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Abstract
The bearing capacity of soil in general is considered a key parameter in the field of geotechnical engineering, requiring field 
investigations and extensive testing to eliminate design errors. Reinforced sand beds, however, present unique complexi-
ties for conventional computational techniques, as these methods may fall short in fully capturing the interaction between 
parameters that control ultimate bearing capacity. Consequently, nature-inspired soft computing (SC) techniques, inspired 
by the resilience and adaptability inherent in natural systems, have been utilized and evaluated in simulating and predicting 
the reinforced soil bearing capacity in geotechnical engineering. These include support vectors machines (SVM), ensemble 
tree (ET), Gaussian’s process regressions (GPR), regression trees (RT), and artificial neural network (ANN). A thorough 
evaluation of SC techniques was executed for their computational efficiency and prediction accuracy. The hypermeter values 
of all SC techniques were optimized using Bayesian optimization with the goal of reducing prediction error. The results 
showed that ANN-SC technique outperformed the other techniques based on three performance measures: mean absolute 
errors (MAE), coefficients of determination (R2), and root mean square errors (RMSE). Furthermore, normalized importance 
analysis was conducted using the best-performed model (ANN), and the findings demonstrated that the soil average particle 
size/reinforcement width (D50/Aw) had the highest relative importance on the ANN-predicted bearing capacity, followed 
by friction angle and depth of first reinforcement layer. The python code (using PyNomo library) was employed to develop 
a nomograph to facilitate the application of the ANN model findings. This neuro-nomograph uses the weights and biases 
from the optimal ANN model to offer a simplified tool to predict reinforced soil bearing capacity. Furthermore, the perfor-
mance of this novel neuro-nomograph was validated using physical bearing capacity test results. The comparison showed 
a coefficient of variation (COV) of 0.13 and a mean ratio of test to predicted bearing capacities (UBCtest/UBCpred) of 1.11, 
which suggests the minimal scatter and, thus, confirm the high precision of the developed neuro-nomograph predictions of 
the reinforced soil bearing capacities.

Keywords  Machine learning · Neuro-nomograph · Soft computing · Shallow foundations · Reinforced sand · Ultimate 
bearing capacity

Introduction

Geotechnical engineering, a specialized discipline, deals 
with the complexities of earth materials behaviors, the 
aspects of water–soil interactions, and soil–structures inter-
actions. Yet, modeling the behavior of soil with inclusions 
remains a challenge when using conventional techniques. 
Soft computing (SC) are advanced modeling techniques, 

including machine learning, artificial neural networks 
(ANN), and fuzzy logic, which deal with approximation 
and uncertainty to solve complex problems [1]. Using soft 
computing (SC) techniques has recently become popular in 
modeling complex behavior in geotechnical applications 
due to its predictive capabilities when compared to conven-
tional techniques and methods [2]. In the context of shallow 
foundations, two predominant factors drive their design: the 
ultimate bearing capacity and settlement, often referred to 
as serviceability [3].
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Previous studies have successfully applied SC techniques 
for solving geotechnical engineering problems, specifically 
predictions of reinforced foundations behavior [4–17]. For 
reinforced sands, in particular, and given the complexity 
and often uncertainty in their bearing capacity and settle-
ment analysis, SC techniques have attracted broad interest 
as an effective alternative to normal regression [18]. Related 

previous attempts to model the reinforced soil behavior are 
summarized in Table 1.

Soleimanbeigi and Hataf [5] investigated the possibility 
of using backpropagation and feedforward ANNs to predict 
reinforced sands’ ultimate bearing capacity of shallow foun-
dations. However, the developed ANN model ignored sev-
eral practical parameters such as the effect of the geogrid’s 

Table 1   Previous studies attempt to model reinforced soil behavior using soft computing techniques and their limitations

References Models used (R2) No. tests (data type) Parameters analyzed Limitations

Soleimanbeigi and Hataf [5] ANN (0.949) 351 (experimental) Footing width (B),
Footing length (L),
Depth of footing (Df),
Soil friction angle (ϕ),
Soil density (γ),
Number of reinforcement 

layers (N)
Depth of first reinforcement 

layer (u)
Distance between reinforce-

ment layers (h)
Width of reinforcement 

layers (b)
Reinforcement stiffness (k)

Used only ANN modeling 
technique, in addition, the 
following parameters were 
not included in the analysis:

- Soil particles distribution
- Geogrid aperture sizes 

length and width (Aw and 
AL)

Sahu et al. [7] Neuro-fuzzy (0.997)
ANN (0.994)

80 (experimental) Load inclination angle (α/B)
Distance between ground 

and last geogrid layer (df)

Used only Neuro-fuzzy and 
ANN modeling techniques, 
in addition to the following 
limitations:

- One geogrid type and 
dimensions

- One sand type
- Constant footing dimensions

Sahu et al. [8] ANN (0.994) 80 (experimental) Load inclination angle (α/B)
Distance between ground 

and last geogrid layer (df)

Used only ANN modeling 
techniques, in addition to 
the following limitations:

