
Vol.:(0123456789)1 3

International Journal of Geosynthetics and Ground Engineering (2023) 9:30 
https://doi.org/10.1007/s40891-023-00453-y

STATE OF THE ART/PRACTICE PAPER

Stability and Serviceability Assessment of Reinforced Earth Retaining 
Structures: A State‑of‑the‑Art and Way Forward

Vairamani Sundaravel1   · Bollor Shoorappa Gowda Deviprasad2 · Ramanandan Saseendran1 · 
Goudappa Ramanagouda Dodagoudar1

Received: 18 March 2023 / Accepted: 24 May 2023 / Published online: 5 June 2023 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
This paper reviews the previous studies on mechanically stabilized earth (MSE) wall, soil nail (SN) wall, and hybrid earth 
retaining structures (HERS) to provide a critical appraisal and state-of-the-art review followed by way forward regarding 
recommendations on the analysis, design, and practice. The first part of the paper deals with the brief review of the deter-
ministic and reliability analyses of the MSE and SN walls. The second part presents the review of the literature related to the 
HERS, which consists of MSE over SN wall and shored MSE and narrow MSE walls. Even though the HERS are alternative 
to the MSE and SN walls and are especially effective in hilly terrains, they are not yet that popular owing to the lack of well-
established design guidelines and construction procedures. A limited number of studies have been available in the literature 
on the HERS from the deterministic and probabilistic perspectives and are not available in the main-stream publications. Due 
to uncertainties of the material parameters of the soil and geo-synthetics, realistic and accurate prediction of the behavior 
of the reinforced earth retaining structures is very necessary and accordingly the studies reported on reliability studies are 
reviewed and presented. In the current design practice, the HERS are conservatively designed using guidelines developed 
for the MSE and SN walls. Therefore, there is a need to develop comprehensive analysis and design procedures for the safe 
and economical design of HERS.

Keywords  Mechanically stabilized earth wall · Soil nail wall · Hybrid earth retaining structures · Deterministic analysis · 
Reliability analysis

Introduction

Population growth and ever-growing urbanization have 
forced the engineering community to improve infrastruc-
ture facilities worldwide. It is necessary to widen the exist-
ing roadways and construct new ones to accommodate the 

increasing traffic volumes. A limited right-of-way (ROW) 
available in the case of existing roadways and scarcity of the 
land and existing site conditions available for the construc-
tion of new roadways have complicated the construction of 
earth retaining structures. Ever since the conceptualization 
of reinforced earth by Vidal [1], reinforced earth structures 
have become an integral part of the transportation infrastruc-
ture facilities. Over the past four decades, mechanically sta-
bilized earth (MSE) walls have been used to minimize the 
required ROW for embankments and used in the construc-
tion of new roads. In the case of unstable natural slopes, soil 
nail (SN) walls have been used to provide the required stabil-
ity against the lateral movement of the soil. These retaining 
structures involve the passive inclusion of reinforcement or 
nails to improve the overall stability.

The earth retaining structures involving the MSE and SN 
walls are termed hybrid earth retaining structures (HERS). 
The HERS result in substantial reduction in the earth volume 
apart from maintaining and improving the overall inherent 
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stability. The main advantages of the HERS are: (i) widen-
ing of existing embankments without disrupting the traffic, 
(ii) restoration of the collapsed mountain embankments, and 
(iii) stabilization of the natural slopes prone to instability 
and landslides. Combinations of the MSE and SN walls can 
be categorized into two types viz.: hybrid MSE/SN wall 
and shored mechanically stabilized earth (SMSE) wall. The 
hybrid MSE/SN wall is the construction of MSE wall above 
the SN wall which is mainly used in cut/fill situations with 
the SN wall in the cut section and the MSE wall in the fill 
section. In the case of SMSE wall, the MSE wall is con-
structed adjacent to the existing stable SN wall. These walls 
are used extensively in the widening and construction of the 
roads in mountainous terrains without disturbing the exist-
ing traffic. In the hilly terrains, a special type of HERS i.e., 
the narrow MSE (NMSE) walls are constructed where the 
minimum reinforcement length for the MSE walls cannot be 
achieved as specified in standards and guidelines [2–7]. The 
complete design of any geotechnical structure must ensure 
adequate safety for all the possible limit states using both the 
deterministic and probabilistic approaches.

The MSE and SN walls are the most popular reinforced 
earth retaining structures in geotechnical engineering due 
to the well-established design procedures. Despite having 
several advantages, the HERS are not yet popular in prac-
tice due to the lack of proper design guidelines and proce-
dures. The stability and serviceability of the HERS have 
to be evaluated using numerical methods [8]. There are a 
few successful case histories regarding the use of HERS in 
practice [9–21]. The stability and serviceability analyses 
of the earth retaining structures include large number of 

uncertain input parameters. It is not possible to evaluate 
the absolute safety of the structure in the presence of such 
uncertainties. The deterministic analysis ignores the effect 
of these uncertainties in the performance assessment of the 
reinforced earth retaining structures. The effect of uncer-
tainties is offset in the design of retaining structures using 
a safety factor as specified in the codal provisions. How-
ever, the design procedure should be able to incorporate 
the uncertainties associated with the input parameters for 
the realistic evaluation of the stability and serviceability 
of the retaining structures. The probabilistic approaches 
provide a framework to consider the uncertainties inher-
ent in the system. A few researchers have studied HERS 
using deterministic and probabilistic approaches; however, 
these studies are not well documented and presented in a 
systematic manner. A typical example of the hybrid MSE/
SN wall comprising the MSE wall over the SN wall is 
shown in Fig. 1.

This paper critically reviews the different studies avail-
able related to the analysis and design of the MSE and SN 
walls and HERS. The review includes the deterministic 
studies of the global stability and maximum lateral facing 
displacement of the above-mentioned retaining structures 
and a few slopes. A brief review of the available litera-
ture related to the probabilistic studies, load and resist-
ance factor design (LRFD), and calibration of the load and 
resistance factors is also presented. Based on the review, 
an attempt has been made to provide some specific recom-
mendations on the design of HERS using both the deter-
ministic and probabilistic procedures and to streamline the 
need for future research and way forward.

