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Abstract The main aim of this study was to setup and

evaluate the applicability of physically based soil and water

assessment tool (SWAT) model with ArcGIS version 9.3 in

assessing the runoff and sediment load from Mojo water-

shed having a total area of 2017.21 km2 situated in central

Oromia Regional state, Ethiopia. In this study for stream

flow simulation parameters involving surface runoff

(CN2.mgt) and ground water (ALPHA_BNK.rte) are found

the most sensitive parameter and the parameters repre-

senting channel process (SPCON.bsn, SPEXP.bsn

&ADJ_PKP.bsn), geomorphology (SLSUBBSN.hru) and

surface runoff (CN2.mgt, & HRU_SLP.hru), were found

more sensitive for sediment load simulation. There are a

good agreement between the observed and simulated dis-

charge, which was verified using both graphical technique

and quantitative statistics. The value of R2 = 0.75,

NSE = 0.76, RSR = 0.49 and PBIAS = 10.9 obtained

during calibration and R2 value 0.71, NSE value 0.70, RSR

value 0.59 and PBIAS 9.5 obtained during validation as

well as the uniformly scatter points along the 1:1 line

during calibration and validation justify that the model is

good in simulating runoff from Mojo watershed. For sed-

iment load the computed statistical indicators R2 = 0.77,

NSE = 0.76, RSR = 0.49 and PBIAS = 48.70 were

obtained during calibration and during validation the

computed statistical indicators were found 0.67 for R2, 0.65

for NSE, 0.59 for RSR and 50.5 for PBIAS. From the

calibration and validation result, it can be concluded that

the calibrated parameter values of SWAT model can be

used for hydrologic simulation of the un-gauged watershed

that is having the similar agro-climatic condition.

Keywords Mojo watershed � Sensitivity analysis �
Calibration � Validation � Distributed watershed model �
Efficiency measure

Introduction

To prevent and minimize soil erosion, sound understanding

of the process is very essential. To compare the magnitude

and determine factors, causes and effects that help exten-

sion workers for better design and monitoring of SWC

techniques, and to ensure sustainable land management

there is a need to understand the mechanics and mechanism

of soil erosion (Wischmeier and Smith 1978). For this, soil

erosion models and experimental setup, installing test plot

and measuring sediment loss at the outlet of the catch-

ments, can be employed. Monitoring of soil erosion with

the installation of various gauging stations is rather

expensive and often unaffordable. Also, it is unusual to

extrapolate values from gauged catchments to un-gauged

catchments, unless required for general overview of the

problems and policy issues. Under such circumstances, soil

erosion models have great importance, as primary tools for

making soil erosion assessments.

Fortunately, many hydrologic models have been devel-

oped over time to allow for better understanding of the

hydrologic and erosion processes which occur on agricul-

tural watersheds. These models are basically categorized
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into three types namely empirical, conceptual and physi-

cally based (Morgan 1995; Merritt et al. 2003). But, in

humid tropics area where heterogeneous physical envi-

ronments and seasonality of meteorological and hydrologic

events exists the use of physically-based, distributed and

continuous hydrologic models is imperative to better

understand the environment.

The applicability of some of themodels had been evaluated

under different condition by different researcher in different

parts of the world. Matamoros et al. (2005) tested SWAT and

AGNPS model to evaluate their potential applicability under

data scarcity. The result of their study reveal that the SWAT

model with less basin subdivision showed to bemore accurate

than AGNPS model. Mishra et al. (2008) made a comparison

of SWAT with HSPF model in predicting hydrologic pro-

cesses of a small multi-vegetated watershed. Although both

SWAT and HSPF models showed high capability of simu-

lating runoff and sediment load within the acceptable level of

accuracy, the SWAT model being more responsive to the

seasonal variations of precipitation, predicted monthly runoff

and sediment load more accurately than HSPF model. Ogwo

et al. (2012) compared the performances of AGNPS, WEPP

and SWAT model for application in the Humid Tropics.

WEPP applications were found to provide good capability to

simulate sediment load followed by SWAT while AGNPS

applications were found satisfactory. Parajuli and Ouyang

(2013) compared SWAT and HSPF models in assessing long

term hydrological impacts due to future climate change sce-

narios in which the performance of SWATmodel found to be

better in simulating mean monthly stream flow.