- One geogrid type
- One sand type
- Fixed footing dimension and 

geogrid dimensions
Raja and Shukla [18] ANN (0.962) 475 (finite element mod-

eling)
Footing width (B),
Footing length (L),
Friction angle (ϕ),
Cohesion (c),
Soil modulus (E),
Poisson’s ratio of soil (υs),
Soil angle of dilation (ψ),
Number of reinforcement 

layers (N)
Depth of first reinforcement 

layer (u)
Distance between reinforce-

ment layers (h)
Width of reinforcement 

layers (b)
Tensile modulus (J)

The study emphasized on the 
settlement predictions and 
did not investigate the bear-
ing capacity

Used only ANN modeling 
technique, in addition, the 
following parameters were 
not included in the analysis:

- Soil particles distribution
- Geogrid aperture sizes 

length and width (Aw and 
AL)

Kumar et al. [19] ELM (0.976)
MARS (0.995)

44 (experimental) Footing width (B)
Footing length (L)
Footing depth (D)
Friction angle (ϕ),
Soil density (γ),

Used advanced ELM and 
MARS for modeling bear-
ing capacity. However, the 
reinforced bearing capacity 
was not investigated
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aperture size and soil gradation parameters. Sahu et al. [7, 
8] implemented neuro-fuzzy and ANN modeling techniques 
to estimate the bearing capacity of inclined loading on shal-
low strip footing on reinforced sands with specific type of 
geogrid reinforcement. The authors reported an R2 of 0.997 
and 0.994 for neuro-fuzzy and ANN modeling, respectively. 
Raja and Shukla [18] used ANN to model the settlement of 
reinforced foundations using numerical simulation results; 
therefore, the effect of geogrid geometry and soil gradation 
was not included in the study. The authors reported an R2 
of 0.962 with best-performed ANN. More recently, Kumar 
et  al. [19] utilized advanced predictive models such as 
extreme learning machine (ELM) and multivariate adaptive 
regression splines (MARS) to model the bearing capacity; 
the R2 of ELM and MARS regression was 0.976 and 0.995, 
respectively. However, the authors did not include the effect 
of reinforcement in their analysis.

Previous studies relied heavily  on well-established 
SC techniques, innovative models such as support vector 
machines (SVM) [20] and Gaussian process regression 
(GPR) [21], despite their increasing usage, have not attracted 
substantial interest in the geotechnical community as The 
emergence of advanced models inspired by natural systems 
[22] provides a chance for evaluating more intricately cou-
pled systems, like reinforced soils. Yet, existing literature 
deals with soil and reinforcement reinforcing inclusions as 
independent entities, and less focus as a grand integrated 
system, where the overall behavior of the system is a result 
of interaction between soil particles and geogrid. In addi-
tion, the SC techniques adopted by previous studies yield 
models that are perceived complex and impractical for field 
engineers. These models, often considered ‘black boxes,’ 
offer limited accessibility for practitioners due to their lack 
of explicit equations for practical implementation.

In the same context, the pursuit of analytical solutions 
for the bearing capacity of reinforced soils continues to be 
of interest to researchers. Existing analytical solutions, such 
as those detailed by Sharma et al. [23], have largely been 
limited to square footing. Although Chen and Abu-Farsakh 
[24] addressed this limitation in their work, these analytical 
solutions are typically based on Terzaghi’s and Meyerhof’s 
approach with bearing capacity factors and coefficients [24]. 
Therefore, these analytical solutions fail to integrate the 
effect of individual and interrelated impacts of soil particle 
and reinforcement sizes.

In this research, a large database of physical testing of 
footings with different sizes on reinforced soil was collected 
from several peer-reviewed studies. The collected dataset 
encompasses diverse properties of soil, reinforcements, and 
foundations. The collected dataset was investigated using 
several SC techniques, namely support vectors machines 
(SVM), ensemble tree (ET), Gaussian's process regressions 
(GPR), regression trees (RT) and artificial neural network 

(ANN). These models were chosen due to their widespread 
adoption in geotechnical engineering, particularly in exam-
ining the behavior of shallow foundations [25]. Beyond tra-
ditional SC models, user-friendly nomograph, leveraging 
results from the top-performing SC model was developed. 
The upshot is a powerful tool that equips both on-site engi-
neers and researchers to leverage the insights of advanced AI 
models within seconds, using nothing more than a piece of 
paper. This simplified nomograph is believed to enable site 
engineers and researchers to use the developed comprehen-
sive artificial intelligent models within seconds using only a 
piece of paper. This combination of sophisticated modeling 
with practical design is a significant leap forward, foster-
ing greater precision, speed, and efficiency in geotechnical 
engineering.

Data Collection and Preprocessing

For this study, comprehensive dataset was collected from 
various peer-reviewed articles. These papers explored the 
ultimate bearing capacities of reinforced dry compacted 
sands through experimental studies. Specifically, Table 2 
summarizes the sources that were incorporated in the 
dataset.