Fig. 1   Typical hybrid MSE/SN 
wall (MSE wall over SN wall)
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Mechanically Stabilized Earth Walls

Modern concepts of the MSE walls were conceptual-
ized and popularized by Vidal [1]. Initially, these walls 
were constructed using galvanized steel strips to provide 
resistance against lateral earth pressure. The first MSE 
wall was built in France in 1970 [22, 23] and later geo-
synthetics have also been used as reinforcements in the 
MSE walls. The MSE walls have become extremely popu-
lar in the place of conventional retaining walls, and they 
have many advantages, such as (i) reduced bearing loads 
due to the use of relatively lightweight facia, (ii) improved 
flexibility in the system that helps accommodate moder-
ate deformations, (iii) lesser requirement of skilled labor, 
(iv) economic viability, and (v) reduced construction 
time. The construction of these walls follows a bottom-
up sequential approach, where the first layer of soil and 
reinforcements is laid down with the corresponding facing 
elements. This process is then repeated until the required 
height of the MSE wall is achieved. There are many guide-
lines developed in several countries for the design of MSE 
walls [2–6, 24–29]. The design methodologies have been 
largely based on lateral earth pressure theories in the case 
of reinforced earth retaining structures and for the rein-
forced slopes, the concepts of slope stability analysis are 
used. The most common design methods developed for 
the design of MSE walls, and their suitability assessment 
were discussed by Anderson et al. [30]. The general design 
philosophy involves the evaluation of external, internal 
and global stability followed by the checks for the service-
ability criteria. The well-established design guidelines are 
available for the internal and external stability of the MSE 
walls. Most often, global stability is evaluated based on the 
conventional limit equilibrium method (LEM) [31]. The 
serviceability criteria are assessed in terms of the lateral 
facing displacement and overall settlement of the backfill.

Deterministic Analysis—A State‑of‑the‑Art Review

The available design methods of MSE walls can be cat-
egorized into force-equilibrium and deformation-based 
approaches. The LEM and earth pressure method come 
under the force-equilibrium approach, whereas the finite 
element method (FEM) and the K-stiffness method fall 
under the deformation-based approaches. The major 
limitations of the LEM are its inability to evaluate the 
displacement [32–35]. In recent decades, the numerical 
analyses have replaced the conventional LEM in modeling 
and analyses of the behavior of earth retaining structures 
due to its many advantages. The strength reduction method 
(SRM) incorporated in the FEM or finite difference 

method (FDM) overcomes the disadvantages of the LEM 
and also simulates the construction sequences realisti-
cally [36–41]. The FEM [42–48] and FDM [49, 50] have 
been used frequently to analyze the behavior of the MSE 
walls. They yielded satisfactory results for the prediction 
of different responses in the field and laboratory studies 
[50–57].

The different design codes available for the design of 
reinforced earth structures are mainly focused on ultimate 
limit states and offer only semi-empirical guidelines for the 
serviceability limit states. However, they fail to address the 
lack of procedure to evaluate the limit states such as exces-
sive deformations [58]. A large number of MSE walls have 
been failed due to the excessive lateral facing displacement 
[59]. It has been recommended that the MSE walls must be 
designed based on the displacement consideration instead 
of the force equilibrium concepts. Many researchers have 
developed the guidelines for evaluating the horizontal dis-
placement of the MSE wall and a few of them are adopted 
in the design codes [60–76]. However, these design codes 
focus mainly on the height of the wall, type of reinforcement 
and surcharge. Several of the MSE walls have failed due 
to the excessive deformations because of the other factors 
involved in the instability of the walls [77–80]. Further stud-
ies are needed in this regard to develop the most up-to-date 
comprehensive design guidelines to evaluate the lateral fac-
ing displacement accounting for all the factors affecting the 
response of the wall.

The horizontal displacement is a sum of three compo-
nents i.e., facing, internal and global displacements. The 
facing displacement can be calculated analytically based 
on the linear interpolation of the maximum strain (Δ) in 
the respective reinforcements [27, 28, 64, 81]. The simple 
analytical equation proposed by Giroud [64] to evaluate the 
horizontal displacement (δx) of any layer is expressed as

where L is the reinforcement length.
A semi-empirical equation was proposed by Wu [69] 

for calculating the lateral displacement (δ) of the wrapped 
geo-synthetic reinforced soil (GRS) wall of heights less than 
6.1 m. Wu [69] expressed δ as a function of reinforcement 
strain design limit (Δd) as

where H is the height of the GRS wall.
Lee [70] developed a face deflection model and expressed 

the normalized maximum facing deflection with respect to 
the Young’s modulus of the geo-synthetics in compres-
sion (Ecomp). The Ecomp was expressed in terms of the 
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reinforcement stiffness (J), vertical spacing between the 
reinforcement layers (sv), and Young’s modulus of the soil 
(Es) as

Jewell and Milligan [65] developed the analytical upper-
bound model considering the internal deformation of the 
GRS wall. The soil domain is divided into three zones and 
defined by the friction angle (ϕ) and dilatancy angle (ψ) 
of the soil as shown in Fig. 1. Zone 1 corresponds to uni-
form mobilization of reinforcement strain, and Zone 3 cor-
responds to zero reinforcement strain. Zone 2 is the transi-
tion zone between Zones 1 and 3. Wu et al. [75] modified 
the analytical model proposed by Jewell and Milligan [65] 
to incorporate the interface friction between the different 
components and the facing rigidity of the GRS wall.

Christopher et al. [24] developed the empirical fourth-
order polynomial model for evaluating the maximum lateral 
facing displacement which was later adopted in the design 
guidelines [2]. The equation is derived considering several 
parameters, such as height (H), reinforcement length (L), 
surcharge (q), and reinforcement type (i.e., inextensible 
or extensible). Christopher [67] proposed the empirically 
developed chart to evaluate the maximum displacement 
based on the slenderness ratio (L/H).