Among all hydrological models SWAT is selected for

this study as it is have been used in many countries all over

the world intensively for the estimation of sediment,

nutrient and pesticides, runoff, and conservation measure

impact assessments in the watershed (Arnold and Fohrer

2005). SWAT is one of the process-based and distributed

models that replaced traditional lumped and empirical

models. Empirical models are still used because of their

simple structure and ease of application. Since they are

based on coefficients computed or calibrated from mea-

surements, they cannot describe or simulate the erosion

process as a set of physical phenomena. On the other hand

SWAT, physically based, can describe with detail the

physical mechanism of sediment load and can simulate the

individual components of the entire erosion process by

solving the corresponding equations; and so it is argued

that it has a wider range of application. Therefore, the main

aim of this study is to examine the applicability of SWAT

model in estimating the soil erosion and runoff in the

central agricultural watershed, Ethiopia, with the view to

simplify the subsequent watershed management planning

process.

Materials and methods

Study area description

Mojo watershed having a total area of 2017.21 km2 is

situated in Central Oromia Regional State, Ethiopia,

(Fig. 1). Geographically it is located between latitudes of

8�160 and 9�180 and longitude of 37�570 and 39�170. The
watershed drains to Mojo river and finally into Awash

River. The majority of the watershed particularly the cen-

tral and lower part of the watershed has monomodal rain-

fall pattern whereas the upper part of the watershed

characterized as bimodal. The mean annual rainfall of the

watershed is 930.33 mm. More than 85% of the annual

rainfall occurs during June–September with peak in July–

August. The mean maximum temperature of the watershed

is ranging from 21 to 27 �C the highest being recorded in

the month of May and the lowest in July. The altitude of

the watershed ranges from 1592 masl at the river bed to

3065 masl at the upper part the watershed. The major

dominant soil types of the watershed are Vitric Andosols

(60.11%) followed by Chromic Luvisols (29.73%), Chro-

mic Cambisols (7.59%), and Umbric Leptosols (1.3%). The

major farming system of the watershed is mixed farming

mode of production. Agriculture is the dominant land use,

about 97% of the total land used for agricultural activities;

mostly for the production of cereals crop like Teff, Wheat,

Lentils, Haricot beans and Chickpea. Close to 1.16% of the

total land area is considered as degraded land and about

0.68% of the land area is covered by shrubs and forest. The

rest of the area is occupied by settlement, flower farm and

water body.

Description of SWAT model

SWAT model is a physically based watershed-scale con-

tinuous time-scale model, which operates on a daily time

step developed and supported by the United State Depart-

ment of Agriculture-Agricultural Research Service

(USDA-ARS). The SWAT model is an advancement of the

Simulator for Water Current Perspectives in Contaminant

Hydrology and Water Resources Sustainability Resources

in Rural Basins (SWRRB) and Routing Outputs to Outlet

(ROTO) models. The SWAT model development was

influenced by other models like chemical, Runoff and

Erosion from Agricultural Management (CREAMS) (Kni-

sel 1980), Groundwater Loading Effects on Agricultural

Management Systems (GLEAMS) (Leonard et al. 1987),

and Erosion Productivity Impact Calculator (EPIC) (Wil-

liams et al. 1984; Neitsch et al. 2002).

The SWAT model can simulate runoff, sediment,

nutrients, pesticide, and bacteria transport from agricultural
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watersheds (Arnold et al. 1998). The SWAT model delin-

eates a watershed, and sub-divides that watershed into sub-

basins. In each sub-basin, the model creates several

hydrologic response units (HRUs) based on specific land

cover, soil, and topographic conditions. Model simulations

that are performed at the HRU levels are summarized for

the sub-basins. Water is routed from HRUs to associated

reaches in the SWAT model. SWAT first deposits esti-

mated pollutants within the stream channel system then

transport them to the outlet of the watershed. Major model

components include weather, hydrology, soil temperature,

plant growth, nutrients, pesticides, and land management.