The collected dataset covered a wide range of labora-
tory models and sizes. A total of 261 bearing capacity 
test results were collected and employed in the dataset. 
For each of experiments, 15 variables were collected and 
recorded, in addition to the ultimate bearing capacity. 
Table 3 shows the variables in the collected dataset, with 
an explanation of each symbol and the units of measure-
ments. Figure 1 shows a schematic of experimental bearing 

Table 2   Sources of the dataset collected

Author(s) Entries References

Alotaibi et al. 2 [26]
Aria et al. 10 [27]
Alotaibi et al. 12 [28]
Abu-Farsakh et al. 16 [29]
Latha and Somwanshi 13 [30]
Adams and Collins 13 [31]
Das and Omar 30 [32]
Das et al. 21 [33]
Yetimoglu et al. 48 [34]
Omar et al. 38 [35]
Omar et al. 16 [36]
Omar et al. 15 [37]
Khing et al. 17 [38]
Guido et al. 6 [39]
Guido et al. 4 [40]
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capacity test setup and the 15 variables defined in the col-
lected dataset. The collected variables aimed to cover both 
physical and mechanical aspects of the geogrid-reinforced 
soil; the collected physical variables were (B, L, N, Aw, 
AL, b/B, h/B, D10, D30, D50, D60, and u/B) and mechanical 
variables were (Dr, ϕ, and T). It should be mentioned that 
the dataset for reinforced sand beds analysis with under 
hydrostatic groundwater conditions are scarce in the lit-
erature; therefore, tests with dry sands with hygroscopic 
water content 1–3% were only included. In addition, data 
used here are limited to experiments conducted on sur-
face footings as data associated with footings placed at an 
impediment depth is extremely limited.

While various other variables could have been consid-
ered for this investigation, we chose to exclude them. This 
decision was influenced by the fact that many studies did 
not report specific results, including those related to soil 
geochemistry, particle shape, and others.

Several variables were not readily available from the 
original dataset, and it is believed to improve the predic-
tions of the response [41]. Especially those variables that 
combine the effects of multiple parameters. For instance, 
D50 may be considered as an important parameter that may 
incorporate the effects of other particle size percentages. 
The particle sizes (D10, D30, D50, and D60) were normalized 
by reinforcement aperture width, Aw. In addition, the width 
and spacing of the reinforcement layers and the depth of 
the first reinforcement layer were normalized by the footing 
width. Overall, the dataset included 15 variables, as well as 
the response variable, i.e., bearing capacity.

Statistical Analysis of Collected Dataset

Before using the dataset for SC modeling, a statistical anal-
ysis was conducted to determine the statistical indices of 
analysis input parameters in the collected dataset. Table 4 
summarizes the statistical features of the parameters adopted 
in this study. The mean and standard deviation of the ulti-
mate bearing capacity were 375.64 and 309.18 kPa, respec-
tively. Moreover, a matrix plot between all parameters is 
shown in Fig. 2, with correlation coefficient values following 
linear fittings. The matrix shows the highest correlation for 
the UBC with ϕ and Dr with coefficients of 0.69 and 0.56, 
respectively.

It is worth noting that the footings dimensions covered in 
this study vary from 50 to 610 mm. This range covers the 
scale effect between all parameters, as discussed by Ahmad 
et al. [42] and Mehjardi and Khazaei [43].

Ahmad et al. [42] conducted several experimental tests 
on geogrid-reinforced soils response to investigate the scale 
effects. Their results have shown that the scale effect van-
ishes for footings with a width of more than 600 mm (strip 
footing). Moreover, Mehjardi and Khazaei [43] studied the 
scale effect on the behavior of geogrid-reinforced soils under 
the circular footing. They stated that the scale effect vanishes 
for footings with diameter more than 120 mm.

Modeling Approaches 

SC are computational methods that can “learn” from input 
datasets to develop predictive abilities. The idea behind SC is 
finding common similarities between previous dataset input 
and their consequent output. This is attained by modifying 
pairs of input and output from the dataset to the model and 
then tweaking the connection biases and weights of the model 
to minimize the errors between the model-predicted avail-
able outputs (i.e., training). The issue under deliberation in 
this research requires a supervised regression SC approach 
(provided output). From various available existing supervised 

Table 3   The collected variables and units in the current dataset

Symbol Explanation Units

B Footing width mm
L Footing length mm
Dr Soil relative density %
ϕ Soil friction angle Degrees
D10 10% finer (i.e., effective particle size) mm
D30 30% finer mm
D50 50% finer mm
D60 60% finer mm
N Number of geogrid layers –
Aw Reinforcement aperture width mm
AL Reinforcement aperture length mm
T Reinforcement tensile strength kN/m
b Reinforcement layer width mm
h Reinforcement spacing mm
u First reinforcement depth mm
UBC Ultimate bearing capacity kPa

Fig. 1   General schematic diagram for physical testing model
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regression techniques, those selected were Gaussian process 
regression (GPR), support vector machine (SVM), regression 
trees (RT), ensemble trees (ET), and artificial neural networks 
(ANN).