Adams et al. [82] proposed a method to calculate the 
maximum lateral displacement of the MSE walls where the 
vertical settlement of the GRS abutment must be known a 
priori. However, the complications involved in the evalu-
ation of the lateral displacement make the results least 
certain. The methods discussed above are based either on 
approximate empirical equations or charts to calculate the 
lateral displacement. However, it has been assumed that the 
lateral displacements are within the permissible limits, pro-
vided the sufficient safety is ensured for the external and 
internal instability of the wall. It should be noted that the 
lateral displacements are governed by several parameters, 
such as thickness, stiffness, inclination and material type of 
the facing [83–87], spacing, layout and stiffness of reinforce-
ment [88–93], backfill properties [94], state of compaction 
[42, 95–99] and foundation material, and toe restraint and 
interface [100–102]. The above-mentioned parameters may 
influence the horizontal displacement of the MSE walls indi-
vidually or jointly. The combined effects of different param-
eters on the lateral displacement of the MSE walls have also 
been studied [48, 103, 104].

Khosrojerdi et  al. [105] presented a review of the 
available methods for evaluating the horizontal displace-
ment of the GRS walls and abutments. A summary of 
literature highlighting the evaluation of maximum lat-
eral facing displacement of the MSE wall (ym) with the 

(3)Ecomp =
J

sv

+ Es

different variables involved is presented in Table 1. The 
table reveals that there are various individual variables 
that affect the maximum horizontal displacement of MSE 
walls. However, only a few studies have examined the 
combined impact of these variables on horizontal displace-
ment. Furthermore, the predictive equations proposed by 
some researchers for assessing horizontal displacement are 
restricted in their applicability due to the limited selection 
and range of variables, such as geometry, soil and rein-
forcement properties, that were considered during their 
development. Recent developments in the evaluation of 
the maximum horizontal displacements of the MSE walls 
can be seen in the studies by Pramanik et al. [106], Morsy 
et al. [107] and Khosrojerdi et al. [108].

Several standards suggest a minimum ratio of rein-
forcement length (L) to wall height (H) between 0.6 and 
0.7. According to Chew and Mitchell [68], reducing the 
reinforcement length from 0.7 to 0.5H resulted in a 50% 
increase in the lateral displacement, as numerically pre-
dicted. The required minimum reinforcement length may 
depend on several factors, including wall height, soil prop-
erties, type of geo-synthetic material, and expected loads. 
It may be possible to use reinforcement lengths as low 
as 50% of the wall height, instead of the 70% required 
by many agencies worldwide. For instance, Hong Kong 
guidelines suggest 0.5H as the minimum reinforcement 
length, while Brazilian guidelines recommend a mini-
mum of 0.8H [1]. The Federal Highway Administration 
(FHWA) guidelines [2] recommend a minimum ratio of 
0.7 and acknowledge that longer reinforcement lengths are 
necessary for structures subject to surcharge loads, while 
shorter lengths may be used in special conditions [3]. The 
American Association of State Highway and Transporta-
tion Officials (AASHTO) specifications [6] require a mini-
mum reinforcement length of approximately 70% of the 
wall height and not less than 2.4 m [4]. The National Con-
crete Masonry Association (NCMA) design manual [3] 
requires a minimum reinforcement length of 0.6H, which 
is an empirical constraint to prevent wall construction in 
limited spaces [5]. According to British Standard [28, 29], 
walls with normal retaining function require a maximum 
reinforcement length of 0.7H and 3 m.

The L/H ratio influences both the failure modes and 
the design approach to be employed. For L/H ratios below 
0.25, the external failure mode dominates, and the wall 
must be designed as a cement stabilized wall. Walls with 
L/H ratios between 0.25 and 0.7 exhibit a compound 
failure mode, with the failure surface partially formed 
through the reinforced soil and partly through the inter-
face between the MSE and stabilized wall facing. For walls 
with L/H ratios greater than 0.7, the internal failure mode 
predominates.
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Reliability Analysis—A State‑of‑the‑Art Review

The FS used for different geotechnical systems depends 
on experience and engineering judgment [118]. The con-
ventional approach suffers from many drawbacks such as 
the choice of different safety factors for different perfor-
mance requirements. Chalermyanont and Benson [119] 
highlighted that the conventional design of the MSE 
walls using the FS approach results in under- or over-esti-
mation of the safety of the system. They emphasized the 
importance of using the reliability analysis for the design 
of MSE walls. The reliability analysis accounts for the 
uncertainties involved in the geotechnical problems in a 
more rational way. The inherent uncertainties in the soil, 
reinforcement, and interaction parameters involved in the 
MSE walls must be considered for their reliable design. 
Phoon and Kulhawy [120, 121], Phoon and Tang [122] 
and Tang and Phoon [123] discussed the different types 
of uncertainties in geotechnical engineering and reported 

the associated inherent variabilities. These studies carried 
out an extensive literature review to estimate the typical 
coefficient of variation (COV) and scale of fluctuation for 
the common geotechnical parameters.

The reliability analyses have been used for the design 
of retaining walls since 1960s [124]. Several researchers 
have carried out the reliability analysis of the MSE walls 
considering different limit states, such as internal stability, 
external stability and serviceability, wherein the safety of 
the walls was expressed in terms of the reliability index and/
or the probability of failure [117, 125–130]. These studies 
have considered the available explicit performance func-
tions for the internal and external stability assessment of the 
wall. However, in the absence of such explicit performance 
functions, response surface method (RSM) can be used to 
approximate the performance function. The accuracy of the 
approximated performance function depends on the order 
of the polynomial, choice and number of random variables 
and their associated variabilities and design of experiments.

