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Abstract
The information about water transmission rate into the ground is vital concerning the productivity of water system and 
seepage, advancing the accessibility of water for the plants, enhancing the yield of harvests, limiting degradation of soil 
and wastage of the water. Infiltration rate can successfully be measured using double ring infiltrometer. However, measure-
ment of infiltration in the field is labour and time consuming and difficult especially in mountainous sites. As an alternative, 
RASP-based infiltration models can be developed. The study was carried out in the field near the NERIST campus (Nirjuli 
Complex), Arunachal Pradesh, India. Twenty sites were identified at the grid of 10 m interval, and the field measurement 
of infiltration was performed. The soil was analysed for properties, namely, soil texture, bulk density (BD), particle density 
(PD), moisture content (MC), and organic carbon content (OC) for each site. The basic infiltration varied from 1 to 4.84 cm/h. 
The Scatter plot between RASPs and infiltration rate revealed that there is a positive correlation with OC, PD, and sand, 
and a negative correlation with BD, MC, silt, and clay. The partial least square regression (PLSR) analysis was carried out 
to develop predictive models for five different groups of inputs of soil properties. The influential variable projection (VIPs) 
analysis revealed sand as a highly influential factor, while silt as a reluctant predictor of infiltration characteristics of the study 
site. It was found that to predict the soil infiltration rate based on RASPs with seven independent variables (Eq. 13) with 
coefficient of determination (R2) 0.92, root mean square error (RMSE) 0.378 cm/h, mean absolute error (MAE) 0.143 cm/h, 
and standard error (SD) 0.398 cm/h is strongly recommended for the prediction of infiltration characteristics.

Keywords  Infiltration rate · Soil physical properties (RASPs) · Organic carbon · PLSR · VIP · Prediction

Introduction

In the context of changing climatic conditions, soil and water 
are considered as essential natural resources for crop produc-
tion are degrading due to lots of pressure on this two natu-
ral reservoir. Effective managing of this water will require 
prominent control of infiltration processes of soil, which 
in turn help to minimise numerous issues such as upland 
submerging, contamination of water resources (surface and 
groundwater), declining water tables, and wasteful water 
system of rural terrains.

The infiltration rate of soil is a necessary hydrological 
phenomenon that influences the surface water distribution 

consistency due to its component of exchange and dissemi-
nates water from the landscape to the subsurface soil pro-
file. In addition, an adequate understanding of site-specific 
infiltration characteristics of soil is vital to understand and 
regulate of soil and water-related natural perils.

Information about the soil infiltration process is essential 
for management and monitoring of hydrological processes 
and water-induced hazards in the watershed. The design 
and evaluation of farm irrigation delivery systems likewise 
depend on the intake rate of soil, since intake rate influences 
different design parameters of the irrigation system.

Water transmission inside the soil is guided by Darcy’s 
law, which expresses that the flux is a function of hydraulic 
conductivity and hydraulic gradient. The hydraulic gradi-
ent is consisting of gravity potential, osmotic potential, 
and matric potential (transmission of water from wet to 
dry soil) (Singer and Munns 1999). The infiltration rate 
is higher at the initial and decreases in elapsed time as 
it approaches the saturated hydraulic conductivity. The 
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constant rate at which water enters into the soil after 
attaining saturation is termed basic infiltration rate. The 
intake rate relies upon the physical, chemicals, and organic 
properties of the surface soil, the underlying dispersion 
of water in soil preceding irrigation, the transmission and 
redistribution of water over the surface.

Different physical properties of the soil are influencing 
infiltration processes. Out of these, soils, texture has a sig-
nificant impact on infiltration (Huang et al. 2011; Mousavi 
2015). Soil texture is one of the primary factors affects 
infiltration characteristics. Water rushes through substan-
tial pores of sandy soil than through the little pores of clay 
soil, particularly if clay is compressed and has a practically 
no structure upon the sum and kind of clay minerals, some 
clay soil create shrinkage breaks as they dry. Osuji et al. 
(2010) reported that soil organic matters, particle density, 
bulk density, porosity, moisture content, texture influence 
the infiltration. The depthwise classification of soil organic 
matter content has been recommended as a pointer of soil 
quality, because the organic matter is necessary to control 
soil loss, water intake to the soil, and protection of nutri-
ents (Franzluebbers 2002). The bulk unit weight of soil has 
an inverse relation with infiltration rate. An increase in soil 
bulk density decreases soil porosity resulting in a decrease 
in soil infiltration characteristics. Initial moisture content is 
one of the critical parameter, which influences water reten-
tion and transmission characteristics of the soil. Pandey et al. 
(2009) reported that the hydraulic conductivity of sandy soil 
decreases with depth. Therefore, initial moisture content is 
one of the potential input variables to model infiltration char-
acteristics of the soil.