Gaussian Process Regression (GPR)

Gaussian process regressions take inspiration from the con-
cept of Gaussian distributions in statistics, which are often 
observed in natural phenomena. GPR models capture the 
uncertainty in data by representing it as a distribution over 
possible functions, allowing for more robust predictions and 
accounting for natural variations and noise. GPR models 
are powerful tools used for solving difficult ML problems. 
Their importance is owed to the fact that they are flexible 
non-parametric models. Another key advantage of GPR 
models is their ability to mimic the smoothness and noise 
parameters from the training dataset [44]. A GPR is a sto-
chastic process in which random variables are assumed to 
follow a Gaussian distribution. There are four main types of 
Gaussian processes: squared exponential (SE), exponential 
(EX), matern (MN), and rational quadratic (RQ). The kernel 
functions in GPR mainly determine how the response at one 
input point ( x ) is affected by responses at other point (x′), 
which is also called input distance (x − x′). The difference 
between these processes is the utilized kernel function (K) 
as illustrated in Eqs. (1)–(4)

where x and x′ are input vectors that are either in training or 
testing datasets, parameter l  defines the characteristic 

(1)KSE

(
x, x�

)
= �

2

f
exp

(
−
|x − x�|2

2l2

)
,

length-scale that depends on input distance, and �2

f
 is the 

single standard deviation. Parameter l briefly defines how 
far the input values x, can be for the response values to 
become uncorrelated.

Q s vector parameter ~ N(0, 1) , it should be noted here that 
having γ = 2 turns the EX kernel to squared exponential as 
shown in Eq. (3).

where kv is the Bessel function [45], Γ is the gamma func-
tion, and ν is the gamma distribution shape parameter. It is 
worth noting that Matern 5/2 or 3/2 models are obtained by 
replacing the ν by 5/2 and 3/2 values, respectively.

where α is a scale-mixture parameter.

Support Vector Machine (SVM)

The design of support vector machines (SVM) is inspired 
by the way biological systems separate different classes of 
data. SVMs aim to find an optimal hyperplane that maxi-
mally separates data points from different classes, mimick-
ing the concept of decision boundaries in nature. SVM is a 
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Table 4   Statistical analysis of 
collected variables

Parameters Mean Median Std. deviation Range Minimum Maximum

B (mm) 134.63 80.00 130.79 559.20 50.80 610.00
L (mm) 256.78 304.80 129.89 533.80 76.20 610.00
Dr (%) 0.68 0.70 0.13 0.74 0.16 0.90
ϕ (o) 40.84 40.30 2.26 11.50 35.00 46.50
D10 (mm) 0.28 0.32 0.08 0.49 0.09 0.58
D30 (mm) 0.40 0.45 0.10 0.67 0.13 0.80
D50 (mm) 0.48 0.52 0.11 0.71 0.19 0.90
D60 (mm) 0.52 0.56 0.12 0.73 0.22 0.95
N 4.11 4.00 2.03 7.00 1.00 8.00
T (kN/m) 19.62 19.00 7.17 78.70 7.30 86.00
Aw (mm) 21.71 25.40 8.58 34.70 0.30 35.00
AL (mm) 31.05 33.02 16.17 79.70 0.30 80.00
b/B 6.72 8.00 2.66 10.25 1.00 11.25
h/B 0.29 0.33 0.16 1.00 0.00 1.00
u/B 0.46 0.33 0.31 1.84 0.16 2.00
UBC (kPa) 375.65 294.26 309.18 1356.13 40.00 1396.13
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machine learning technique that employs kernel functions to 
transform data into a high-dimensional feature space. In this 
space, a linear model is used to accommodate any complex 
nonlinear relationships [46]. The main idea behind SVM 
modeling is the computation of a linear regression func-
tion in a high-dimensional feature space, where the input 
data are mapped via a nonlinear function. This technique has 
been garnering more attention recently and has been used by 
several researchers. There are several types of SVM, such 
as linear, quadratic, and cubic. Equation (5) illustrates the 
mathematical kernel function of these models.

where p is a parameter that is specified by the user to express 
weather the kernel is linear, quadratic, or cubic. Further-
more, SVM can be further divided into coarse, medium, 
and fine Gaussian by setting kernel scale to 

√
p × 4 , 

√
p and √

p∕4 , respectively, where p is the number of predictors.

Regression Trees (RT)

Regression trees (RT) mimic the branching structure of natu-
ral decision-making processes. Inspired by the hierarchical 
organization of natural systems, regression trees recursively 
split data into subsets based on feature values, creating a 
tree-like structure that represents the decision process and 
captures complex relationships in the data. RT are a type of 
empirical tree representation used for segmenting data by 
applying a sequence of simple rules. Decision-tree modeling 
involves generating a set of rules that can be used for predic-
tion through the repetitive process of splitting. One of the 
most common tree methods is the regression decision tree. 
A major advantage of the decision tree is that the result-
ing model provides a clear picture of the importance of the 
significant factors affecting the accuracy of the prediction 
model. The tree is composed of roots, leaves, and branches 
[47]. Usually, numeric records are sorted according to the 
tree, starting from the root at the topmost node. At every 
internal node, a conditional test is conducted to decide the 
corresponding path among the tree branches. There are vari-
ous criteria to judge the conditional testing at each node, for 
instance summation of square error. The eventual prediction 
of the tree model is obtained from the leaf at the end of the 
path. In essence, partitioning the data is done by lessening 
the deviance from the mean of the output features, which is 
mathematically summarized in Eq. (6).

where Y and Yi are the mean of the output and target features. 
Given that the cut point splits the data into two mutually 

(5)k(x, y) = (1 + (x, y))p,

(6)Dtotal =
∑(

Yi − Y
)2

,

exclusive subsets, right and left, the deviance reduction 
( ΔjTotal ) is redefined as shown in Eq. (7):

where DLef t and DRight are the deviances of left and subsets, 
respectively.