Table 1   Summary of available literature for evaluation of maximum lateral facing displacement of the MSE wall

L—reinforcement length, Δ—strain in the reinforcement, H—height of the MSE wall, ψ—soil dilatancy angle, γ—soil unit weight, EA—axial 
stiffness of reinforcement, Sm—reinforcement spacing, q—surcharge loading, ϕ—angle of internal friction, c—cohesion, Dv—vertical settlement 
of wall, bq—footing width, b'—block width, δ—soil–wall interface friction, ϕt—friction angle of retained soil, α—backslope slope inclination, 
ω—facing angle inclination, ksbb—block–block shear stiffness interface, and γb—unit weight of the block

References Reinforcement Facing Deformation 
location

Variables

Giroud [64] Geogrid
Geotextile

None Internal L/Δ

Jewell and Milligan [65] Geotextile Wrapped Face H/ϕ/ψ/γ/EA/Sm/q
Christopher et al. [24] All (Geosynthetic) All Face L/H/EA/q
O’Rourke and Jones [66] All (Geosynthetic) All Face H/Δ
Christopher [67] Geotextile Segmental Face H/L/EA/Sm/ϕ/c
Chew and Mitchell [68] Geotextile Segmental Face H/L/EA/Sm/q/α
Wu [69] Geogrid

Geotextile
Wrapped Internal Δ/H

Lee [70] Geotextile Wrapped/Segmental Internal H/EA/Sm

Adams et al. [82] Geotextile Wrapped/Segmental Internal Dv/bq′/H
Bathurst et al. [71] Geogrid Wrapped/Segmental Face H/q
Sayed et al. [109] Geogrid Full height facing panel Face ϕ/γ/δ
Wu and Pham [110] Geotextile Wrapped/Segmental Internal J/ϕ/q/Sm/γ/H/ψ/δ/β/γb/b′
Adams et al. [111, 112] Geotextile Wrapped/Segmental Internal H/bq/Dv

Wu et al. [75] Geotextile Wrapped/Segmental Internal H/ϕ/ψ/γ/EA/Sm/q
Kibria et al. [80] Steel wire mesh Precast panels Face H/L/ϕ/ϕret/J
Allen and Bathurst [113] Geogrid

Geotextile
Wrapped/Segmental Internal H/q/ϕ/c/EA/Δ/γ/Sm

Scotland [58] Geogrid Wrapped Both H
Lin et al. [114] Geogrid Segmental Face H/ω/ϕ/J/ksbb/q
Yu and Bathurst [115] Geogrid Segmental Face γ/Sm/H/J/ksbb/ϕ/q/ω
Hamrouni et al. [116] Geosynthetic Strips Precast panel wall Face ϕ/γ
Toufigh and Pahlavani [117] Geogrid Precast panel wall Face EA/q/ϕ
Khosrojerdi et al. [108] Geogrid Segmental Face q/ϕ/Sm/J/ω/H/L/B
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The applications of the RSM for various geotechnical 
problems including the slopes and retaining structures were 
discussed and presented by many researchers [109, 114–117, 
131–134]. The performance functions for the response quan-
tities of interest of the MSE walls, such as maximum lateral 
facing displacement [109, 114–117], and reinforcement 
and connection strains [115], have been developed using 
the RSM. The main objective of the reliability analysis is to 
evaluate the probability of failure and/or the reliability index 
of the system. The Monte Carlo simulation [114, 117, 133], 
first-order second moment method [117, 125, 126], point 
estimate method [128], and first-order reliability method 
[109, 116, 117, 135–138] are used to carry out the reliabil-
ity analysis of the MSE walls. The response surface equa-
tions developed for the horizontal displacement hold good 
only for the particular type of facing material considered 
and also limited to the scope of the variables in considera-
tion. The proposed equations cannot be extrapolated outside 
the range of parameters that were considered during their 
development.

The Load and Resistance Factored Design (LRFD) has 
become popular in geotechnical engineering in recent times 
and is seen as an alternative to the conventional Working 
or Allowable Stress Design (WSD or ASD). The LRFD 
includes the variability in both the loading and resistance-
related variables and the uncertainties are quantified using 
the probabilistic approaches. A proper selection of the load 
and resistance factors ensures robust and reliable designs. 
The LRFD uses the load and resistance factors derived using 
the rigorous reliability analyses. The application of the load 
and resistance factors in the design of the MSE walls was 
discussed by a few researchers [2, 135–140]. A several 
studies are also reported on the calibration of the load and 
resistance factors using probabilistic analyses considering 
the internal and external stability of the MSE walls [130, 
135–139, 141–143]. However, there is no study reported 
on the calibration of load and resistance factors considering 
the horizontal displacement and global stability limit states 
of the MSE wall. The criteria based on the target reliability 
indices or probabilities of failure are employed in the cali-
bration process. The choice of these target values depends on 
the importance of the structure, stability requirements and 
the consequences of the failure of the structure.

The stability of the MSE wall depends not only on the 
individual or component reliability levels of the limit states 
but also on the system reliability levels. The engineered 
systems can be grouped under three categories viz., series, 
parallel, and hybrid. Several studies have modeled the MSE 
walls as series systems in which the structure fails if any one 
of the performance criteria is not satisfied [139, 144–147]. 
Basha and Babu [139] proposed a system reliability-based 
LRFD approach for the analysis of MSE walls consider-
ing the external stability under seismic loading. System 

reliability-based LRFD approach considering both the ser-
viceability and stability criteria is deemed necessary for the 
complete satisfactory design of the MSE walls.

A State‑of‑the‑Art Review on Soil Nail Walls

The SN walls are used in the cut situations, underground 
excavations, transportation infrastructure especially for 
stabilizing the slopes, uphill widening of hill roads, tunnel 
portals, landslide mitigation and for the repair, and rehabili-
tation of MSE walls [20, 148–157]. The SN walls develop 
their reinforcing action by mobilizing the resisting force 
through the soil nail interactions as the soil deforms dur-
ing and/or after the construction of the facility. The nails 
generate tensile forces through friction during the deforma-
tion of the soil along its length, thereby preventing the slope 
failure [158]. In recent decades, there is a huge demand for 
stabilization of cut slopes in the transportation infrastruc-
ture especially in the hilly terrains [158–160]. The complex 
interactions between the individual components of the SN 
wall (soil, nail and facing) dictate its performance. The soil 
nailing is widely used because of their low construction cost, 
simple installation procedure, ease, and the speed of con-
struction [161, 162]. The SN walls are constructed using a 
top-down approach, where the slope is excavated, and the 
top nails are installed first. The same process is then repeated 
until the bottom of the wall is reached.