The physical properties of soil and condition change over 
and altogether make infiltration characteristics itself show 
a large variety at the scale. The soil physical properties and 
condition have sizeable spatial variability drive consider-
able variability in infiltration characteristics of the soil. 
Field-scale characterisation of infiltration is tedious due to 
the necessity of various measurements (Khatr and Smith 
2005). Estimation of the features of infiltration is hard due 
to significant spatiotemporal variability (Pandey and Pandey 
2010).

Several studies around the globe (Mirzaee et al. 2014; 
Parhi 2014; Tuffour and Bonsu 2015) recommended the use 
of infiltration models as an alternative to field-based infil-
tration measurement. The application of a specific model 
may be contingent on several factors, such as the type of 
application, the desired level of accuracy, and user expertise 
(Clausnitzer et al. 1998). Application of particular model 
requires detail understanding of assumptions and boundary 
conditions of the specific model. Most of this model based 
on the fundamental assumption of uniform absorption of 
soil moisture, rapid surface ponding, and saturation of soil 
at final infiltration. These assumptions rarely observed under 

actual field conditions, which may lead to the inaccurate 
prediction of infiltration characteristics.

An alternative approach to measurement and infiltration 
models is to develop site-specific pedotransfer functions 
(PTFs) of infiltration rate as a function of soil properties. 
Many successful applications of PTFs in infiltration estima-
tion reported in the literature such as (Arshad et al. 2010; 
Ghorbani-Dashtaki et al. 2010; Ekhmaj 2010; Kashi et al. 
2014; Mahdian et al. 2009; Parchami-Araghi et al. 2013). 
Ghorbani-Dashtaki et al. (2016) concluded that soil physi-
cal properties derived pedotransfer functions could be suc-
cessfully used to predict infiltration rate with reasonable 
accuracy. Mousavi (2015) successfully used PTFs to predict 
infiltration characteristics in Iran. Hence, it is reasonable to 
correlated infiltration characteristics with less spatial easily 
measurable soil properties to model infiltration characteris-
tics at field scale (Rawls et al. 1983; Saxton et al. 1986; Wos-
ten and Genuchten 1988; Mbagwu 1994; Van de Genachte 
et al. 1996; Saxton and Rawls 2006).

As literature suggests, several techniques could be applied 
to develop infiltration PTFs. Linear and non-linear regres-
sion are widely used approach (Rahmati 2017). To develop 
reliable PTFs also necessitate correct identification of the 
most influential variable.

Partial least square regression is a robust multivariate 
regression technique that enables the operator to play out 
an extensive variety of investigations (Martens and Martens 
2000). Developing accurate and reliable models to predict 
soil infiltration rate is one of the most apprehensive topics 
in hydrology and selecting predictors that are more relevant 
is a critical judgement in model development. PLSR, which 
finds an expedient connection between a set of predictors 
and output factors, not just give a particular methodology 
to choose essential input variables yet, also, brings about 
more exact and reliable estimates than other generally used 
approaches.

PLSR is reasonable for selectivity improvements of sci-
entific instruments (Martens and Martens 2000). PLSR is a 
technique for relating two information frameworks, A and B, 
by a straight multivariate model, yet goes past the custom-
ary regression in that it demonstrates likewise the structure 
of A and B. PLSR gets its convenience from its capacity to 
investigate variables with numerous, noisy, collinear, and 
even deficient factors in both A and B (Wold et al. 2001). 
Details of the hypothesis, standards, and utilisation of PLSR 
can be found in the literature (Abdi 2010). The nonlinear 
models created utilising PLSR has a conditional implemen-
tation of multiple modern data-driven methods like ANN 
(Abudu et al. 2011). Moreover, PLSR has an advantage over 
the other machine learning system as a modelling procedure 
was direct, and the conditions were more straightforward and 
more expressive than the other data-driven methods (Abudu 
et al. 2011).
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Despite the considerable amount of research works have 
been done to understand the relationship between readily 
available soil properties (RASPs) and soil infiltration char-
acteristics (Rashidi et al. 2013; Lake et al. 2009), insufficient 
work has been led to model soil infiltration using different 
physical properties of soil.

As reviewed above, an attempt was made to develop pre-
dictive models as an alternative to field measured infiltra-
tion rate of fallow agricultural land located near the NER-
IST campus (Nirjuli Complex) using the PLSR technique 
based on RASPs, and to verify the models predictively with 
measured infiltration rate. However, no application of PLSR 
to model soil infiltration characteristics based on RASPs is 
reported in the study area (best of our knowledge). There-
fore, applying PLSR to develop reliable and accurate models 
to predict soil infiltration seems to be interesting.