To accurately predict the movement of runoff, sediment

or nutrient, and pesticide simulation of the watershed

separated into two major divisions as land phase and

routing phase of hydrologic cycle. The land phase controls

amount of water, sediment, nutrient, and pesticide loading

to the main channel in each sub-watershed. Where as, the

routing phase defined as the movement of water, sedi-

ments, etc., through the channel network of the watershed

to the outlet. The simulation of the hydrologic cycle by

SWAT is based on the water balance equation, which is

written as:

SWt ¼ SWþ
Xt

t¼1

Rt � Qt � ETt � Pt � QRtð Þ; ð1Þ

where, SWt is the final soil water content (mm), SW is the

initial soil water content on day i (mm), t is time (days), Rt

is the amount of precipitation on day i (mm), Qt is the

amount of surface runoff on day i (mm), ETt is the amount

of Evapo-transpiration on day i (mm), Pt is amount of

percolation on day i (mm), and QRt is the amount of return

flow on day i (mm).

Surface runoff

In the hydrologic module of the model, the surface runoff

is estimated separately for each sub-basin and routed to

quantify the total surface runoff for the watershed. The

most commonly used method for estimating surface runoff

in SWAT models is the modified SCS-CN2 with daily time

step or Green-Ampt Mein–Larson infiltration equation with

hourly or sub-daily time step (Migliaccio and Srivastava

2007). SWAT simulates surface runoff volumes and peak

runoff rates for each Hydrologic Response Unit (HRU).

SCS curve number method is less data intensive over the

Green-Ampt method (Fontaine et al. 2002). Therefore, the

SCS curve number method was used to estimate surface

runoff volumes in this study because of the unavailability

of sub daily data for Green-Ampt method. One distinct

feature in the SCS curve number method with respect to the

Green-Ampt method is that it lumps canopy interception in

Fig. 1 Mojo watershed location map
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the term initial abstraction. Then SWAT estimates the peak

runoff rate, time of concentration for overland and channel

flow and surface runoff lag separately for each sub basin

(Neitsch et al. 2002). The SCS curve number (SCS 1972)

equation is:

Qsurf ¼
Rday � Ia
� �2

Rday � Ia þ S
� � ; ð2Þ

where Qsurf is the accumulated runoff or rainfall excess

(mm), Rday is the rainfall depth for the day (mm), Ia is the

initial abstractions which includes surface storage, inter-

ception and infiltration prior to runoff (mm), and S is the

retention parameter (mm). The retention parameter varies

spatially due to changes in soils, Land use, management

and slope and temporally due to changes in soil water

content. The retention parameter is defined as:

S ¼ 25:4
1000

CN
� 10

� �
; ð3Þ

where, CN is the curve number for the day. The initial

abstraction, Ia is commonly approximated as 0.2S and the

above equation becomes

Qsurf ¼
Rday � 0:2S
� �2

Rday þ 0:8S
� � forR day[ Ia ¼ 0:2Sð Þ: ð4Þ

Sediment component

Erosion and sediment yield for each sub-basin, in the

SWAT model, is computed using Modified Universal Soil

Loss Equation (MUSLE), Williams (1975), given as below,

sed ¼ 11:8� Qsurf � qpeak � areahru
� �0:56 �K � C � P

� LS� CFRG,

ð5Þ

where, sed is the sediment yield on a given day (metric

tones), Qsurf is the surface runoff volume (mm/ha), qpeak is

the peak runoff rate (m3/s), areahru is the area of the HRU

(ha), K is the soil erodibility factor [0.013 metric t m3 h/

(m3-metric t cm)], C is the cover and management factor,

P is support practice factor, LS is the topographic factor

and CFRG is the course fragment factor.

Data collection

The climatic variables of the watershed required by the

model were obtained from the National Metrology Service

Agency (NMSA), Ethiopia. Whereas daily average stream

flow and sediment load data at Mojo stream gauging station

were obtained from the Federal Ministry of Water

Resources of Ethiopia (FMWRE). Oromia Water Works

Design and Supervision Enterprise (OWWDSE) and FAO-

UNESCO Soil map of the world is another major source of

data utilized for the definition and characterization of the

different soil properties of the watershed. A digital soil and

land use/cover maps (1:50,000 scale) of Awash basins,

from which soil and land use map of the Mojo watershed

extracted, were obtained from OWWDSE. Soil and land

use map of the watershed was clipped and converted to

raster datasets from the obtained soil and land use map to

obtain the physical description and characteristics of the

major soil types and present land use of the watershed.

Whereas, the digital elevation model (DEM) of 90 9 90 m

resolution was downloaded from website www.srtm.csi.

org.

