1 shows the statistical parameters 
(mean X, standard deviation Sx, skewness coefficient Csx, 
overall minimum Xmin, and maximum Xmax) of the data. It 
is obvious that the record of whole data of the suspended 
sediments load from Table 1 shows the normal skewed dis-
tribution (Csx = 4.84).

Methodology

Three algorithms in MATLAB, namely, FFBP, RBF, and 
GRNN, were modelled for the simulation. An uninterrupted 
time series data of 15 years (1988–2002) pertaining to 
monthly mean water discharge, rainfall, and total suspended 
sediment load were taken. The structure of ANN comprises 
three layers, i.e., input layer, hidden layer, and output layer. 
Different hydrometeorological data were used to prepare an 
input layer. The approach of ANNs consisted of two steps 
for time series data. The primary step included the training 
of the neural networks. For this, the monthly mean water 
discharge and rainfall data were taken as input and monthly 
mean total suspended sediment load data were taken as out-
put for obtaining the interconnection weights. After the com-
pletion of training stage, the ANNs were applied to obtain 
testing data. For training the network, 13 years of data were 
used and the rest of the 2 years of data were used for testing 
(Table 2).

Normalization of data

The normalization of data is important and it will help in 
transforming the input range of each variable. Therefore, 
after the collection of the hydrometeorological data, nor-
malization was done for each variable viz., monthly mean 
water discharge, rainfall, and total suspended sediment load. 
Accordingly, all the variables are stretched out within the 
interval (0, 1) using the following equation:

where Xnorm is the normalized value of the observed vari-
able, Xi, Xmin is the minimum value of the variable, and Xmax 
is the maximum value of the variable.

(1)Xnorm =

X
i
− Xmin

Xmax − Xmin

,

Table 1   Statistical parameters of the data for training, testing, and the whole data

Parameters Rainfall (mm) Flow (m3/S) Sediment (ton/day)

Training Testing Whole data Training Testing Whole data Training Testing Whole data

X 68.32 49.07 65.75 197.08 116.95 186.39 38792.09 8004.48 34687.07
Sx 100.07 66.30 96.33 355.68 129.44 335.33 118116.20 18197.78 110605.34
Csx 1.67 1.61 1.73 2.86 2.72 3.05 4.49 3.02 4.84
Xmin 0.00 0.43 0.00 0.81 15.50 0.81 0.43 110.17 0.43
Xmax 394.14 231.05 394.14 2051.72 608.60 2051.72 802915.30 76960.10 802915.33

Table 2   Training and testing 
period for different ANN 
algorithms

Study type Simulation I Simulation II Simulation III

Training 01.01.1988–12.12.2000 01.01.1988–12.12.2000 01.01.1988–12.12.2000
Testing 01.01.2001–12.12.2002 01.01.2001–12.12.2002 01.01.2001–12.12.2002

http://www.indiawaterportal.org/met_data/
http://www.indiawaterportal.org/met_data/
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Data sets

A total of first 156 values were taken for training stage and 
the last 24 values cover the testing stage. It is acceptable that 
the statistical parameters are quite dissimilar from each other 
in training and testing data sets (Table 1). It does not make 
sense if we take the middle values of the whole series for 
testing data sets, because by doing this, the training data sets 
will constitute the first part and the last part and it will affect 
the training of the ANN because of the discontinuity in the 
data sets. Since the computational density and its generali-
zation capacity are directly affected by network topology, 
therefore, it is necessary to determine a suitable design of a 
network for a particular problem.

Modelled NN architectures

For the present problem, the FFBP architecture consisted 
of three layers representing input, hidden, and output lay-
ers, respectively. Three simulations were carried out tak-
ing rainfall as a single input variable, water discharge as a 
single input variable and both rainfall and water discharge 
as an input variable in the simulations I, II, and III, respec-
tively. Consequently, the input layers consisted of 1, 1, and 
2 neurons for simulations I, II, and III, respectively. The 
FFBP algorithm was tested with varying number of hid-
den layer neurons and learning rate values to optimize the 
network topology. Number of hidden neurons varied from 
1 to 10, while learning rate values were taken as 0.01, 0.05, 
and 0.06. The stoppage criteria for training were based on 
achieving a desired level of MSE which was kept at 0.0009. 
Tangent sigmoidal functions were used as transfer functions. 
Learning and momentum rate parameters were adaptive, i.e., 
their values changed dynamically during the simulation. The 
performance of the algorithm was sensitive towards the set-
ting of learning rate. If the learning rate was set to a high 
value, the algorithm may not settle in the global minima or 
may oscillate and become unstable. On the other hand, if the 
learning rate is set to small value, the algorithm may take 
a large time for the training period. Practically, it is impos-
sible to determine the optimal setting of the learning rate 
because of which each topology was tested for varied values 
of learning rates. Thus, enumeration technique was applied 
for determining the optimal network topologies obtained for 
each simulation and are presented and discussed in “Results 
and discussion”.