Materials and methods

About study area

The study was carried out on the sandy field near the NER-
IST campus (Nirjuli Complex) campus. Locations of each 
measurement station were recorded with the help of global 
positioning system (GPS) instrument. Geographical details 
(longitude, latitude, and altitude) were recorded at each site 
(Table 1). The sampling distance was maintained at 10 m 
interval, as depicted in Fig. 1.

Measurement of infiltration rate

In this study, the infiltration rate was measured using double 
ring infiltrometer (Perroux and White 1988) which consists 
of two concentric metal rings and gauge. The distance across 
of the inward and outward ring was 25 and 35 cm individu-
ally, and both had an equivalent height of 25 cm. Rings are 
put concentrically and hammered with the help of rammer to 
ensure 12 cm insert of rings into the soil consistently. Meas-
uring gauge has been put on rings. A thin sheet of plastic 
was used inside the ring to avoid the surface soil disturbance 
due to splashing action of poured water. The water poured 
over the plastic sheet up to a depth of 15–20 cm. The plas-
tic sheet was removed slowly and the outer ring filled with 
water up to the same level as inside or more but not less 
than inside water level. Observations were recorded using 
point or hook gauge fixed over the gauging stand. The rate 
of fall was measured at a constant time interval of 5, 10, and 
15 min. The change of time was done when we got three or 
four consecutive constant reading for same time interval and 
time interval was increased gradually to get more accurate 
basic infiltration rate.

Soil physical properties

The soil sample was collected and analysed in the laboratory 
for the determination of soil properties viz. soil texture (sand 
%, silt %, and clay %), soil textural class, bulk density, par-
ticle density, moisture content, and organic carbon content, 
respectively.

Measurement of moisture content

A soil sample collected at each site at 30 cm depth before 
conducting the infiltration experiment were analysed for 
percentage moisture content using hot air oven-drying 
method. In this method, soil samples are kept for 24 h at 
150 °C temperature. Each sample was kept in three dishes 
for determining the moisture content. After getting all the 
three dishes moisture content, the average was taken as the 
moisture content of the sample. The moisture content (MC) 
in percentage calculated using the formula suggested by 
Punamia et al. (2005):

where M1 = mass of empty container with a lid (g), M2 = mass 
of container with wet soil and lid (g), and M3 = mass of con-
tainer with dry soil and lid (g).

(1)MC =
(M2 −M1) − (M3 −M1)

(M3 −M1)
,

Table 1   Location of sampling sites

Site Latitude (°N) Longitude (°E) Elevation (m)

1 27°08′5.1″ 93°44′35.2″ 114
2 27°08′4.8″ 93°44′35.1″ 113
3 27°08′4.4 93°44′35.2″ 115
4 27°08′4.1″ 93°44′35.4″ 116
5 27°08′5″ 93°44′34.8″ 114
6 27°08′4.7″ 93°44′34.8″ 114
7 27°8′4.4″ 93°44′34.8″ 114
8 27°8′4.1″ 93°44′34.8″ 114
9 27°8′5″ 93°44′34.5″ 115
10 27°8′4.8″ 93°44′34.5″ 116
11 27°8′4.4″ 93°44′34.5″ 115
12 27°8′4.1″ 93°44′34.6″ 113
13 27°8′5.6″ 93°44′34.1″ 112
14 27°8′4.7″ 93°44′34.1″ 111
15 27°8′4.4″ 93°44′34.1″ 112
16 27°8′4.1″ 93°44′34.2″ 115
17 2°8′5.7″ 93°44′34.2″ 116
18 27°8′4.7″ 93°44′34.2″ 117
19 27°8′4.4″ 93°44′34.2″ 116
20 27°8′4.1″ 93°44′34.2″ 116
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Measurement of BD (bulk density)

The bulk density of soil samples determined using Grossman 
and Reinsch (2002) and Punamia et al. (2005) methodology. 
The cylindrical core cutter of 130 mm long and 100 mm inter-
nal diameter was used to calculate soil bulk density. The bulk 
density (BD) in g/cm3 was calculated as suggested by Punamia 
et al. (2005):

where M1 = mass of cylinder (g), M2 = mass cylinder + mass 
of wet soil (g), and V = volume of cylinder (cm3).

Measurement of PD (particle density)

Soil particle density was measured with the help of pyc-
nometer (Punamia et al. 2005; Flint and Flint 2002). A 10-g 
screened soil sample with 200-µm sieve was used for analy-
sis. The following formula used to determine the value of 
particle density (PD) in g/cm3:

(2)BD =
(M2 −M1)

V
,

where M1 = mass of empty pycnometer (g), M2 = mass of dry 
soil, and pycnometer (g), M3 = mass of dry soil, water, and 
pycnometer (g), M4 = mass of water and pycnometer (g), and 
� = water density (g/cm3).