Input data preparation for SWAT model

Weather parameter

Daily precipitation data used by the weather generator of

the SWAT model are calculated using computer program

of Stefan (2003) for each station using daily precipitation

data of the 30 years (1980–2009). The other weather

parameter, average daily dew-point temperature per month

of each station was calculated using anther computer pro-

gram, dew02.exe from daily temperature and humidity of

each station. Sunshine hours of each station obtained from

NMSA were converted to solar radiation as required by the

SWAT using Angstrom formula (Adopted from FAO

1998) which relates solar radiation to extraterrestrial radi-

ation and relative sunshine duration.

Soil parameter

Apart from the physical properties of the soils obtained

from FAO (1998) soil map, additional soil characteristics

such as soil saturated hydraulic conductivity, bulk density,

soil available water and texture class at different soil depths

were computed using the Soil Plant Air Water (SPAW)

model. Further, the soil erodibility K factor has been cal-

culated using erodibility equation of Williams et al. (1984)

considering soil texture and organic carbon content as an

input variable.

SWAT model set up

After all weather and soil parameters prepared in tabular

form and transferred to SWAT weather generator data base

and user’s soil data base, delineation of the watershed into

sub-watershed and stream net work generation from DEM

90 m 9 90 m resolution at a scale of 1:50,000 were pro-

cessed using Arc SWAT2009 with ArcGIS version 9.3. In

this process, prior to the application of the maps in the
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model, preprocessing work was carried out to make the unit

of the map the same to facilitate overlaying of DEM, land

use, soil and slop map. Further, land use and soil map along

with their respective look up tables prepared were uploaded

to the model for reclassification according to SWAT cod-

ing convention. Moreover, the whole watershed slopes

were categorized into five slope classes using the existing

model interface. Then, Land use, soil and slope maps were

overlaid to create HRU’s that is having similar hydrologic

condition. Finally, location table of weather data file were

loaded to link them up with the corresponding files already

created for the purpose. After loading all the necessary

input data and generating all the required database files,

then, SWAT model was set to run on monthly bases con-

sidering the first 3 years (1980–1982) data for warm-up of

the model. The SWAT model setup flow diagram is shown

in Fig. 2.

Sensitivity analysis

Prior to model calibration parameter sensitivity analysis

was done using the SWAT-CUP (SWAT Calibration and

Uncertainty Procedures) Sequential Uncertainty Fitting

ver. 2(SUFI-2) global sensitivity methods, for the whole

catchment area. Generally, twenty-three hydrological

parameters related to stream flow and sixteen hydrological

parameters related to sediment load simulation were con-

sidered for sensitivity analysis in the study area. The

parameters selected for sensitivity analysis were based on a

review of calibration parameters used in past studies (Re-

ungsang et al. 2005; Griensven et al. 2006; Zhang et al.

2008, 2009, Margaret and Chaubey 2010; Jajarmizadeh

et al. 2012; Mengistu and Sorteberg 2012; Xie et al. 2012).

Model calibration and validation

A general calibration process flowchart for flow and sedi-

ment load is shown in Fig. 3. Automatic calibration and

uncertainty analysis incorporated in SWAT2009 via the

SWAT-CUP software developed and tested by Abbaspour

(2012) with the semi-automated program SUFI2was used

for this study. The relevant model parameter based on their

sensitivity analysis the top thirteen ranking parameters

were selected as starting points for model calibration on

monthly bases first for stream flow and followed by sedi-

ment load, as suggested by Neitsch et al. (2011), being

sediment outflow from each HRU and sub-basin is pri-

marily governed by soil physical properties, surface runoff,

stream discharge and stream flow velocity. Calibration of

the model were done by changing the parameter value

within the range until the predicted value was reasonably in

line with that of observed value and its accuracy was

evaluated with Nash–Sutcliffe coefficient (NSE) and

coefficient of determination (R2). After the model was

calibrated using stream flow and sediment load data of

1983–1995, the accuracy of the model was evaluated

during the validation process with the help of the data,

which were not used during the calibration of the model.

Thus, for this purpose monthly simulated stream flow and

sediment load for 1996–2009 were compared with

observed monthly stream flow and sediment load data of

the same period. All the model evaluation parameters used

for calibration were also used in the validation process.

Model performance evaluation

Coffey et al. (2004) as cited by Arnold et al. (2012)

describe nearly twenty potential statistical tests that can be

used to judge SWAT predictions, including R2, NSE, root

mean square error (RMSE), nonparametric tests, t test,

objective functions, autocorrelation, and cross-correlation.

