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Abstract
This paper explores the applicability of rapidly growing machine learning techniques (MLTs) for predicting the vibration 
response of geocell reinforced soil beds. Peak particle velocity (PPV) is used as an indicator to represent the vibration 
response. Two machine learning techniques namely, Genetic programming (GP), and multivariate adaptive regression splines 
(MARS) are used for the PPV prediction. Primarily, a series of field vibration tests were conducted over the geocell rein-
forced beds to obtain the dataset for model development. During the field test, PPV variation was studied by varying the test 
parameters namely, footing embedment, dynamic load, modulus of infill material, width, and depth of placement of geocell 
mattress. In total, 240 field measurements were used to formulate the PPV prediction models. The prediction performance 
of a developed model was examined by determining the different statistical indices. In addition, the ranking of each input 
parameter was calculated to identify the parameter, which influences the PPV most. According to the outcome of developed 
models, coefficient of determination (R2) values of (0.9918, 0.9852), and (0.9949, 0.9941), were observed for training and 
testing data sets of GP and MARS models, respectively. The sensitivity analysis of both the models revealed that the distance 
from the source to the measurement point indicating the damping properties of the reinforced bed is predominantly affecting 
PPV. Further, a comparative study has been carried out to examine the efficiency of the developed model in predicting the 
PPV response at the unknown dynamic excitation. The results of the comparative analysis revealed that the MARS model 
exhibits a high degree of accuracy in predicting the PPV variation in comparison to GP.

Keywords  Peak particle velocity · Geocell · Field vibration test · Genetic programming · Multivariate adaptive regression 
splines

Introduction

Controlling the detrimental effects that result from the 
intense levels of ground vibration has received substantial 
attention in the recent past. Earthquakes, high-speed train 
systems, mine explosions, nuclear power plants, pile driv-
ing, dynamic compaction, and vibrating machines are the 

practical sources of vibration. Risk levels of induced vibra-
tion are typically expressed using the parameter, peak par-
ticle velocity (PPV). It represents the maximum velocity 
attained by the soil particle due to the induced vibration in 
each of the three mutually orthogonal directions. It is also 
used to represent the level of risk experienced by the struc-
tures located near the vibration source. Presently, different 
standards provide different PPV limits for monitoring the 
life of old structures or monuments. A summary of threshold 
PPV limits suggested by different standards is provided in 
Table 1.

To mitigate the vibration effect, one of the strategies is 
to enhance the elastic response of the foundation bed. Rein-
forced earth using geosynthetics is one of the most efficient 
approaches to serve this purpose. Among the different geo-
synthetics, geocell found to exhibit superior performance 
over the other forms of geosynthetics for reinforcement 
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application [9, 10]. Further, the strengthening aspect of geo-
cell has been widely recognized in improving the stiffness of 
a foundation bed [11]. These are the important requirements 
for the safe performance of foundations subjected to vibra-
tion loads. Limited studies highlighted the potential benefits 
of geocell in minimizing the harmful effects of vibration. 
Venkateswarlu et al. [12] emphasized the ability of geocell 
in controlling the velocity of induced vibration through 
experimental investigation. Ujjawal et al. [13] developed a 
3D numerical model to compute the isolation efficacy of 
geocell reinforced beds.

It is also an intriguing fact that only a few empirical 
methods are available to estimate the PPV caused by 
blast-induced vibration. These methods are not suitable 
to use for the prediction of PPV response induced by con-
tinuous type vibration sources such as industrial machines 
and transit systems. Under such circumstances, develop-
ing a scientific model for predicting the PPV response is 
very essential. In recent times, the application of machine 
learning techniques (MLTs) has grown rapidly for develop-
ing robust prediction models in the field of geotechnical 
engineering [14–18]. A few popular techniques include 
artificial neural networks (ANN), genetic programming 
(GP), fuzzy logic systems (FLS), support vector machine 
(SVM), and multivariate adaptive regression analysis 

(MARS). The efficacy of few MLTs has also been high-
lighted in predicting the behavior of geosynthetics rein-
forced soil beds [19–22].