Soil texture analysis

The textural class of soil samples was analysed by the 
hydrometer method (Gee and Or 2002). A dispersing reagent 
was prepared by adding 50 g of sodium hexametaphosphate 
into 1 l of distilled water and stirred until it completely dis-
solved. The oven-dried soil samples of 5 g were put into 
500 ml beaker in which 100 ml of dispersing solution and 
500 ml of distilled water was added. The mixture was stirred 
for 15 min and was kept for 24 h. After keeping 24 h, the 
mixture was carefully transferred into 500-ml measuring cyl-
inder without any slippage and distilled water added to make 
it 500 ml. Afterwards, the hydrometer was dipped into the 

(3)PD =
(M2 −M1)

(M2 −M1) − (M3 −M4)
× �,

Fig. 1   Map of selected study site
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mix, and the reading was taken at 2 min, 12 min, and 24 h 
in the meantime the temperature of the mixture was taken. 
The process based on the sand particles settles entirely 
within 12 min, silt settles within 24 h, and remaining clay 
as suspended. Afterwards, percentage of sand, silt, and clay 
contents was determined. The soil triangle diagram (USDA 
1951) demonstrating the percentage of sand, silt, and clay 
in principal textural class was used to determine soil type 
based on primary particle percentage.

Determination of soil organic carbon (OC) content

The wet oxidation technique (Nelson and Sommers 1982) 
was used to determine the percentage of organic carbon 
(OC) in the site-specific soil samples. The 0.48-g dry soil 
sample screened with the help of 200-µm sieve was taken 
for analysis. The soil sample was put into a 50-ml beaker in 
which 11 drops of distilled water was added. After that, 1 
vial of OC1 and OC2 was added. It was kept for 30 min, then 
after 47 ml of distilled water was added again. The mixture 
was stirred carefully and was put in a test tube. At the same 
time, new sample, i.e., without soil was prepared in the same 
process. The test tube was placed in the device, and OC 
values were recorded.

Partial least square regression (PLSR) analysis

Regression analysis is a numerical method for the examina-
tion of connections between related factors or variables. Par-
tial least square regression (PLSR), which is based on linear 
regression algorithm commonly used in soil analysis. PLSR 
especially useful when the number of variables is more 
when compared to the number of samples. This advantage 
of PLSR leads to its application in numerous fields including 
soil science. In the design of PLSR, the measured basic infil-
tration rate was taken as a dependent variable. The different 
RASPs (OC, PD, BD, sand, silt, and clay) were used as inde-
pendent variables. Using the parameters PLSR, based basic 
infiltration rate models, was formed for different combina-
tions of inputs. The developed models were verified using 
an independent data set based on various statistical indices.

Description of PLSR

Multivariate regression method like partial least squares 
regression (PLSR) enjoys immense popularity in a wide 
range of fields, including the soil sciences. The main reason 
is that they have been designed to confront the situation that 
there are many, possibly correlated, predictor variables, and 
relatively few samples situation that is common, especially 
in soil physics. The equation of the PLS regression model 
writes

where Y is the matrix of the dependent variables, X is the 
matrix of the input factors in this case RASPs [sand (%), silt 
(%), clay (%), BD (g/cm3), OC (%), and moisture content 
of the soil (%)]. Th, Ch, W*h, Wh, and Ph, are the matrices 
generated by the PLSR algorithm, and Eh is the matrix of 
the residuals.

Statistical evaluation of developed models

The different statistical indices were used to evaluate the pre-
dictive accuracy of developed models are followings:

Root mean square error (RMSE)

RMSE considered better for showing bigger deviations. By 
squaring the errors, we can get results that are more accurate 
as the negative and positive errors do not cancel out each other 
and stay in existence until the end of the computation, thus 
adding more accuracy to the result. RMSE was calculated as 
explained by Pandey et al. (2014):

where M
i
 = measured value E

i
 = estimated value, n = number 

of samples.

Mean square error (MSE)

MSE has the easiest interpretation and useful to compare the 
precision between different volumes under study. The mean 
square error was calculated as explained by Pandey et al. 
(2014)

Standard deviation (SD) and coefficient of variation (CV)

Both SD and CV indices are used to measure variability in 
observations from the mean value. The values of SD CV was 
calculated as follows:

(4)
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where n = total number of observations, mi = sample obser-
vation, m′ = mean of n observations.

Results

Infiltration characteristics of sites

The summary of the average infiltration rate measured 
(cm/h) and the accumulated infiltration depth (cm) against 
the elapsed time for each location are presented (Fig. 2a, 
b). We notice that initially, the infiltration rate was high for 
all the selected sites ranged from (2.4–14.4 cm/h), and it 
reduces as soil wet, and it becomes almost constant after the 
soil is saturated. The corresponding accumulated infiltra-
tion rate ranged (1.8–17.8 cm). The basic infiltration rate at 
selected sites was ranged between 35 and 90 min from the 
start of infiltration. The site-specific details of infiltration 
characteristics, as depicted in Fig. 2a, b. Based on the analy-
sis of results it may infer that there is high spatial variability 
in the infiltration rate among the sites.