For the present model performance evaluation techniques

the recommendation given by Moriasi et al. (2007), Nash–

Sutcliffe efficiency (NSE), percent bias (PBIAS), root

mean square error observation standard deviation ratio

(RSR) and coefficient of determination (R2), were

considered.

Nash–Sutcliffe efficiency (NSE)

The Nash–Sutcliffe efficiency (NSE) indicates how well

the plot of observed versus simulated data fits the 1:1 line.

It generally ranges from -? to 1. Higher value of NSE

indicates better accuracy of model prediction whereas

lower NSE indicates poor model prediction. In general,

model simulation can be judged as satisfactory if NSE

[0.50, Moriasi et al. (2007). NSE is computed as shown

below:

NSE ¼ 1�
PN

i¼1 Oi � Pið Þ2
PN

i¼1 Oi � O
� �2 ; ð6Þ

where, NSE = Nash–Sutcliffe efficiency, Pi = simulated

flow, Oi = observed flow, O = the mean of observed

data, and N is the total number of observation.

Percent bias (PBIAS)

Percent bias measures the average tendency of the simu-

lated data to be larger or smaller than their observed

counterparts. The optimal value of PBIAS is 0.0, with low

magnitude values indicating accurate model simulation.

Positive values indicate model underestimation bias, and

negative values indicate model overestimation bias (Gupta

et al. 1999) as cited in Moriasi et al. (2007). PBIAS is

computed as shown below:
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PBIAS ¼
Pn

i¼1 Oi � Sið Þ � 100Pn
i¼1 Oið Þ ; ð7Þ

where, PBIAS is the deviation of data being evaluated,

expressed as a percentage. If PBIAS ±25% for stream flow

and PBIAS ±55% for sediment, the model simulation can

be judged as satisfactory.

Root mean square error observation standard deviation

ratio (RSR)

RSR incorporates the benefits of error index statistics and

includes a scaling/normalization factor, so that the result-

ing statistic and reported values can apply to various con-

stituents. RSR varies from the optimal value of ‘‘0’’, which

indicate zero root mean square error (RMSE) or residual

1- Information Collection
2- Watershed Delineation
3- HRU Definition
4- Integration of input

2 3

1

DEM

Stream
Delineation

Watershed outlet
Definition

Calculation of Subbasin
Parameters

Slope
Classification

Soil
Map

Land Use
Map

Layers
Overlay

Create HRU’s

4
Weather

Data

Soil
Data

SWAT
Data base

Edit input data

Edit input

Rewriting files

Run SWAT

Start

Required Information

Data Pre-Processing

Fig. 2 SWAT model setup flow diagram
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variation and therefore perfect model simulation, to a large

positive value. Generally, if the value of RSR B0.70 the

model simulation can be considered as satisfactory (Mo-

riasi et al. 2007).

RSR ¼ RMSE

STDEVobs

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Oi � Sið Þ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Oi � S

� �2q : ð8Þ

Coefficient of determination (R2)

The coefficient of determination (R2) described the pro-

portion of the variance in the measured data explained by

the model. R2 ranges from 0 to 1, with higher values

indicating less error variance, and typically values greater

than 0.5 are considered acceptable (Santhi et al. 2001) as

cited in Moriasi et al. (2007).

R2 ¼
Pn

i¼1 ðOi � O Þ ðPi � P ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðOi � O Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðPi � P Þ2

q

0
B@

1
CA

2

; ð9Þ

where Pi = simulated flow, Oi = observed flow, and O

and P ; average of observed and predicted flow

respectively.

One of the major drawbacks of R2 is that only dispersion

is quantified if it is considered alone. Therefore, a model

which over or under predicts all the time will still result in

good R2 value close to 1 even if all prediction were wrong

(Krause et al. 2005). In order to overcome the major

drawback of R2 additional information had been taken into

consideration. For a proper model assessment using R2 the

gradient ‘‘b’’ should be combined to provide a weight

version (wR2) of R2. Such a weight is performed as

follows:

wR2 ¼
bj j � R2 for b� 1

bj j�1�R2 for b[ 1

(
: ð10Þ

Generally, to decide the accuracy of the model the value

of each index obtained by the model were compared with

the value of hydrologic model performance ratings given

by Moriasi et al. (2007) in Table 1.