Deterministic Analysis

Duncan and Wright [163] presented a thorough review of 
different techniques of LEM used for the stability analysis 
of slopes. In the case of slopes reinforced with soil nails, the 
resistance offered by the soil nails should also be considered 
in the LEM. In general, the tensile stresses are generated in 
the nails; however, in certain situations, the nails experience 
bending and shear stresses. The advantages and disadvan-
tages of considering the bending and shear stiffnesses of 
the nails in addition to the axial stiffness are discussed by 
Singh and Babu [164]. Several researchers have considered 
different types of failure surfaces including: (i) planar [165], 
(ii) bilinear with a two-wedge slipping mass [166, 167], (iii) 
parabolic [168], (iv) log spiral [167, 169] and (v) circular 
[170] to incorporate the effect of nail–soil interaction in the 
stability analysis. Basset and Last [171] stated that the locus 
of maximum tension could be considered as the potential 
slip surface based on the theoretical analysis. This fact was 
further validated by Schlosser and Unterreiner [172] through 
prototype-scale experiments. Based on the studies by Bonab 
and Razavi [173], it is concluded that the failure surface 
is circular for cohesive soils and is bilinear or trilinear for 
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granular soils depending on the non-associated or associated 
flow rule.

The SN walls undergo lateral deformation and vertical 
settlement during and after the construction with the maxi-
mum values observed at the top of the wall. The wall dis-
placements are influenced by the designed margin of safety, 
properties of the soil, facing thickness and its inclination 
and type, wall height, length of the nail (l) to height of the 
wall (h) ratio [i.e., l/h], l, slope angle, backslope inclination, 
nail inclination, connection type, pull-out capacity, spacing, 
layout, nail head type, nail diameter, interface, surcharge, 
etc. [172–184]. It is generally assumed that the vertical dis-
placement is equal to the maximum horizontal displacement 
[185]. For vertical soil nail walls of height, h and with typi-
cal nail length-to-wall height ratios and negligible surcharge 
loadings, the observed maximum horizontal displacements 
vary between 0.1 and 0.4% of h depending on the soil/rock 
type [5, 7, 29, 185–189]. The permissible limits and vari-
ables that affect the FS and studies highlighting the evalu-
ation of maximum lateral displacement of the SN wall (yn) 
with its corresponding influencing parameters are presented 
in Tables 2 and 3, respectively.

Numerical analyses using the FEM and FDM consider-
ing the SN wall system as two-dimensional (2D) system 
have been performed to understand the behavior of slopes 
reinforced with nails [31, 199–207]. These studies have 
also evaluated the lateral movement of the slope. Several 
researchers have brought out the important aspects of the 
interactions involved in the SN wall system based on the 
FE analyses using Plaxis and Abaqus [158, 162, 192, 193, 
199, 208]. A few researchers have also attempted to optimize 
the design of SN walls with respect to different geometric 
parameters, such as nail spacing, length, diameter, inclina-
tion, etc. [161, 168, 209]. The factor of safety of the SN 
wall is evaluated using the SRM in the FE analysis [161, 
210–213]. A few studies have also developed the regres-
sion models for the lateral displacement and global stability 
using the numerically designed experiments considering the 
geotechnical parameters, nail length patterns and limiting 
conditions [191–193, 214].

Over the years, several laboratory and field studies 
have been conducted to analyze the behavior of SN walls 
[215–220]. The centrifuge modeling has been widely used 
for the performance assessment of the reinforced slopes 
[174, 221, 222]. There is a good agreement between the 
measured values and those predicted using the 2D numerical 
analyses [158, 162, 212, 223, 224]. In the past studies, vari-
ous design aspects were proposed for the design of SN walls 
[209, 225–229]. A brief appraisal of the design approaches 
of the SN walls is given by Babu and Singh [230] and Patra 
and Basudhar [231]. There is a lack of information regarding 
the collective impact of various parameters on both the fac-
tor of safety (FS) and lateral displacement of SN walls. The 
proposed equations are only applicable within the range of 
parameters that were considered, and it is not recommended 
to extend the use of these equations beyond that range.

Reliability Analysis

The existing simplified empirical model [7, 185] under-pre-
dicts the lateral displacement of the SN walls built in clayey 
media and over-predicts for those built in sandy media. The 
lateral displacement of the SN wall should therefore be 
assessed probabilistically to quantify the variability in the 
predictions of the empirical model. A brief review of the 
available literature on the reliability analysis of the SN walls 
is presented in this section. The reliability-based design of 
the SN walls has been extensively adopted in recent times 
considering the ultimate limit states of internal stabil-
ity [190, 232–234] and external stability [190, 193–195, 
234–236]. However, a very few studies have been reported 
considering the serviceability limit states [193, 197, 198, 
234, 237]. It is to be noted that there is a considerable inter-
dependence between the lateral displacement and global 
stability limit states of the SN wall [234].

Table 2   Studies highlighting the evolution of global stability of SN 
walls

cn—cohesion of soil, l—nail length, i—nail inclination, Tequi—nail 
stiffness

References FS Limits/Variables

Berg et al. [2] 1.3, 1.5
1.3 when parameters are well 

defined
1.5 limited information

Lazarte et al. [185] 1.35 (Temporary), 1.5 (Per-
manent)

Zevgolis and Daffas [190] cn/ϕ/γ/q
Sharma and Ramkrishnan [191] l/ϕ/cn

Babu and Singh [192, 193] ϕ/γ/cn

Lin et al. [194], Lin and Liu [195] cn/ϕ/γ/q/bond strength
General, Analytical ϕ/γ/cn/H/i/α/ω/ψ/q/Tequi

Table 3   Studies highlighting the evolution of maximum horizontal 
displacement of SN wall

References Variables

Stocker et al. [166], Shen et al. [168], Juran et al. 
[169], Plumelle and Schlosser [170], Plumelle et al. 
[196]

H

CLOUTERRE [186] H
Babu and Singh [192, 193] ϕ/H/γ/cn

Lazarte et al. [185] H, type of soil
Yuan et al. [197, 198] H/ϕ/cn/γ
Sharma and Ramkrishnan [191] l/ϕ/cn
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A few researchers have adapted the first-order reliability 
method [194] and Monte Carlo simulation technique [190, 
195] for evaluating the reliability index or probability of 
failure associated with the SN walls. A limited studies on the 
system reliability analysis of the SN walls is also attempted 
in the literature [190, 197, 216, 238]. The calibration of load 
and resistance factors required in the LRFD of the SN walls 
for different limit states has also been accomplished by a few 
researchers [185, 195, 238–242]. Therefore, further studies 
on the reliability analysis of the SN walls are required con-
sidering different serviceability limit states so that easy-to-
use reliability-based design guidelines can be formulated.