Soil physical properties

The site-specific different soil properties were estimated 
along with their descriptive statistics and depicted in 
Tables 2 and 3, respectively. From the analysis of results, it 
was observed that the sand percentage is 92.73%, silt per-
centage is 2.25%, and the clay percentage is 5.018%. The 
high proportion of sand was observed, because the field 
was sandy soil. The BD and PD range from 1.162 to 1.789 
and 1.996–2.99 g/cm3, respectively, with the average bulk 
density 1.5531 g/cm3 and particle density 2.447 g/cm3. The 
moisture content varies from 19.96–26.91% with a mean 
value of 23.22%. The OC ranges from 0.264 to 0.364% with 
the average value 0.322%. The textural class of the study 
area was sandy soil.

Scatterplot of the measured infiltration rate (IR) vs 
physical properties of soil

Figure 3 depicts the association between per cent sand vs 
IR, per cent silt vs IR, per cent clay vs IR, bulk density 
against IR, per cent moisture content (MC) against IR, and 
per cent, organic carbon content vs IR. From the analysis 
in Fig. 3, it can be depicted that the soil property is either 
positively or inversely proportional to the infiltration rate. 
Sand content of the soil is the crucial factor, which affects 
the soil infiltration rate. Figure 3 shows that sand content of 
the soil is directly proportional to the soil infiltration rate. 
Silt content is inversely related (Fig. 3). The clay content of 

the soil is the most crucial factor, which affects the soil IR. 
According to Fig. 3, the clay content of the soil is indirectly 
proportional to the IR. The BD content of the soil is another 
crucial factor, which affects the soil IR. It was observed that 
BD the content of the soil is inversely proportional to the soil 
IR (Fig. 3). The PD content of the soil has a similar relation 
to sand (Fig. 3). The MC and infiltration rate are negatively 
related (Fig. 3). The OC content of the soil has the signifi-
cant effects on the soil IR. The OC content and infiltration 
rate of soil has a positive relationship (Fig. 3).

Correlation between the infiltration rate (IR) 
and independent variables

The relationship between the measured IR and RASPs is 
presented in Table 4. The analysis of results presented in 
Table 4 demonstrates that infiltration rate has a positive rela-
tionship with sand, PD, and OC by 0.883, 0.691, and 0.335 
separately, which shows cumulative the sand, PD, and OC, 
will improve the IR of the soil. The clay, silt, BD, and MC 
have an adverse (negative) association with the measured 
IR of − 0.775, − 0.563, − 0.743, and − 0.673 separately. It 
demonstrates thar expanding the clay, silt, BD, and MC will 
have diminished the IR of the soil. Among all, the sand has a 
maximum positive correlation of 0.883 took after by clay as 
a negative relationship (− 0.775) which cause a substantial 
effect on infiltration characteristics of the soil.

Prediction model using partial least square 
regression (PLSR) method

For the development of prediction models of IR, the analysis 
was categorising into five different input groups. The soil 
texture was considered the necessary input of all the group. 
Group A has only soil texture as input. The group B has 
one additional input as bulk density along with texture. The 
group C has two additional input as bulk density and particle 
density along with texture. The group D has three additional 
inputs as bulk density, particle density, and moisture content 
along with texture. The group E has four additional inputs 
bulk density, particle density, moisture content, and organic 
carbon content along with texture. In all the developed mod-
els of different groups, independent variables have a meas-
urement unit [% (sand, silt, clay, MC, OC), g/cm3 (BD, PD)].

Development of predictive model for group A

The infiltration rate model for group A was developed 
using sand, silt, and clay as the independent variable. It was 
observed that the average percentage of sand, silt, and clay 
across the selected sites was 93.07, 2.34, and 5.187, respec-
tively. The developed equation for the estimated infiltration 
rate (EIR) is given below:
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Fig. 2   a Plot of measured infiltration rate and accumulated depth against time for site 1 to site 11. b Plot of measured infiltration rate and accu-
mulated depth against time for site 11 to site 20
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The details of predictive accuracy of the developed 
model are shown in Fig. 4. Analysis of results revealed 
that the EIR ranged from 0.779 to 5.89 cm/h with the 
average rate of 3.112 cm/h and the average measures IR 
was 3.11 cm/h. The R2 was 0.81. The RMSE, MSE, and 
SD were 0.623, 0.389, and 0.659 cm/h, respectively. The 
sand has the highest variable impact projection (VIPs) 
value = 1.173 followed by clay with 1.028. However, silt 
with VIP = 0.753 which is lower than (Wold (1995) and 
Wold et al. 2001 recommended threshold value of 0.8). 
They also categorised VIP in two groups [moderate influ-
ence if (0.8 < VIP < 1), and highly influential (VIP > 1)]. 
Therefore, silt is not an important predictor.