Results and discussion

SWAT model setup

Basic parameters required to set up SWAT2009 model, soil

physical property and climatic elements, have been ana-

lyzed and transferred to the model weather generator

database. Then, Mojo watershed was delineated from

Awash basin DEM and subdivided into 25 sub-watershed

based on the minimum threshold area of 5000 ha (Yongwei

et al. 2010). Moreover, multiple Hydrological Response

Units (HRUs) were defined based on ten percent threshold

combination for land use, soil and slop to have better

estimation of stream flow and sediment load. Finally, HRU

Yes

Yes

No

No

No

No

If ave. sim SR 
±15% of ave. 
Meas. SR & 

R2≥0.65,ENS≥0.5

If ave. sim Sed 
±20% of ave. Meas. 

Sed & R2≥0.65, 
ENS≥0.5

Adjust: GW_DELAY, CN2,
ALPHA_BNK, RCHRG_DP, SOL_K, 
TLAPS, and REVAPMN, 

Adjust: CH_COV1, CH_COV2, SPCON, 
SPEXP, CN2, SOL_K, ALPHA_BANK, 
TLAPS, RCHARG, ADJ_PKP, CH_D, 
and SLSUBBSN

Run SWAT

Rewrite SWAT Input File

Rewrite SWAT Input File

Run SWAT

Calibration Completed

Fig. 3 Semi automated

calibration flow procedure used

in this study
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is obtained by overlaying land use, soil type and slope class

map that have been developed independently as shown in

Fig. 4. As the result the watershed is further sub-divided

into 123 HRUs that consist of homogeneous land use,

management, topography and soil characteristic.

Sensitivity analysis

In this study for stream flow simulation, the response of the

model towards parameter involving evaporation (EPCO

and ESCO), surface runoff (CANMX), and groundwater

(ALPHA_BF, and GWQMN) are very low. On the other

hand parameters involving surface runoff (CN2) and

ground water (ALPHA_BNK) are found the most sensitive

parameter in flow simulation. In addition, parameters

involve groundwater (RCHARG_DP, and REVAPMN,),

and soil water (SOL_K) are also showed considerable

sensitivity in water yield simulation. SWAT-CUP,SUFI-2

95ppu plot show that under all case observed flow peaks

coincide with simulated flow peaks, though in some years’

over-prediction and under-predication by the model were

observed.

As in the case of stream flow simulation the model

exhibits over predication and under prediction for sediment

load. Generally, out of the total considered parameters for

sediment load sensitivity analysis the model did not show

any response towards parameters related to channel pro-

cesses (CH_S2, CH_WDR and PRF). On the other hand the

following parameters were found to be more sensitive

through sensitivity analysis mainly those representing

channel process (SPCON, SPEXP and ADJ_PKP), surface

runoff (CN2 and HRU_SLP), and geomorphology

(SLSUBBSN).

Model calibration and validation

To improve the efficiency of the model during calibration

the top twelve ranking parameters were considered to

account for the over and under prediction responses of the

model as suggested by Neitsch et al. (2011). The final fitted

value of the most sensitive parameters for steam flow and

sediment load for the watershed is given in Tables 2, 3,

respectively according to its rank. The over prediction

nature of the model is controlled by decreasing CN2 from

Table 1 Performance ratings of hydrologic models

Performance rating RSR NSE PBIAS %

Stream flow Sediment

V.Good 0.00 B RSR B 0.50 0.75\NSE B 1.00 PBIAS B ±10 PBIAS B ±15

Good 0.50 B RSR B 0.60 0.65\NSE B 0.75 ±10 B PBIAS B ±15 ±15 B PBIAS B ±30

Satisfactory 0.60 B RSR B 0.70 0.50\NSE B 0.65 ±15 B PBIAS B ±25 ±30 B PBIAS B ±55

Unsatisfactory RSR[ 0.70 NSE B 0.50 PBIAS C ±25 PBIAS C ±55

Fig. 4 Land use, soil type and slope classification distribution of Mojo watershed
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the initial value 73–65.46. On the other hand under pre-

diction of the model were adjusted by increasing

REVAPMN from 1.12 to 278.75. Moreover, the simulated

flow patterns with observed flow pattern were adjusted with

ALPHA_BNK, RCHRGE_DP and TLAPS value. For

sediment load performance efficiency of the model were

improved by adjusting the parameters related to channel

process, sediment, surface run-off, soil water and geo-

morphology. Accordingly, increasing the values related to

channel process (SPCON, CH_D, and ADJ_PKP), sedi-

ment (CH_COV1, and CH_COV2), soil water (SOL_K),

geomorphology (TLAPS) and decreasing parameter related

to surface runoff (CN2), groundwater (ALPHA_BNK) and

geomorphology (SLSUBBSN) gives a better result of the

model.