Hybrid Earth Retaining Structures

In this section, a brief review of the literature on the HERS 
viz. the hybrid MSE/SN wall and the SMSE and NMSE 
walls is presented.

Hybrid MSE/SN Walls—A Review

The MSE/SN wall is a highly feasible solution in engineer-
ing practice and provides a more economical solution in the 
cut/fill situations compared to the conventional MSE walls 
[17]. It is also a viable option where the construction space 
is limited or road must remain open during the entire con-
struction duration and it restricts the movement likely to 
be induced by the shallow landslides in the hilly areas [10, 
243]. The natural slope is excavated using the top-down 
construction approach with the nails installed at the desired 
locations and then the MSE wall is built using the bottom-
top construction approach.

Traditional limit equilibrium (LE) approaches do not 
provide information on the lateral displacement; therefore, 
they are not used as standalone techniques for the design of 
MSE/SN walls [8]. The LEM considers the MSE wall as an 
equivalent surcharge load, arising as a combination of the 
vertical surcharge and shear forces from the lateral earth 
pressure acting on the MSE wall [185]. However, the real-
istic assessment of the behavior of MSE/SN wall requires 
proper modeling of all the component materials as a single 
composite system incorporating the respective interactions 
and evaluating the effect of one retaining structure over the 
other. Wei [244] used the FE simulations to develop the 
equivalent surcharge loads to represent the MSE walls in 
the form of load coefficients for the design of the soil nailed 
segment of the MSE/SN walls. This approach can be con-
sidered as an equivalent technique wherein the direct effect 
of the MSE wall is omitted in the analysis of the MSE/SN 
wall. The MSE wall portion can be modeled completely 
using the continuum-based numerical methods for accurate 
performance assessment of the MSE/SN walls.

Numerical methods have the added capability to estimate 
the FS and lateral displacement and also they evaluate the 
failure mechanisms and deformation modes of the MSE/SN 
walls. The FE analysis using Plaxis has been used success-
fully in the modeling of MSE/SN walls [8, 245–247]. The 
efficiency of the FE analysis for the modeling of MSE/SN 
walls is highlighted with respect to the LE and empirical 
methods [248]. Design charts and procedures were devel-
oped by Alhabshi [245] considering different responses 
of interest to evaluate the relationship between the lateral 
displacement and FS against the global instability of the 
wall. It was concluded that an optimum nail length exists 
beyond which no benefits are gained from extending the 
nails’ length. The FE models showed that the critical failure 
surface of the hybrid walls consists of two continuous por-
tions, first one passing internally through the soil nails and 
thereafter extending behind the reinforcements in the MSE 
wall section [8, 244, 247]. In most of the earlier studies, 
the Mohr–Coulomb material model is used to model the 
behavior of the soil [8, 244, 245] and it proved to yield the 
satisfactory results when compared with the experimental 
and field studies. The behavior of the soil was also modeled 
using a few advanced constitutive models, such as Modi-
fied Cam Clay and Plaxis Cap [245] and hardening soil [8] 
models. Rabi [8] has suggested the use of FE analysis for 
the estimation of global FS and failure surface, and the LE 
approaches for the internal and facing stability analyses. 
Eldiasty et al. [248] discussed the advantages of hybrid 
walls over the monotype walls in the expansion of roads. It 
is advocated that the traditional LE methods are not suitable 
for analyzing the MSE/SN walls due to the prior assumption 
of the location and shape of the failure surfaces [244, 247].

Shored MSE and Narrow MSE Walls—A Review

The SMSE and NMSE walls are creative applications of the 
conventional MSE walls [249]. The NMSE walls are those 
MSE walls constructed using shorter reinforcements than 
those recommended by the design guidelines, preferably less 
than 0.7H or 0.6H. The SMSE walls are those MSE walls 
built adjacent to the flexible or rigid stable medium which 
may be rock or a soil nail wall which acts as a shoring for the 
MSE walls. The existing stable medium promotes the usage 
of shorter reinforcements in the narrow available space and 
thereby reduces the mobilization of the reinforcement loads. 
These walls are specially constructed as part of the trans-
portation infrastructure in the mountainous steep terrains 
where the limited ROW is available, and they do not affect 
the traffic flow. The combined system results in the reduc-
tion of the earthwork and in addition increases the global 
stability of the sloped terrain [13, 20]. The well monitored 
case histories have proved successful implementation and 
satisfactory performance of the SMSE and NMSE walls [9, 
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13, 15, 16, 20, 250–253]. Most of these studies have used the 
extensible reinforcements with a few exceptions wherein the 
inextensible reinforcements are used. The combined advan-
tages of the SMSE, NMSE and MSE/SN walls have also 
been utilized successfully for the landslide mitigation [17, 
243, 254].

In the absence of well-established design guidelines in 
codes, many researchers have carried out analytical, numeri-
cal and experimental studies to understand the behavior of 
SMSE and NMSE walls. The LEM is extensively used for 
evaluating the potential critical failure surfaces along with 
the FEM, FDM and experimental studies. The commonly 
used numerical (FE and FD) programs for the analysis 
and design of SMSE and NMSE walls are Plaxis [15, 16, 
255–259] and Flac [14, 17, 260–263]. The numerical analy-
sis proved to be accurate in capturing the realistic responses 
of the NMSE walls [255, 264]. Different material models for 
the soils are also used in the numerical analyses including a 
few of the advanced models (e.g., HS model) [256, 259, 264, 
265]. The MC model for the soil is reported to be sufficient 
to accurately capture the behavior of the NMSE and SMSE 
walls [15, 16, 254, 261–264, 266, 267]. Parametric studies 
are also carried out by Abdelrahman et al. [257] to examine 
the influence of different factors, such as aspect ratio of the 
wall, elastic axial stiffness of the reinforcement, angle of 
internal friction, reinforcement spacing and wall height on 
the lateral displacement and global stability of the wall. The 
results from these studies indicated that there is a reduction 
in the lateral and vertical earth pressure for the NMSE walls 
compared to the conventional MSE walls due to the arching 
effect and boundary constraints. The easy-to-use charts were 
also proposed by Leshchinsky et al. [261] and Kniss et al. 
[264] and to predict the reduced stresses.