For RBF, the same input layer structure as in FFBP was 
employed. In this case, the hidden layer neurons are auto-
matically adjusted depending upon the error criteria. Various 
spread values between 0 and 1 were considered for RBF 
simulation. The MSE obtained for different simulations with 
varying spread constant values are presented and discussed 
in “Results and discussion”. The performance evaluation 

measures include the MSE and the coefficient of determi-
nation R2 values between the simulated and observed sus-
pended sediment loads.

GRNN structure is similar to that of RBF and FFBP with 
the only difference being the prior stoppage criteria during 
training for the algorithm need not to be set. The results 
obtained for the different simulations are presented and dis-
cussed in “Results and discussion”.

Results and discussion

Simulation of suspended load with rainfall data 
(simulation I)

In the primary step of the experiments, simulation of the 
suspended sediment load was carried out with only rainfall 
data taken into consideration. The series of rainfall values 
used to simulate suspended sediment load in this study were 
downloaded from the website of Indian Meteorological 
Department (IMD), Ministry of Earth Sciences, Govern-
ment of India(http://www.india​water​porta​l.org/met_data/), 
and the effectiveness of the downloaded data could not be 
confirmed. The effective rainfall data are those which con-
tain no losses from infiltration, depression storage, and water 
absorbed by the plant and due to the absence of the data of 
these parameters, and it was not possible to compute the 
effective rainfall. Therefore, it was a challenge to test the 
capability of simulation capacity of the neural network using 
untreated precipitation data. Table 2 (Column: simulation 
I) shows the time periods of the data used in training and 
testing stage.

The combination of several inputs and hidden layer tested 
for this simulation is presented in Table 3, and the plots 
obtained are shown in Figs. 3 and 4. The number of hidden 
layer’s node showing in Column II of Table 3, and the spread 
parameters in Columns V and VIII of Table 3 were obtained 
after practicing several values of hidden layer and spread 
parameter for a definite input node (Fig. 3). The optimum set 
of inputs in FFBP, RBF, and GRNN seemed to be the same.

In case of FFBP, the best performance criteria, i.e., the 
lowest MSE (176 ton2/day2) with R2 value of 0.48 for testing 
period, were obtained when the network structure was set to 
be 5 node in a hidden layer and the input layer contains only 
one input. For RBF, the closer values (MSE = 6126 ton2/
day2, R2 = 0.24) for the testing period were obtained when 
the spread constant was set at 0.1 and the input layer con-
sisted of 5 inputs. The 5 input nodes or neurons represents 
the monthly mean rainfall in a month covering a time period 
of 5 months (months: Rt, Rt−1, Rt−2, and Rt−3, Rt−4), whereas 
the output layer node corresponds to the unique monthly 
mean suspended sediment load at month t.

http://www.indiawaterportal.org/met_data/
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For GRNN, the best prediction values were obtained 
when the spread constant was kept at 0.4 (MSE = 280, 
R2 = 0.54). These optimum values were obtained when 
the GRNN network was fed with three inputs representing 
rainfall data for Rt, Rt−1, and Rt−2 months.

The monthly mean suspended sediment load for each 
month presented in Table 4 is in line with the MSE value 
presented in Table 3 except for the RBF algorithm. The 
average values of suspended sediment load obtained 
through simulation agrees well with the observed val-
ues, as shown in Fig. 4a–c using FFBP, RBF, and GRNN, 
respectively. As observed from these figures, the simu-
lated trend matches with observed values better for FFBP 
and GRNN as compared to RBF.