Furthermore, various types of regression trees can be 
obtained by varying required minimum leaf sizes, such 
as complex, medium, and fine trees. The fine, medium, 
and coarse tree has a minimum of 4, 12, and 36 leaves, 
respectively.

Ensemble Trees (ET)

Ensemble trees (ET) draw inspiration from the collective 
behavior and cooperation seen in natural systems. By com-
bining multiple decision trees into an ensemble, they lever-
age the wisdom of the crowd to make more accurate predic-
tions. Each tree in the ensemble learns from different subsets 
of the data, mimicking the diversity and collaboration found 
in ecosystems. An ET technique is a set of separate weak 
models (number of learners) that, when combined (number 
of predictors), provide a reliable mathematical prediction. 
There are two types of ensemble decision trees: boosted and 
bagged trees [48]. Bagged trees (parallel) consist of combin-
ing different ensembled bootstraps into separated decision 
trees, all tresses are then combined into one decision tree, 
where the final decision is computed by averaging the trees 
results. Boosted trees (sequential), on the other hand, are 
also an ensemble of regression trees but have a cost func-
tion that combines the final models. Ensemble trees use 
subsets of the original data to produce a series of sequential 
averagely performing models. Whereafter, the models are 
improved by combining them using a certain cost function, 
such as Eq. (8).

where ŷbag is a target value resulted from average results, 
Ŷw(x) is the detected target value for observation x in boot-
strap sample u , and U is the number of bootstrap samples.

Artificial Neural Networks (ANN)

Artificial neural networks draw inspiration from the structure 
and functionality of biological neural networks in the brain. 
With interconnected nodes (neurons) organized in layers, 
ANNs process information and learn from data in a way that 
resembles the adaptability and parallel processing capabili-
ties of the human brain, enabling them to model complex pat-
terns and make predictions. Numerous numbers of studies in 

(7)ΔjTotal = DTotal −
(
DRight − DLef t

)
,

(8)ŷbag(x) =
1

U

u∑

w=1

Ŷw(x),
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geotechnical engineering have utilized the ANNs for assess-
ing the collected data due to their familiarity and robustness 
[17]. The basic structure of an ANN models consists of nodes, 
connection (weights), transfer function, and bias forming the 
input, hidden and output layers. The ANN model used in this 
study is a typical ANN with one hidden layer feedforward 
ANN, linear output neurons, sigmoid activation function and 
Levenberg–Marquardt backpropagation training algorithm. A 
total of 10 artificial neural network models were tested in the 
current study. The neurons were varied from 10 to 50 neurons 
with 10-step intervals, to come up with the best, least com-
plex model. The equation of single neuron can be written as 
in Eq. (9).

where N is the neuron numerical value, f  is the activation 
function, c is the bias, W is weight matrix (dimension 1 × n), 
I is the input matrix (dimension 1 × n), and n is the number 
of variables.

Optimization of SC Models’ Hypermeters

This study aims to investigate the best-performing model 
to predict the bearing capacity of shallow foundations. To 
obtain the best-performing hypermeters for each SC tech-
nique described earlier, Hyperparameter Optimization option 
in Machine learning toolbox was utilized. The use of opti-
mized hypermeter will ensure the highest accuracy possible 
for a certain SC technique.

This option navigates through possible hypermeters using 
Bayesian optimization with the goal of reducing prediction 
error [49]. Additional information on the comprehensive and 
computations for optimization of hypermeters can be found in 
statistics and machine learning toolbox [49].

Independent Variable Importance

Independent variable importance was executed for best-
performing model following Nowruzi and Ghassemi [50] 
importance method; variables with relative importance of 
40% or less were excluded and the best-performed model was 
retrained. This procedure was designed to produce the highest 
possible accurate results with the least number of variables, 
which would significantly reduce the computation time and 
model complexity.

(9)N = f

(
c +

n∑

i=1

IiWi

)
,

Results and Discussion

Before the implementation of SC models, the collected 
dataset was randomly divided into three sets: training, 
cross-validation, and testing with percentages of 70, 15, 
and 15%, respectively, with similar dataset ranges. The 
training set (70%) was used to calibrate the SC models by 
reducing prediction errors, whereas the cross-validation 
set (15%) was utilized to avoid overfitting the collected 
data. The accuracy and performance of the trained SC 
models were assessed using the testing dataset (15%).

The performance and accuracy measures considered 
in this study were: (1) coefficients of determination (R2), 
mean absolute error (MAE) in kPa, and (3) root mean 
square error (RMSE) in kPa. The SC techniques in this 
study were accessed using the Machine Learning and Sta-
tistics Toolbox in MATLAB R2022a. The accuracy of the 
used SC techniques is summarized graphically in Fig. 3 
and numerically in Table 5 for testing and validation data-
sets. It should be mentioned that all models had validation 
results that are close to testing dataset results, as shown 
in Table 5, which confirms that none of the models has 
observed overfitting.