(9)
EIR = 2.87 (SAND) − 2.743 (SILT) − 0.732 (CLAY) − 254.43.

Development of predictive model for group B

The infiltration rate model was developed using the inputs 
(group A, and BD). The observed values of that the bulk 
density vary from the 1.37 to 1.789 gm/cm3 with the aver-
age of 1.53 g/cm3. The established equation of estimated 
infiltration rate (EIR):

Analysis of results revealed that the EIR ranged from 
1.001 to 4.3  cm/h with the mean value of 3.112  cm/h, 
against the average measures IR 3.112  cm/h. R2 was 
0.876. The RMSE, MSE, and SD, were 0.505, 0.254, and 
0.533 cm/h, respectively. The sand has the highest variable 

(10)
EIR = 2.349 (SAND) − 2.241 (SILT) − 0.598 (CLAY)

− 2.546 (BD) − 203.289.

Table 2   Measure RASPs and infiltration rate at study area

Site Sand (%) Silt (%) Clay (%) Textural class BD (g/cm3) PD (g/cm3) MC (%) OC (%) IR (cm/h)

1 93.13 2.21 5.56 Sandy soil 1.671 2.51 25.9 0.3 2.73
2 92.98 2.5 5.15 Sandy soil 1.76 2.07 21.8 0.31 1.57
3 93.029 2.38 5.6 Sandy soil 1.379 2.18 25.2 0.34 2.60
4 92.84 2.4 6.05 Sandy soil 1.789 2.32 26.91 0.29 1.16
5 92.78 2.51 6.46 Sandy soil 1.553 2.45 23.3 0.29 1.55
6 93.326 2.11 4.12 Sandy soil 1.306 2.76 22 0.33 5.42
7 93.04 2.37 4.8 Sandy soil 1.416 2.71 20 0.32 3.49
8 93.093 2.18 4.4 Sandy soil 1.406 2.73 23.7 0.31 3.95
9 93.29 2.4 5 Sandy soil 1.441 2.702 21.17 0.34 4.51
10 93.15 2.41 5.47 Sandy soil 1.501 2.32 25.2 0.31 3.68
11 92.76 2.32 5.95 Sandy soil 1.44 2.48 24.72 0.32 1.88
12 93.22 2.38 4.87 Sandy soil 1.626 2.43 21.96 0.33 3.86
13 93.353 2.1 4.4 Sandy soil 1.4 2.63 22.2 0.34 5.73
14 93.466 2.26 3.94 Sandy soil 1.251 2.74 18.1 0.34 5.66
15 93.23 2.52 5.75 Sandy soil 1.653 2.65 24.4 0.34 3.27
16 93.04 2.29 6.2 Sandy soil 1.649 2.18 24.67 0.35 2.20
17 92.965 2.16 4.47 Sandy soil 1.434 2.456 22.7 0.35 3.00
18 93.23 2.47 4.7 Sandy soil 1.662 2.15 22.6 0.33 2.99
19 92.7 2.59 5.7 Sandy soil 1.68 2.41 26.01 0.36 1.46
20 92.974 2.3 5.15 Sandy soil 1.781 2.24 27.7 0.33 1.53

Table 3   Descriptive statistics of 
measured RASPs

Statistic Sand (%) Silt (%) Clay (%) BD (g/cm3) PD (g/cm3) MC (%) OC (%)

Nos. of observations 20 20 20 20 20 20 20
Minimum 92.700 2.100 3.940 1.251 2.070 18.100 0.292
Maximum 93.466 2.590 6.460 1.789 2.760 27.700 0.361
1st quartile 92.972 2.248 4.643 1.414 2.300 21.990 0.318
Median 93.067 2.375 5.150 1.527 2.453 23.500 0.335
3rd quartile 93.230 2.425 5.713 1.664 2.663 25.200 0.343
Mean 93.080 2.343 5.187 1.540 2.456 23.512 0.330
Variance (n − 1) 0.044 0.020 0.522 0.026 0.049 5.702 0.000
Standard deviation (n − 1) 0.210 0.141 0.722 0.163 0.221 2.388 0.020
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Fig. 3   Relation between studied soil properties and measured infiltration rate
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impact projection (VIPs) value = 1.173 followed by clay 
(VIP = 1.032), and BD (VIP = 0.989). The BD influences 
infiltration process moderately. However, the importance of 
silt was almost similar as in Eq. 9 with VIP = 0.756. There-
fore, silt again not an important predictor.