The pull-out failure is governed by the lower reinforce-
ment layers extending into the resisting zone. A few stud-
ies have suggested using the increased FS against the rein-
forcement pull-out i.e., 1.5–2.0 for the aspect ratios less than 
or equal to 0.4 [266, 267]. A few analytical models were 
proposed to predict the lateral displacement of the SMSE 
wall with a wrap-around facing [265, 268]. It is noted that 
the external stability is not ensured by extending the top 
reinforcement layers into the stable medium [269]. The 
LEM was adopted to study the failure surface and stability 
analysis of the wall and arrived at the optimum layout of the 
reinforcements needed for the satisfactory performance [12, 
15, 16]. Leshchinsky et al. [261] postulated a procedure for 
determining the required tensile strength of the geosynthet-
ics considering its limited length in the case of NMSE walls. 
It was observed that the friction angle of the reinforced fill 
and its geometrical extent influence the coefficient of earth 
pressure acting on the face of the restrained wall [268].

The effect of different parameters, such as the vertical 
spacing and stiffness of the reinforcement, ratio of nail 

length to total height of wall, inclinations of the MSE and 
SN wall facings on the developed tensile stresses in the 
reinforcements of the MSE wall, is examined by Abbas 
et al. [259]. Further, a comparison is made among the avail-
able design methods of the MSE wall. The significance of 
evaluating the global stability of the hybrid MSE walls is 
demonstrated using the case history [253]. Ren et al. [258] 
compared the deformation characteristics of the SMSE walls 
between the reduced and full-scale tests using numerical 
analysis. A series of load displacement/settlement tests on 
the small-scale model of the NMSE walls is carried out con-
sidering the static loads to investigate the performance of the 
walls in terms of lateral displacement, settlement, distribu-
tion of lateral earth pressure, and mobilization of tensile 
stress at each reinforcement layer [270]. The influence of 
surcharge and wall deformation modes on the earth pressure 
of the NMSE walls was numerically investigated by Rajeev 
et al. [271]. The load deformation response of the NMSE 
walls under static loading is investigated by Kakrasul et al. 
[272–274]. Full-scale tests were also performed by Luo et al. 
[275] to study the overall behavior of the NMSE walls.

It has been observed from the numerical, scaled-down 
experimental, and centrifuge and field studies that a zero-
pressure zone is formed at the MSE/stable wall interface 
representing the formation of a trench. It is also noted that 
the walls with a very low L/H ratio are susceptible to over-
turning failure and the walls with L/H ratios of 0.6–0.7 are 
governed by the lateral sliding failure [255, 256, 260, 264, 
266, 267, 276, 277]. The NMSE walls experienced failure 
for the L/H ratio of 0.25 as the zero-pressure zone reaches 
the bottom of the wall which forces the MSE wall to sink 
[256]. A bilinear failure surface originating from the toe of 
the MSE wall to the stable wall is observed for the walls hav-
ing aspect ratios ranging from 0.26 to 0.7 with inclination 
between 48° and 57° [263, 265, 269, 277–279]. The failure 
surface thereafter intersects the shoring wall following the 
soil wall interface and progresses toward the ground surface. 
The trench formation triggers the external failure by pulling 
away the MSE wall from the stable wall. The inclination of 
the failure surface for the NMSE wall is 10–20% lesser than 
the actual Rankine failure surface [278–280]. The vertical 
stress on the rear end of the reinforcement was found to 
be less than that calculated analytically. This reduction is 
reported due to the arching effect induced by the presence of 
stiffer soil/rock behind the MSE wall. For more satisfactory 
performance evaluation of the NMSE walls, further studies 
are needed with respect to effectiveness of the soil arching 
and the influence of various parameters on the development 
of soil arching. The findings from these types of studies will 
help formulate the extensive design guidelines for the effi-
cient and economical designs of the HERS.

The MSE/SN wall is vulnerable to differential settlement 
which would result in increased lateral displacement and 
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vertical settlement [281]. A numerical study by Sadat et al. 
[281] also showed that the friction angle of the backfill soil, 
surcharge, L/H ratio and tensile stiffness of the reinforce-
ment have a noticeable influence on the lateral and vertical 
movements of the wall. Application of the MSE wall design 
procedures to the SMSE walls leads to conservative designs, 
because the MSE wall design procedures do not consider 
the reduced lateral earth pressure due to the existence of the 
stable shoring wall [261, 267, 268]. Moreover, the existing 
literature has mentioned about the reduction in the earth 
pressure in the hybrid walls, however, a very few studies 
have focused on the lateral displacement and global stability 
of the walls.

It has been suggested that the stability of the NMSE wall 
could be improved by extending the top reinforcements 
over the stable wall or attaching all the reinforcements to 
the stable medium using rigid facing elements of the SN 
wall. This eventually arrests the deformation and improves 
the shear strength properties of the soil, thereby eliminating 
the development of zero pressure zone [14, 266–270, 272, 
280, 282]. It was also observed that the displacement can be 
controlled even for the L/H ratio of 0.3 by the above recom-
mendations or by bending the reinforcements upwards at the 
rear end. The internal stability is achieved by dissipating the 
residual reinforcement tensile stresses. The factors, such as 
the slope gradient, backslope inclination, reinforcement stiff-
ness, angle of internal friction of backfill and reinforcement 
length, govern the development of nail tensile force during 
and after the construction of the slope upon allowing the 
traffic [15, 16]. From these studies, it is concluded that the 
NMSE walls experience a very little deformation due to the 
increase in the wall stiffness. It is recommended to use L/H 
ratio of 0.3 or a minimum reinforcement length of 1.5 m for 
satisfactory performance of these walls [264, 266, 267]. It 
is also suggested to consider the noncircular slip surfaces 
for evaluating the global stability of the NMSE walls [264].