Modeling Results

The optimized hypermeter values for all models are sum-
marized in Table 6, following the optimization methodol-
ogy using Bayesian optimization in statistics and machine 
learning toolbox [49]. The accuracies of the models varied 
depending on models used, complex and medium RT mod-
els have shown the highest R2 (0.99), while fine RT model 
had the lowest R2 value of 0.73. The complex RT model 
had the lowest RMSE and MAE of 168.42 and 98.8 kPa, 
respectively, among RT modeling techniques. Further-
more, fine, coarse, and quadratic SVM models had rela-
tively low R2 results as shown in Table 5 and Fig. 3, while 
linear and medium Gaussian SVM models had R2 of 0.98 
and 0.96, respectively. Regarding ET modeling, Boosted 
ET model had better performance compared to bagged 
ET with R2, MAE and RMSE values of 0.99, 107.69, and 
184.68 kPa, respectively.

The RMSE and MAE value differences for GPR mod-
els were not significant. RMSE values of all GPR models 
ranged between 119.26 and 132.59 kPa for Matern 5/2 
and Exponential GPR, respectively. Finally, ANN detailed 
optimization results are summarized in Fig. 3 for the 10 
ANN models used in the current study. Initially, all 14 
variables were considered as inputs for the ANN models. 
ANN modeling began with 10 neurons and increased up to 
50 neurons by 10 neurons each step, resulting in five ANN 
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models shown in Fig. 3 as dashed lines. The highest R2 
and lowest RMSE were achieved with the more complex 
neural network model (50 neurons), with values of 0.989 
and 45.71 kPa, respectively, which reveal that ANN model 
at 50 neurons has the best performance with lowest RMSE 
and MAE and highest R2.

Best Performing Model

The results in Table 5 for testing and validation of SC tech-
niques reveal that ANN outperformed all other SC tech-
niques with R2, MAE, and RMSE values of 0.99, 27.36, and 
45.71 kPa, respectively. The performance of SC techniques 
is dependent on several concepts including the dataset itself. 
For the methodology and datasets used in this study, ANN 

outperformed other SC technique, which in line with previ-
ous studies [51–53] (Fig. 4).

Normalized Variables Importance

Normalized variable importance was calculated for the best-
performing SC technique (i.e., ANN model). Results of vari-
able importance are summarized in Fig. 5. It was shown that 
the highest normalized variable importance scores were for 
D50/Aw, friction angle (ϕ), depth to footing ratio (u/B), and 
relative density (Dr), all of which related to soil properties 
and referred internally to the interaction of the soil-geogrid 
matrix. This observation suggests that practitioners should 
prioritize the soil gradation (D50) and geogrid aperture size 
(Aw) when compared to enhancing soil properties such as 
ϕ and Dr. ϕ and Dr are considered important parameters as 
well relative to other parameters. The particle size has the 
highest effect on bearing capacity of reinforced sands, as 
the geogrid efficiency depends mainly on its applicability of 
confining the soil particles within geogrid cells. After assur-
ing the occurring of soil confinement, soil friction angle is 
then to be considered. It would then be pointless and gratui-
tous to have soil with a high friction angle or density without 
proper confinement. Thus, this logical flow of soil-geogrid 
matrix behavior sounds logical from the flow of obtained 
importance results.

On the other hand, the least variable importance was 
observed for footing length (L), number of reinforcement 
layers (N) and the normalized width of reinforcement layers 
(b/B). This refers to the fact that those variables were inter-
related in the neural network model by other parameters. 
For example, the number of layers were impeded in spacing 
between geogrid layers (h/B) if more than one layer exists.

To investigate the least important parameters impact on 
predicting the ultimate bearing capacities of reinforced soil, 
all variables with relative importance of 40% or less were 
eliminated (from length of footing L to (D60/Aw)). Then, 
the preceding ANN procedure was repeated using only the 
remaining important parameters (from normalized depth of 
first layer (u/B) to D50/Aw), resulting in five new artificial 
neural network models. Figure 4 summarizes the results 
of the five new ANN models excluding the least important 
variables.

Overall, no significant changes in performance measures 
were spotted in ANN models without the least important 
parameters. The results obtained at 10 neurons without 
least important had an R2 and RMSE values of 0.969 and 
76.3 kPa, respectively, compared to 0.975 and 72.03 kPa in 
the model including all variables. However, the new ANN 
model excluding the least important variable had very low 
improvement with an increasing number of neurons. How-
ever, sacrificing minor values of accuracy may be more 
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practical to reduce the model complexity by using a smaller 
number of input variables.

Developing the ‘Neuro‑nomograph’

Among all SC techniques, the ANN models have shown the 
lowest RSME and MAE. Researchers and geotechnical engi-
neers require simpler and practical tools for obtaining accu-
rate results from the trained SC models rather than computa-
tions that requires specialized computational software such 
as MATLAB or SPSS, which may not always be available. 
Thus, some researchers demonstrated simplified computa-
tional methods to obtain the response of given dataset using 
the artificial neural network model developed. For exam-
ple, Soleimanbeigi and Hataf [5] explained how to utilize 
the weights from their ANN model to obtain the settlement 
results of reinforced sand from given inputs. An additional 
example is found in Shahin et al. [54], where the authors 
developed a two-neurons ANN-based equation for predicting 
sand elastic settlement. To make this method practical for 
engineers and researchers, the authors reduced the number 
of neurons to obtain a simpler ANN that can be modeled 
using an equation.