Raja and Shukla [23] reported that the MLTs are capable 
of developing the complex nonlinear relationship between 
the independent and dependent parameters. Several studies 
have employed the MLTs for predicting the PPV caused by 
blast-induced vibration [24–28]. These studies reveal that 
artificial neural networks (ANNs) and adaptive neuro-fuzzy 
inference systems (ANFIS) are preferred techniques for this 
purpose. Generally, the above methods are considered as 
block-box tools. Besides, the other difficulties of imple-
menting such methods include the time-consuming process 
of developing the optimum network and local minima. To 
overcome these issues and to achieve a better prediction per-
formance of non-linear response, other techniques namely, 
GP and MARS were developed [29–32]. The effectiveness 
of these methods has been prominently reported in assessing 
the stability of slopes, load-carrying capacity of piles, soil 
liquefaction, settlement of shallow foundations, and bearing 
capacity of strip footing, etc. [33–39]. Few studies reported 
the use of MARS in estimating the PPV due to blast loading 
stipulations [40, 41]. Importantly, the additional advantages 
of these methods include the ability to work with noisy data, 
easy interpretation, and more efficiency.

Table 1   Threshold values of vibration limits based on different standards

NR not reported

Standard Excitation fre-
quency in Hz

Peak particle velocity (mm/s)

Structures of historic/
sensitive importance

Domestic buildings Industrial buildings

AASHTO [1] NR 2.5 5.1 25.4
BS 7385-2 [2] 15–40 NR 20–50 NR

 > 4 NR NR 50
CMRI standard [3]  < 24 2 5 12.5

 > 24 5 10 25.5
DIN 4150-3 [4]  < 10 3 5 20

10–50 3–8 5–15 20–40
50–100 8–10 15–20 40–50

DGMS India [5] Buildings belonging to owners  < 8 2 5 10
8–25 5 10 20
 > 25 8 15 25

Buildings not belonging to owners  < 8 NR 10 15
8–25 NR 15 25
 > 25 NR 20 50

SN 640-312 [6]  < 10 NR 12.7 NR
10–60 7.6 13.7 30.5
60–90 7.6–12.7 12.7–17.8 30.5–40.6

USBM RI 8507 [7] 10–40 NR 15.7–50.8 NR
4–15 NR 15–20 NR

USSR [8] NR 8 30 60
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It is evident from the literature that, there is a lack of a 
simplified solution to determine the PPV response caused by 
the vibration source resting on the geocell reinforced founda-
tion bed. In the present investigation, GP and MARS mod-
els are used to develop the PPV prediction equation for the 
scenario of geocell-reinforced bed supporting the vibration 
source, which can induce harmonic excitation. Prominently, 
this study is the first of its kind in developing, assessing, and 
comparing GP and MARS models in an attempt for predict-
ing the PPV response of geocell reinforced bed support-
ing the vibration source. Initially, field vibration tests were 
performed over the geocell reinforced bed to develop the 
database. Using a field test database, PPV prediction models 
were established. Further, the best PPV prediction model is 
assessed by comparing the predictive performance of both 
the models against the unknown dataset obtained through 
the additional field vibration tests.

Machine Learning techniques

Methodology of Genetic Programming (GP)

Genetic Programming (GP) is the biologically supervised 
computing approach introduced by Koza [42]. This tech-
nique extends genetic algorithms (GAs) to evolve computer 
programs based on the principles of natural selection and 
genetics. Though the operation of GP and GAs are similar, 
the way of representation of a final solution is different in 
both techniques. The result of GP is generally expressed in 
the form of a tree structure [43]. Whereas, the result gener-
ated from GAs is expressed in the form of a string number.