A few authors have also examined the connection between 
the nails in the existing stable medium and the reinforce-
ments of the MSE wall. The connections considered were: 
sandwich connection in which the reinforcements and nails 
overlap [19, 262], anchors attached between the reinforce-
ments and nails to fasten the nails with the reinforcements 
[250, 258, 261, 262, 266, 267], a fastening system [283], 
PRO’LINK [12] and yoke [13]. These connections improved 
the stability of the SN wall by full utilization of the resisting 
force developed by the reinforcements of the MSE wall. Fre-
itag et al. [14] have also found that the connection provided 
the additional friction between the nails and the reinforce-
ments which ensured the internal stability of the MSE wall 
system.

There are hardly any reliability studies attempted on the 
HERS in the literature. Yang et al. [279] performed the reli-
ability analysis of the NMSE walls considering only the 

external stability (i.e., overturning and sliding). However, 
the reliability studies on the MSE/SN and SMSE walls have 
not been reported in the literature. Yang et al. [279] car-
ried out only the component level reliability analysis of the 
NMSE walls. A comprehensive reliability analysis requires 
estimates of the system reliability of the HERS which con-
siders the different components and/or the different limit 
states of the system. The system reliability studies on the 
HERS are very much needed to formulate the reliability-
based design guidelines. The reliability studies, in general, 
are computationally costly and require a proper understand-
ing of the probabilistic methods. Calibration of the load and 
resistance factors for the different limit states of the HERS 
based on a target probability of failure is also essential and 
accordingly the further studies can be taken up to develop 
the LRFD guidelines. The calibrated load and resistance fac-
tors ensure the consistent reliabilities for the HERS and at 
the same time they will not defy the current design practice.

Concluding Remarks and Recommendations

A comprehensive review of the state-of-the-art on the previ-
ous publications, reports, and existing design guidelines on 
the MSE wall [2–6, 25–28], SN wall [5, 7, 29, 185–189] and 
HERS [264, 267, 280] is presented in this paper. The fol-
lowing concluding remarks and recommendations are made 
keeping in view the future framework for further studies:

•	 The HERS are viable options to expand the right-of-
way compared to the conventional MSE and SN walls 
especially in the hilly terrains having space constraints. 
These hybrid walls are also useful for slope stabilization 
and shallow landslide mitigation. Despite the significant 
cost reduction, improved flexibility and other engineer-
ing advantages, the HERS are not widely used in prac-
tice. This under-utilization of the HERS is attributed to 
the lack of well-established design procedures. Hence, 
further studies are needed to develop the proper design 
guidelines so that the HERS can be adopted in the prac-
tice of transportation geotechnics.

•	 The behavior of the MSE and SN walls in terms of ser-
viceability and ultimate limit states is addressed by many 
researchers over the years. The allowable stress design 
and LRFD guidelines are available in the literature for 
the design of MSE and SN walls. Moreover, the guide-
lines available in the literature for the design of SMSE 
and NMSE walls are based on deterministic framework. 
In the case of hybrid MSE/SN walls, the guidelines are 
not available yet even from the deterministic framework. 
Therefore, the systematic further studies are needed to 
establish the guidelines within the framework of deter-
ministic analysis.
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•	 The conventional limit equilibrium method cannot be 
used as a stand-alone analysis method for the perfor-
mance assessment of the HERS. The field conditions 
are very well simulated using the numerical methods, 
provided the interfaces, constitutive models, boundary 
conditions, geometry, and other parameters are precisely 
considered in the analysis. The advances in the numerical 
methods have significantly improved the analysis proce-
dures of the HERS. This also helps to avoid the oversim-
plified consideration of the MSE wall as an equivalent 
surcharge acting over/side of the SN wall (MSE/SN or 
SMSE). A few studies in the literature have discussed the 
failure mechanisms involved and the reduction in earth 
pressure due to the arching and boundary constraints. 
However, there are no studies on the displacement char-
acteristics, deformation modes involved and the overall 
global stability of the HERS. The numerical analysis 
captures the arching mechanism and accurately predicts 
the reduced earth pressure by modeling the HERS as a 
single composite system. These analyses are also capable 
of capturing the impact of the interaction between the 
components of the MSE and SN walls on the overall per-
formance of the HERS. This facilitates the proper evalu-
ation of the lateral displacement and global stability of 
the wall in a rational way.

•	 Many researchers have performed the numerical inves-
tigations and developed the response surfaces for differ-
ent limit states of the MSE and SN walls. The lateral 
displacements of the MSE and SN walls are generally 
evaluated based on the developed predictive equations 
and empirical charts. Similarly, several researchers have 
performed the experimental (field and laboratory), ana-
lytical and numerical studies to analyze the behavior 
of HERS. Most of these research studies have focused 
on the evaluation of the responses rather than develop-
ing easy-to-use predictive equations for the different 
responses of the HERS. At present, the design guidelines 
available for the MSE and SN walls are being used in the 
design of HERS and are reported to be conservative in 
general. Therefore, there is a need to develop the rational 
set of design guidelines for the HERS considering the 
overall system behavior.

•	 Earlier studies have focused on the reliability analyses of 
the individual MSE and SN walls and in some cases the 
system reliability analysis has also been performed. The 
reliability analyses of the MSE and SN walls for different 
limit states, such as internal, external and serviceability, 
have been documented in the literature. These reliability 
analyses have been performed on the developed perfor-
mance function or on the available explicit functions using 
the Monte Carlo simulation, first-order second moment 
method, point estimate method and first-order reliability 
method. The responses of the HERS depend very much 

on the uncertainties associated with the soil properties and 
type of geo-synthetics used in the construction.

•	 The reliability analysis of the HERS is not yet attempted, 
except for the one study which has considered only the 
external stability limit state of the NMSE wall. Moreover, 
the reliability studies on the HERS for the lateral displace-
ment and overall global stability limit states have not been 
performed. Many studies are available pertaining to the cal-
ibration of the load and resistance factors for the individual 
MSE and SN walls considering different limit states. There 
is hardly any mention in the published literature regarding 
the system reliability analysis and calibration of the load 
and resistance factors for the HERS. The reliability of a 
hybrid wall system is a function of the reliability of its 
individual limit states. The system reliability assessment 
of the HERS therefore needs to account for multiple limit 
states, perhaps correlated, limit states. Therefore, the reli-
ability studies are very much needed to develop the system 
reliability guidelines for the design of HERS in the proba-
bilistic framework.
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