X_Code indicate the type of change to be applied to the

parameter, V_means the existing parameter value is to be

replaced by the given value, a_means the given value is added

to the existing parameter value, and r_means the existing

parameter value is multiplied by (1 ? a given value).

The comparison made between the observed and simu-

lated stream flow indicated that a good agreement were

obtained between the observed and simulated discharge,

which was verified using both graphical technique and

quantitative statistics. The value of coefficient of determi-

nation (R2 = 0.75), Nash–Sutcliffe efficiency

(NSE = 0.76), error index (RSR = 0.49) and percent bias

(PBIAS = 10.9) obtained during calibration and R2 value

0.71, NSE value 0.70, RSR value 0.59 and percent bias 9.5

obtained during validation justify that the model is very

good in simulating runoff from Mojo watershed. Calibrated

and validated model predictive performances values for

Mojo River on monthly flows base are summarized in

Table 4 and the time series plot of measured and simulated

monthly flow for calibration and validation are shown in

Fig. 5.

Further, as it can be seen from Fig. 6 most of the scatter

points are uniformly clustered along the 1:1 line during

calibration and validation of the model. The SUFI-2 results

indicated that the p-factor for the calibration period was

0.73, while it was 0.70 for the validation period. This

implies that 73 and 70% of the measured data during cal-

ibration and validation respectively captured or accounting

for the correct simulated flow by the model while the

remaining occur due to an errors in an input data such as

rainfall, temperature, etc. The r-factor that measures the

quality of the calibration and the thickness of the 95 ppu is

0.67 for calibration and 0.49 for validation indicating the

performance of the model as average.

The performance of the model for sediment load was

evaluated in the same way as for the stream flow. The

computed statistical indicators R2 = 0.74, NSE = 0.76,

RSR = 0.49 and PBIAS = 48.7 were estimated during the

calibration periods. Similarly, for the validation period, the

computed statistical indicators have been computed as 0.71

for R2, 0.65 for NSE, 0.59 for RSR and 50.5 for PBIAS.

The indicators have been found to be within the range of

good performance level except for the validation PBIAS

value which is in the range of satisfactory criteria.

The value of p-factor indicated that 64% of the mea-

sured date during calibration and 50% during validation

captured or accounting for the correct simulation of sedi-

ment load by the model while the remaining occur due to

an errors in an input data such as soil physical properties

and climatic data. The r-factor is 0.59 for calibration and

0.49 for validation indicating the performance of the model

as an average. Calibrated and validated model predictive

performances values for Mojo River on the bases of

monthly sediment load are summarized in Table 5 and the

time series plot of measured and simulated monthly sedi-

ment load for calibration and validation are shown in

Fig. 7. Figure 8 shows the scatter plot of simulated and

observed data during calibration and validation of the

model. From the graph it can be seen that all data point are

uniformly clustered along the 1:1 line except three to four

data in the case of calibration.

Table 2 Hydrological parameter selected only for stream flow calibration

Name Definition Threshold

value

Initial

value

P value Fitted

value

r_CN2.mgt SCS runoff curve number for moisture condition II -0.20–0.20 73.0 0.0 65.46

v_ALPHA_BNK.ret Base flow alpha factor for bank storage 0.00–1.00 0.0 0.0 0.113

a_RCHARG_DP.gw Deep aquifer percolation fraction 0.00–0.20 0.05 0.1 0.987

v_TLAPS.sub Temperature laps rate (�C/km) -10–10 0.0 0.15 -6.65

v_REVAPMN.gw Threshold depth of water in the shallow aquifer for revap to occur

(mm)