The simulations carried out on the testing data and 
subsequent values obtained for the average suspended 
sediment load using test data set revealed that rainfall 
values alone as inputs are not enough to capture the fea-
tures associated with the suspended sediment load series 
over a time horizon. Simulations with lower R2 values 
between the observed and the simulated suspended sedi-
ment loads are due to the fact that predicted values may 
be either under or overestimated of monthly mean sus-
pended sediment load as compared to experimental values 
both for the training and the test data sets. These findings 
are in line with the findings of Alp and Cigizoglu (2007), 
who also showed that rainfall alone, is not enough for the 
prediction of suspended sediment load.

Simulation of suspended load with water discharge 
data (simulation II)

This simulation was carried out using the monthly mean 
water discharge data as an input to all the three considered 
ANN algorithms. The basic motive behind taking water dis-
charge data as input was the fact that improved simulation 
performance might be expected, since the water discharge 
measurements are taken together with the suspended sedi-
ment load values at gauging sites.

The present ANN modelling with water discharge data 
was taken into account as the relationship between the water 
discharge and the suspended sediments is non-linear and 
highly complex because of which mathematical relationship 
is hard to formulate (Alp and Cigizoglu 2007).

The combination of several inputs and a hidden layer 
tested for this simulation is presented in Table 3, and the 
plots obtained are shown in Figs. 5 and 6. The number of the 
hidden layer’s nodes in Column II of Table 3 and the spread 
parameters in Columns V and VIII of Table 3 were obtained 
after practicing several values of hidden layer and spread 
parameter for a definite input node (Fig. 5). The optimum set 
of inputs in FFBP, RBF, and GRNN seemed to be the same.

In case of FFBP, the best performance criteria, i.e., the 
lowest MSE (78 ton2/day2) with R2 value of 0.85 for testing 
period were obtained when the network structure was set to 
be 9 nodes in a hidden layer and the input layer contained 
only three inputs representing monthly mean water discharge 

Table 3   Performance criteria values (MSE and R2) for ANNs obtained for testing period

ANN model inputs FFBP RBF GRNN

Nodes in 
Hidden 
layer

MSE 
(tons2/
day2)

R2 Spread 
param-
eter

MSE (tons2/day2) R2 Spread 
param-
eter

MSE 
(tons2/
day2)

R2

R
t
 (simulation I) 5 176 0.48 1 1362 0.38 0.3 447 0.54

R
t
,R

t−1 (simulation I) 10 307 0.69 0.9 11,992 0.9 0.3 309 0.6
R
t
,R

t−1,Rt−2
 (simulation I) 8 337 0.15 0.1 8507 0.06 0.4 280 0.54

R
t
,R

t−1,Rt−2,Rt−3(simulation I) 10 274 0.52 0.1 6214 0.24 0.4 307 0.51
R
t
,R

t−1,Rt−2,Rt−3,Rt−4 (simulation I) 1 298 0.48 0.1 6126 0.24 0.4 359 0.5
Q

t
 (simulation II) 3 127 0.8 0.2 28 0.8 0.1 68 0.8

Q
t
,Q

t−1 (simulation II) 6 108 0.81 0.9 32 0.81 0.1 84 0.81
Q

t
,Q

t−1,Qt−2 (simulation II) 9 78 0.85 1 48 0.85 0.1 76 0.85
Q

t
,Q

t−1,Qt−2,Qt−3 (simulation II) 10 110 0.71 0.4 46 0.71 0.1 69 0.71
Q

t
,Q

t−1,Qt−2,Qt−3,Qt−4 (simulation II) 7 173 0.062 1 47 0.06 0.1 64 0.06
R
t
,R

t−1,Rt−2,Qt
(simulation III) 3 43 0.92 0.2 44 0.92 0.2 67 0.92

R
t
,R

t−1,Rt−2,Qt
,Q

t−1 (simulation III) 8 133 0.9 0.2 45 0.94 0.2 67 0.94
R
t
,R

t−1,Rt−2,Qt
,Q

t−1,Qt−2 (simulation III) 8 88 0.96 0.4 41 0.96 0.2 72 0.96
R
t
,R

t−1,Qt
,Q

t−1 (simulation III) 2 52 0.85 0.4 34 0.85 0.2 72 0.85
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in a month covering a time period of 3 months (Qt, Qt−1, 
Qt−3). For RBF, the closer values (MSE = 28 ton2/day2, 
R2 = 0.80) for the testing period were obtained when the 
spread constant was set at 0.2 and the input layer consisted 

of 1 input representing monthly mean water discharge of 1 
month (Qt).