With the consideration of BD, as additional input, 
improvement in model efficiency was observed as compared 
group A model which can be seen through the increased 
of R2 and reduction in error statistics. Furthermore, Fig. 5 
shows measured and predicted IR, which also support Eq. 10 
has better productivity compared to Eq. 9.

Development of predictive model for group C

A predictive model was developed using inputs (group B 
and PD). It was observed that the particle density varies 
from 2.07 to 2.74 g/cm3 with the average value of 2.455 g/
cm3. The established equation for the estimated infiltration 
rate (EIR):

Findings revealed that the EIR ranged from 1.25 to 
5.53 cm/h with the mean value of 3.112 cm/h. The R2 
was 0.899. The RMSE, MSE, and SD were 0.456, 0.208, 
and 0.483 cm/h, respectively. The sand has the highest 
variable impact projection (VIPs) value = 1.19 followed 
by clay (VIP = 1.048), BD (VIP = 1.04), PD (VIP = 0.935). 
The PD influences infiltration process moderately. Results 
revealed that the importance of BD improved from moder-
ate influence to high influence by the addition of PD as an 
input variable. However, the importance of silt was almost 
similar as in Eqs. 9, and 10 with VIP = 0.768. Therefore, 
silt again not an important predictor.

With the consideration of two additional inputs, namely, 
BD and PD, the modelling efficiency further enhanced 
compared to the previously developed models for the 
group A and B, which can be seen through the increased 

(11)
EIR = 1.988 (SAND) − 1.896 (SILT) − 0.507 (CLAY)

− 2.154 (BD) + 1.476 (PD) − 175.144.

Table 4   Correlation matrix 
among RASPs

Variables Sand (%) Silt (%) Clay (%) BD (g/cm3) PD (g/cm3) MC (%) OC (%) IR (cm/h)

SAND (%) 1.000 − 0.424 − 0.691 − 0.448 0.433 − 0.584 0.275 0.883
SILT (%) − 0.424 1.000 0.571 0.525 − 0.422 0.170 − 0.088 − 0.567
CLAY (%) − 0.691 0.571 1.000 0.554 − 0.472 0.643 − 0.312 − 0.775
BD (gm/cm3) − 0.448 0.525 0.554 1.000 − 0.647 0.609 − 0.287 − 0.742
PD (g/cm3) 0.433 − 0.422 − 0.472 − 0.647 1.000 − 0.482 0.090 0.691
MC (%) − 0.584 0.170 0.643 0.609 − 0.482 1.000 − 0.208 − 0.673
OC (%) 0.275 − 0.088 − 0.312 − 0.287 0.090 − 0.208 1.000 0.335
IR (cm/h) 0.883 − 0.567 − 0.775 − 0.742 0.691 − 0.673 0.335 1.000
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Fig. 4   Measured vs predicted IR using sand, silt, and clay
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Fig. 5   Measured vs predicted IR using sand, silt, clay, and BD
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R2 and reduction in error statistics. Figure 6 depicts the 
better correlation between measured vs predicted IR for 
group C inputs.

Development of predictive model for group D

A predictive model was developed using inputs (group C, 
and MC). Findings showed that the moisture content ranged 
(18.1–27.7%) with the average value of 23.512%. The devel-
oped equation for the EIR infiltration rate is given below:

The findings revealed that the EIR ranged from 1.22 to 
5.95 cm/h with the mean value of 3.112 cm/h, against the 
mean measured IR as 3.116 cm/h. R2 was 0.897. The RMSE, 
MSE, and SD were 0.461, 0.212, and 0.487 cm/h, respec-
tively. The sand has the highest variable influential projec-
tion (VIPs) value = 1.213 followed by clay (VIP = 1.064), 
BD (VIP = 1.01), PD (VIP = 0.948), and MC (VIP = 0.810). 
Results revealed that the importance of MC close to the 
threshold. Therefore, model predictively was almost simi-
lar to the previous case. However, the importance of silt 
was almost similar as in previous developed equations with 
VIP = 0.779. Therefore, silt again not an important predictor.

The consideration of moisture content (MC) does not 
improve predictability, resulted in almost similar perfor-
mance compared to the previously developed models for 
the group C which can be seen through the similar statisti-
cal performance indices. According to Fig. 7 measured vs 
predicted IR using all selected RASPs except organic carbon 

(12)

EIR = 0.252 (SAND) − 0.541 (SILT) − 0.33 (CLAY)

− 1.724 (BD) + 0.984 (PD) − 0.132 (MC) − 14.052

(OC) input showed almost similar correlation compared to 
developed equation 11 of (group A, group B, group C).

Development of predictive model for group E

A predictive model was developed using the inputs of (group 
D, and OC). Findings resulted that the OC varies from the 
0.29–0.36% with the average value of 0.329%. The devel-
oped equation for the EIR infiltration rate is given below:

From the analysis of results revealed that the estimated 
EIR ranged from 1.02 to 5.34 cm/h with the average value 
of 3.112 cm/h, and the mean observed IR was 3.112 cm/h.