0.0–500.0 1.12 0.06 278.75

r_SOL_K.sol Soil conductivity (mm/h) -0.50–0.50 250.0 0.6 1378.53

a_GW_DELAY.gw Groundwater delay (days) 0–50 31.0 0.05 350.25

X_Code indicate the type of change to be applied to the parameter, V_ means the existing parameter value is to be replaced by the given value, a_

means the given value is added to the existing parameter value, and r_means the existing parameter value is multiplied by (1 ? a given value)
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Conclusions

To analyze runoff and sediment load from Mojo water-

shed SWAT model was developed successfully. The

parameter identification for model calibration of the

model is accomplished using SWAT_CUP global sensi-

tivity analysis method of SUFI2 that has become popular

in recent years. The parameter identification process

effectively reduced the number of parameters to be cal-

ibrated in SWAT model for stream flow and sediment

Table 3 Hydrological parameter selected after stream flow calibration for sediment load calibration

Name Definition Threshold

value

Initial

value

P value Fitted

value

r_CN2.mgt SCS runoff curve number for moisture condition II -0.20–0.20 65.46 0.0 68.57

v_SPCON.bsn A linear parameter used in channel sediment routing 0–0.01 0.0001 0.05 0.0012

r_SOL_K.sol Soil conductivity (mm/h) -0.50–0.50 1378.53 0.70 1621.70

a_CH_COV2.rte Channel erodibility factor 0–0.20 0.00 0.45 0.799

a_CH_COV1.rte Channel cover factor 0–0.20 0.00 0.40 0.60

a_ADJ_PKP.bsn Peak rate adjustment factor for sediment routing in the subbasin 0–0.20 0.00 0.65 0.903

v_CH_D.rte Average depth of main channel 0–30 2.73 0.30 2.91

v_ALPHA_BNK.ret Base flow alpha factor for bank storage 0.00–1.00 0.113 0.80 0.057

v_TLAPS.sub Temperature laps rate (�C/km) -10–10 -6.65 0.65 -4.26

r_SLSUBBSN.hru Average slope length -0.5–0.50 150.0 0.0 55.13

a_RCHARG_DP.gw Deep aquifer percolation fraction 0.00–0.20 0.987 0.75 1.0

v_SPEXP.bsn An exponent parameter used in channel sediment routing 1.0–1.50 1.00 0.45 1.31

Table 4 Model performance

indicator for monthly stream

flow simulation

Statistical test Monthly model efficiency measure

NSE R2 wR2 PBIAS RSR P-factor r-factor

Calibration 0.76 0.75 0.60 10.90 0.49 0.73 0.67

Validation 0.70 0.71 0.50 9.5 0.59 0.70 0.49

Fig. 5 Simulated vs observed monthly flow at the watershed outlet for model calibration and validation
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load simulation. The parameters related to surface and

subsurface flow was found to be more sensitive to the

stream flow of the watershed, signifying the watershed is

rich in ground water as a result of good recharge

capacity. On the other hand parameter involves soil and

surface runoff was found more sensitive for sediment

load from the watershed. Clearly, the choice of values of

these inputs can greatly affect the predicted stream flow

and sediment load results, underscoring that care must be

taken in selecting the most accurate input values possi-

ble. Generally, by changing the value of thirteen

hydrological parameters, selected through sensitivity

analysis, the wide uncertainty band arising from input

data, model algorithms and assumptions, parameters

estimates reduced to narrow this uncertainty in steps

until a satisfactory 95PPU is reached.

Fig. 6 Comparison between simulated flow and observed flow for calibration (a) and validation (b)

Table 5 Model performance

indicator for monthly sediment

load simulation

Statistical test Monthly model efficiency measure

NSE R2 wR2 PBIAS RSR P-factor r-factor

Calibration 0.76 0.74 0.66 48.70 0.49 0.64 0.59

Validation 0.65 0.71 0.51 50.5 0.59 0.50 0.49

Fig. 7 Simulated vs observed sediment at the watershed outlet for calibration and validation
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The results of uncertainty estimation, narrow band

uncertainty, calibration and validation result of this studies

showed that SWAT model was able to accurately track

monthly measured stream flows and sediment load at Mojo

watershed outlet. Therefore, it can be concluded that the

calibrated parameter values can be considered for hydro-

logic simulation of the un-gauged watershed in Ethiopia

having the same agro-climatic condition. Furthermore, the

model can be used for future studies on Mojo watershed to

address different watershed management issues related to

plant nutrient loss, water quality and best management

practices evaluation.
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