For GRNN, the best prediction values were obtained 
when the spread constant was kept at 0.1 (MSE = 64, 
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Fig. 3   Plots obtained for simulation I. a Error values obtained with 
varying hidden layer neurons for different input parameters using 
FFBP, b Minimum error values obtained for each input parameter for 
FFBP. c Error values obtained with varying spread constant for dif-

ferent input parameters using RBF. d Minimum error values obtained 
for each input parameter for RBF. e Error values obtained with vary-
ing spread constant for different input parameters using GRNN. f 
Minimum error values obtained for each input parameter for GRNN
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Fig. 4   Plots obtained for simulation I. a Suspended sediments load obtained using FFBP vs experimental. b Suspended sediments load obtained 
using RBF vs experimental. c Suspended sediments load obtained using GRNN vs experimental

Table 4   Values of total sediment load for testing data set

a Error = |Observed−Estimated|

Estimated
.

ANN inputs Observed sedi-
ment load (ton)

FFBP RBF GRNN

Estimated sedi-
ment load (ton)

Errora Estimated sedi-
ment load (ton)

Errora Estimated sedi-
ment load (ton)

Errora

R
t
 (simulation I) 18,497 17,005 0.08 72,569 2.92 58,426 2.16

R
t
,R

t−1 (simulation I) 18,497 50,169 1.71 30,291 0.64 47,333 1.56
R
t
,R

t−1,Rt−2
 (simulation I) 18,497 37,578 1.03 49,298 1.67 45,023 1.43

R
t
,R

t−1,Rt−2,Rt−3 (simulation I) 18,497 43,924 1.37 70,776 2.83 46,262 1.50
R
t
,R

t−1,Rt−2,Rt−3,Rt−4 (simulation I) 18,497 44,566 1.41 69,903 2.78 49,901 1.70
Q

t
 (simulation II) 18,497 43,150 1.33 24,156 0.31 17,004 0.08

Q
t
,Q

t−1 (simulation II) 18,497 29,499 0.59 20,537 0.11 13,982 0.24
Q

t
,Q

t−1,Qt−2 (simulation II) 18,497 30,509 0.65 22,397 0.21 14,420 0.22
Q

t
,Q

t−1,Qt−2,Qt−3 (simulation II) 18,497 32,060 0.73 17,820 0.04 15,279 0.17
Q

t
,Q

t−1,Qt−2,Qt−3,Qt−4 (simulation II) 18,497 35,917 0.94 20,797 0.12 16,196 0.12
R
t
,R

t−1,Rt−2,Qt
 (simulation III) 18,497 28,295 0.53 29,349 0.59 18,050 0.02

R
t
,R

t−1,Rt−2,Qt
,Q

t−1 (simulation III) 18,497 16,089 0.13 28,428 0.54 14,634 0.21
R
t
,R

t−1,Rt−2,Qt
,Q

t−1,Qt−2 (simulation III) 18,497 20,669 0.12 16,741 0.09 14,196 0.23
R
t
,R

t−1,Qt
,Q

t−1 (simulation III) 18,497 23,460 0.27 21,284 0.15 15,087 0.18
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R2 = 0.06). These optimum values were obtained when 
the GRNN network was fed with 5 inputs representing 
monthly mean water discharge of 5 months (Qt, Qt−1, 
Qt−2, Qt−3, and Qt−4). The average values of suspended 
sediment load obtained through simulation agrees well 

with the observed values, as shown in Fig. 6a–c using 
FFBP, RBF, and GRNN, respectively. As observed from 
these figures RBF and GRNN algorithms performed better 
over FFBP.
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Fig. 5   Plots obtained for simulation II. a Error values obtained with 
varying hidden layer neurons for different input parameters using 
FFBP, b minimum error values obtained for each input parameter for 
FFBP. c Error values obtained with varying spread constant for dif-

ferent input parameters using RBF. d Minimum error values obtained 
for each input parameter for RBF. e Error values obtained with vary-
ing spread constant for different input parameters using GRNN. f 
Minimum error values obtained for each input parameter for GRNN
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Simulation of suspended load with water discharge 
and rainfall data (simulation III)

The third simulation was carried out by taking both rain-
fall and water discharge data as input. The combination of 
several inputs and hidden layer tested for this simulation is 
presented in Table 3, and the plots obtained are shown in 
Figs. 7 and 8. The number of hidden layer’s node showing in 
Column II of Table 3 and the spread parameters in Columns 
V and VIII of Table 3 were obtained after practicing several 
values of hidden layer and spread parameter for a definite 
input node (Fig. 7). The optimum set of inputs in FFBP, 
RBF, and GRNN seemed to be the same.