In this article, a relatively more user-friendly graphi-
cal method was adopted known as the nomograph. Nomo-
graphs, which were first used in 1795 by the French gov-
ernment, introduced a powerful tool for performing simple 

and complex calculations in a variety of applications with 
a relatively low time and effort [55]. The nomograph (also 
known as nomogram) is a diagram that mimics a numeri-
cal formula, where each variable is represented by a gradu-
ated line, and the solution can be obtained by connecting 
the required variables’ values by straight lines ending with 
the solution value. The numerical formula is mimicked by 
changing the graduated lines (variables) scales, orienta-
tion, and distances from each other [56].

As a result, applications of nomographs are considered 
useful in several fields: compaction properties of soils 
[57], earth dams safety factors [58], bearing capacity and 
elastic settlement [59], probabilistic seismic hazard [60], 
hazard distances from a blast wave [61], punching shear 
capacity of slabs [62], tunnels’ safety factors in cohesive 
soils [63], and many others.

Previous researchers have developed nomographs 
derived from regression equations between variables. 
In this research, the trained model weights of the best-
performed ANN model were used to develop the nomo-
graphic diagram. This approach is rarely used in literature, 
which gives a remarkable add-on value to the trained ANN 
model. The Python 3.9 language and PyNomo library were 
used to develop an adapted neuro-nomograph shown in 
Fig. 6. PyNomo is a nomograph-generating program based 
on the Python text developed by Glasser and Doerfler [64]. 

Table 5   Performance measures 
of SC models

Models trained R2 RMSE (kPa) MAE (kPa)

Testing Validation Testing Validation Testing Validation

Regression trees
 Fine 0.73 0.72 831.18 830.35 443.66 433.46
 Medium 0.99 0.97 181.91 180.09 112.64 110.16
 Complex 0.99 0.97 168.42 165.56 98.80 97.52

Ensembled trees
 Bagged 0.97 0.96 272.50 271.41 157.84 156.58
 Boosted 0.99 0.98 184.68 183.76 107.69 105.32

Support vector machine
 Linear 0.98 0.98 207.94 203.99 121.99 121.26
 Quadratic 0.44 0.43 1195.38 1184.62 181.58 179.22
 Fine Gaussian 0.29 0.29 1338.30 1316.89 576.61 570.84
 Medium Gaussian 0.96 0.96 311.60 310.67 141.55 138.72
 Coarse Gaussian 0.47 0.46 1155.49 1148.56 491.43 490.94

Gaussian process regression
 Squared exponential 0.99 0.98 129.46 126.35 67.32 66.38
 Matern 5/2 0.99 0.97 119.26 118.54 64.46 63.43
 Exponential 0.99 0.97 132.59 132.06 74.67 72.88
 Rational quadratic 0.99 0.98 128.45 127.94 66.38 65.72

Artificial neural network
 Including all variables 0.99 0.98 45.71 45.02 27.36 27.14
 Most imp. variables only 0.98 0.98 73.82 73.67 37.64 37.45
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Additional information on the origins and development of 
PyNomo programming code can be found in [64].

To obtain a precise graphical solution for a traditional 
regression formula, PyNomo software calibrates the variable 
scales, distances, and orientations to mimic the regression 
equation. On the other hand, in this research, the traditional 
formula was substituted with the ANN formula that was 
exported from Machine Learning Toolbox in MATLAB. 
The exported formula from MATLAB can be summarized 
using Eq. (10):

where wI is the weights matrix for input layer; wH is the 
weights matrix for hidden layer; I is the input matrix; b is 
the matrix of biases and k is a single-value bias value. wI , 
wH , b, and k are constants that were obtained from Machine 
Learning Toolbox in MATLAB after ANN model training.

The adopted nomograph (Fig.  6) can be utilized to 
predict the ANN-ultimate bearing capacity of reinforced 
sands. Parameters used in developing the adapted neuro-
nomograph were the most important in terms of soil (fric-
tion angle), geogrid (tensile strength), and the interrelated 
parameters between both of them (depth and width of the 
geosynthetic, in addition to D50/Aw). An example shown as 
a dashed line with procedure explained is found in Fig. 7.

Neuro‑nomograph Validation

The easiness of neuro-nomograph found in this study is 
attractive. Yet, it must be ensured that these graphs can 
yield accurate predictions. Therefore, 20 random ultimate 
bearing capacity results that were not used in the train-
ing of ANN model (testing dataset) are used to check the 

(10)

BCPred = [wI] ∗

((
2

1 + exp
(
−2

([
wH

]
∗ [I] + [b]

))

)
− 1

)
+ k,

Table 6   Optimized hypermeter values for each trained model

Models trained Hypermeter Value

Regression trees
 Fine Leaf size 1
 Medium Leaf size 15
 Coarse Leaf size 44

Ensembled trees
 Bagged Leaf size 1

Number of learners 85
Number of predictors 1

 Boosted Leaf size 3
Number of learners 38
Number of predictors 15

Support vector machine
 Linear Box constrains 996.4

ε 16.0
 Quadratic Box constrains 14.5

ε 62.1
 Fine Gaussian Box constrains 999.6

ε 1.7
 Medium Gaussian Box constrains 998.9

ε 43.1
 Coarse Gaussian Box constrains 995.7

ε 31.9
Gaussian process regression
 Squared exponential σ 188.5
 Matern 5/2 σ 1391.6
 Exponential σ 592.9
 Rational quadratic σ 1356.1