The R2 was 0.927. The RMSE, MSE, SD, were 0.378, 
0.212, 0.143 and 0.398 cm/h, respectively. The sand has 
highest variable impact projection (VIPs) value = 1.288 
followed by clay (VIP = 1.129), BD (VIP = 1.082), PD 
(VIP = 1.008), MC (VIP = 0.827), OC (VIP = 0.980). Find-
ings revealed that the OC moderately influence the model. 
Furthermore, the addition of OC improved VIP values of 
all the inputs except MC that remains close to the thresh-
old. Therefore, model predictively was almost similar to the 
previous case. However, the importance of silt was reduces 
compared to previous cases with VIP = 0.658. Therefore, silt 
again not an important predictor.

We found that modelling efficiency enhanced due to 
the addition of organic carbon content (OC) as an input 

(13)

EIR = 1.652 (SAND) − 1.576 (SILT) − 0.42 (CLAY)

− 1.79 (BD) + 1.22 (PD) − 0.11 (MC) + 0.66 (OC)

− 144.64
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Fig. 6   Measured vs predicted IR using sand, silt, clay, BD, and PD
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variable in comparison with recent analysis for the other 
groups, which can be seen through the increased R2. Figure 8 
measured vs predicted IR using all the RASPs as independ-
ent variables shows a better correlation compared to other 
developed Equations.

Discussion

For the development of predictive models, it is essential to 
understand dependency among dependent and independent 
variables. In the present study, it was observed most of the 
selected soil properties have either highly positive or pro-
foundly negative correlation with observed infiltration rate. 
The sand and clay content is the most crucial factor, which 
affects the soil infiltration rate. The bulk density (BD) and 
moisture content showed another possible input as these 
properties inversely related to infiltration characteristics 
(Pandey et al. 2009). The organic carbon (OC) content of 
the soil showed a positive correlation with infiltration char-
acteristics of the study area. The findings of present investi-
gation correlate with studies (Van de Genachte et al. 1996; 
Pandey et al. 2009; Dabral and Pandey 2016; Sarmadian 
and Taaghizadeh-Mehrjardi 2014; Rahmati 2017; Saleh 
et al. 2017) reported that easily measurable soil character-
istics could successfully predict field measured infiltration 
characteristics.

From the analysis of all the developed PLSR equations, 
it was observed that the predictability of models improved 
(with the increased R2, and decreased error indices) by 
increasing numbers of inputs. Rahmati (2017) reported 
similar conclusion in development of PTFs of cumulative 

infiltration depth based on radially observed soil character-
istics in Iran. The developed equation 9 showed the worst 
statically fitted value of the R2 and RMSE and SD. The 
developed equation 13 depicted best fitting statistic maxi-
mum value of the R2 and minimum value of error indices. 
Thus, Eq. 13 is the best amongst all the equations. It may 
be concluded that an increasing number of independent 
variables better productivity in the prediction of infiltra-
tion characteristics. However, silt and MC were not a pow-
erful predictor for the study site. Infiltration characteristics 
of the soil are one of the most complex hydrological pro-
cess dependent on various parameters; it may be possible 
by identifying any more suitable parameter its productivity 
further enhanced.

Conclusions

The present study aims to develop predictive models of IR 
based on radially available soil properties (RASPs) as an 
alternative to measured IR, for the study area. Twenty sites 
soil samples were used for the establishing model (partial 
least square regression based). Analysis of results depicted 
that infiltration rate has a positive relationship with sand, 
particle density (PD) and organic carbon (OC). However, 
silt, clay, bulk density (BD), and moisture content (MC) 
have a negative correlation with the infiltration.

The variable influential projection (VIP) analysis 
revealed sand as a highly influential factor, while silt as 
a reluctant predictor of infiltration characteristics of the 
study site. In addition, the organic carbon, bulk density, 
and particle density were moderately influencing vari-
able of infiltration characteristics of the soil. The high-
est improvement in models performance was observed by 
adding organic carbon as compared to other moderately 
influencing inputs. The moisture content has limited influ-
ence on infiltration characteristics of the study site.

The results revealed that PLSR is satisfactory to 
develop suitable models and linking soil properties to infil-
tration rate. It also identifies suitable predictor based on 
influential variable projection. The model developed with 
all the identified soil properties was a best-fitted with the 
maximum value of R2 and the least value of mean error 
statistics. In addition, the value R2 enhancing some inputs 
increases in the model, which confirm that infiltration 
characteristics of study can be predicted successfully with 
readily observed soil properties. The infiltration process 
modelled with readily observed soil properties, save the 
resources in the measurement of time-consuming infiltra-
tion characteristics and could be applied under limited data 
conditions.
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