In case of FFBP, the best performance criteria, i.e., the 
lowest MSE (43 ton2/day2) with R2 value of 0.92 for testing 
period, were obtained when the network structure was set 
to be 3 nodes in a hidden layer and the input layer contained 
4 inputs representing monthly mean rainfall and water dis-
charge of four months (Rt, Rt−1, Rt−2, Qt).

For RBF, the closer values (MSE = 34 ton2/day2, 
R2 = 0.85) for the testing period were obtained when the 
spread constant was set at 0.4 and the input layer consisted 
of 4 inputs representing monthly mean rainfall and water 

discharge of two months (Rt, Rt−1, Qt, Qt−1). For GRNN, 
the best prediction values were obtained when the spread 
constant was kept at 0.2 (MSE = 67, R2 = 0.94). These 
optimum values were obtained when the GRNN network 
was fed with 5 inputs representing monthly mean rain-
fall and water discharge of three months (Rt, Rt−1, Rt−2, 
Qt, and Qt−1). The average values of suspended sediment 
load obtained through simulation agrees well with the 
observed values, as shown in Fig. 8a–c using FFBP, RBF, 
and GRNN, respectively.

The best trend is obtained for all the three algorithms 
when only water discharge data is used as an input. However, 
the values of correlation significantly improve when water 
discharge and rainfall data are being used for modelling the 
ANN.

The trends for all the three algorithms are almost simi-
lar to the experimental trend both for simulations I and II. 
However, for simulation I, the trend for FFBP and GRNN 
matches with that of experimenting with an exception that 
the trend obtained using RBF is somewhat deviating from 
the experimental values. The reason might be that in this 
case, the RBF is catching other features related to trend, 
cycle, seasonal variations associated with time series data.
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Fig. 6   Plots obtained for simulation II. a Suspended sediments load obtained using FFBP vs experimental. b Suspended sediments load obtained 
using RBF vs experimental. c Suspended sediments load obtained using GRNN vs experimental
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Conclusion

In this study, the relationships between hydrometeorological 
parameters of monthly mean rainfall and water discharge 
are used to predict the monthly mean suspended sediment 
load using three ANN algorithms, namely, FFBP, RBF, and 

GRNN. It has been found that only rainfall values were not 
sufficient to correctly predict the suspended sediment load. 
However, considering water discharge values as input sig-
nificantly improves the performance of all the three con-
sidered algorithms which is also evident from correlation 
values so obtained for the simulations runs. It is also to 
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Fig. 7   Plots obtained for simulation III. a Error values obtained with 
varying hidden layer neurons for different input parameters using 
FFBP, b minimum error values obtained for each input parameter for 
FFBP. c Error values obtained with varying spread constant for dif-

ferent input parameters using RBF. d Minimum error values obtained 
for each input parameter for RBF. e Error values obtained with vary-
ing spread constant for different input parameters using GRNN. f 
Minimum error values obtained for each input parameter for GRNN
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be noted that the best correlation is obtained when water 
discharge and rainfall data is being used for modelling the 
ANN. The reason might be the fact that rainfall data ignore 
the watershed features which are central to the erosion and 
suspended sediments load transportation process. When 
rainfall was clubbed with water discharge data, the perfor-
mance of the three algorithms improved in comparison with 
the simulation when rainfall alone was used as input, but 
the performance was not superior when compared with the 
result obtained using water discharge alone as input data.

The importance of this study is that ANN models devel-
oped successfully captures the features associated with the 
input data for prediction of suspended sediments values. 
Further non-linear dynamics within the contributing vari-
ables towards the suspended sediments load values were also 
taken care of by ANN methods.

The prediction of suspended sediment load for impor-
tant rivers like the Ganga in India carries important design 
information for water resource projects like dam and reser-
voir constructions. Furthermore, if the ANNs were trained 
on exceptional data obtained during any natural calamities 
like floods, torrential rain, cloud burst, etc., the suspended 

sediment values can be predicted to some extent, so that the 
design of water projects take into account these exceptional 
predicted values in their design so as to limit the damages 
which may occur in the future.
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