Artificial neural network
 Including all variables Number of neurons 50
 Most imp. variables only Number of neurons 50
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accurateness of the neuro-nomographs. Figure 8 shows 
measured UBC values versus predicted UBC values using 
the neuro-nomograph. The close proximity of the points 
to the 1:1-line attests to the model validity. Furthermore, 
the predicted values are positioned within a ± 0.5 standard 
deviation and confidence intervals of ± 5% of measured 
values and with an R2 of 0.98. Such results agree with 
the previously obtained ANN model for the most signifi-
cant parameters using MATLAB (Fig. 5). Additionally, 
the ratio of measured ultimate bearing capacity to those 
predicted from the developed neuro-nomograph (UBCtest/
UBCpred) have shown variation coefficient (COV) of 0.13 
and mean of 1.11, respectively, verifying the validity of 
the adapted neuro-nomograph.

Practical Applications

The developed ‘neuro nomograph’ is believed to be a help-
ful design aid tool for practitioners in designing reinforced 
shallow foundations as quick estimations harnessing the 
power of SC models. Moreover, the outcomes of this study 
suggest that although ϕ and Dr are considered important 
parameters for reinforced foundation design, designers and 
practitioners should prioritize the soil gradation (D50) and 
geogrid aperture size (Aw) when compared to enhancing 
mechanical soil properties.
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Limitations of Models and Nomographs

The nomographs and models obtained are governed by the 
collected dataset used. Results of this study are not expected 
to have accurate estimations of bearing capacities when 
extrapolated to values above the maximum or below the 
minimum values for the different input parameters used in 
the current study shown in Table 4.

Conclusions

Ultimate bearing capacity (UBC) of reinforced sands is one 
of the key parameters in designing geotechnical engineer-
ing structures. In this article, several soft computing (SC) 
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Solved Example from Abu-Farsakh et al. (2013)

• Tensile Strength = 7.3 kN/m

• u/B = 0.32

• b/B = 9.67

• D50/Aw = 0.02

• Friction Angle = 46.5O

• Experimental Bearing Capacity = 1143 kN/m2

o Nomograph Bearing Capacity = 1099 kN/m2

o Error (%) = 3.8%

Fig. 7   Example of how to use the neuro-nomograph for reinforced soil bearing capacity prediction
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approaches were applied to estimate the bearing capacity of 
reinforced dry sands using results from a total of 261 tests 
collected from the literature. The following conclusions can 
be drawn:

1.	 Artificial neural network (ANN) outperformed all 
SC techniques, including regression trees, ensembled 
trees, support vector machine, gaussian process regres-
sion, in terms of accuracy measures such as R2, MAE, 
and RMSE. ANN achieved an R2 value of 0.99, MAE 
of 27.36 kPa, and RMSE of 45.71 kPa, indicating its 
superior performance in predicting the ultimate bearing 
capacities of reinforced soil.

2.	 The performance of the SC techniques varied depend-
ing on the specific models used. Complex and medium 
regression trees models showed the highest R2 value of 
0.99, while fine regression trees model had the lowest 
R2 value of 0.73. Boosted ensembled trees model per-
formed better than bagged ensembled trees model for 
RT modeling techniques. Linear and medium Gaussian 
SVM) models had relatively high R2 values of 0.98 and 
0.96, respectively, while quadratic SVM models had 
lower R2 results.

3.	 GPR models showed relatively low differences in RMSE 
values, ranging between 119.26 and 132.59 kPa for dif-
ferent GPR models. ANN models achieved the lowest 
RMSE of 45.71 kPa, indicating its superior predictive 
performance compared to GPR models.

4.	 The variable importance analysis revealed that the most 
significant variables for predicting the ultimate bearing 
capacities of reinforced soil were D50/Aw (soil gradation 
and geogrid aperture size), friction angle (ϕ), depth to 
footing ratio (u/B), and relative density (Dr). These vari-
ables were related to soil properties and the interaction 
of the soil-geogrid matrix. Footing length (L), number 
of reinforcement layers (N), and normalized width of 
reinforcement layers (b/B) were found to be least impor-
tant among input parameters used in the neural network 
model.

5.	 A neuro-nomograph, a graphical tool based on the 
trained ANN model, was developed to provide a simpli-
fied and practical method for obtaining accurate results 
without the need for specialized computational software. 
The neuro-nomograph showed good accuracy in predict-
ing the ultimate bearing capacities of reinforced sands, 
with predicted values positioned within a ± 0.5 standard 
deviation and confidence intervals of ± 5% of measured 
values.

The “neuro-nomograph” is a useful design aid tool for 
practitioners in designing reinforced shallow foundations, 
providing quick estimations harnessing advanced com-
putation models. The study emphasizes prioritizing soil 

gradation and geogrid aperture size over mechanical soil 
properties in reinforced foundation design.
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