The working architecture of the GP algorithm is shown 
schematically in Fig. 1. Initially, the pool of numerous 
potential solutions called a population is generated from the 
input database. The population consists of a random number 
of individuals. Symbolic representation of each individual 
is shown in Fig. 2a. It is comprised of a set of terminals and 
functions. Trigonometric functions, user-defined functions, 
Boolean, logical, and mathematical operators are the group 
of a functional set. Variables and numerical or logical con-
stants are part of a terminal set.

The GP tree begins with a root node and prolongs up to 
the designated functional or terminal set. After generating 
the population of expressions, the ability of every individual 
expression to solve the problem is assessed using a fitness 
function. This process is continued until the termination 
criterion is fulfilled. Root mean square error (RMSE) was 
evaluated to fulfill the termination check. The foremost pur-
pose of this practice is to minimize the error produced by 
the model. If the criteria are not fulfilled, a new population 
is generated based on different genetic operations namely, 
crossover, mutation, and reproduction. One can refer to 

Koza [42] for more details about the initialization tech-
niques. Finally, the best program obtained from the popula-
tion through the termination check is considered as a PPV 
prediction model.

Further, Multi-Gene Genetic Programming (MGGP) is 
the other class of GP, which is used to establish the func-
tional relationship between the input and output param-
eters [44, 45]. The mathematical expression is a result of 
the weighted linear combination of outputs. The schematic 
view of a typical multi-gene model adopted for predicting 
the output is shown in Fig. 2b. From the figure, the input 
parameters involved in the model are a1, a2, and a3. Similarly, 
cos, × , −, and + are the functional parameters.

Methodology of MARS (Multivariate Adaptive 
Regression Splines)

The methodological architecture of a MARS model is shown 
schematically in Fig. 3. MARS is a statistical non-paramet-
ric regression method aids to predict nonlinear responses 
between dependent and independent variables using numer-
ous splines of varying gradients. This method does not fol-
low a specific assumption to develop the required relation 
using input indices. The end portion of each spline (linear 
segment) is referred to as a knot. It indicates the comple-
tion of one group of data and the beginning of another. The 
resulting segmental splines enrich the flexibility of a model 

Fig. 1   Methodological architecture of GP
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and allow the model to bend at any departure from the lin-
ear path. These segments are referred to as basis functions 
(BFs). Basis functions are generally categorized into two 
types, namely, linear piecewise and cubic piecewise. For 
simplicity, the piecewise linear function was used in the 
present study [46].

In this method, linear functions are expressed as max (0, 
x−t), where t is the location of the knot. The term max (.) 
signifies the consideration of positive value during the gen-
eration of BFs as reported below.

Generally, the MARS approach follows a two-step pro-
cedure to develop the optimum model. It includes a forward 
and backward iterative process. During the forward iterative 
stage, the model is formulated through the stepwise addition 
of BFs. In addition, a suitable location of knots is formed 
to enhance the model performance. During this stage, BFs 
cover a complete domain of the database to select the opti-
mal pairs of spline functions by performing two-by-two 

(1)max(0, x − t) =

{

x − t, if x ≥ t

0, otherwise

combinations. To develop the final model, all the BFs are 
combined as a weighted sum using the following expression.

where Y(i) is the predicted value, α0 is the constant coef-
ficient of the basis function, �p(x) is the pth basis function, 
which may be a single spline or the combination of two 
spline functions, αp is the numerical coefficient of pth BF, 
and M is the total number of BFs considered in the model.

In the backward iterative phase, the generated model is 
simplified by deleting the less important basis functions. 
This process is continued until the best set of basis functions 
are obtained. To prune the least contributed BFs, the MARS 
model follows the generalized cross-validation (GCV) cri-
terion. The importance of a variable can be quantified by 
observing the variation in measured GCV in the absence of 
a particular variable from the model. This approach is ben-
eficial for reducing the excessive number of spline functions 
and avoiding the chances of overfitting. GCV signifies the 
mean squared residual error divided by a penalty to account 
for the variance associated with model complexity [47].

Dataset Collection

Retrieving the sufficient database is the foremost aspect for 
the development of a prediction model. To do so, a series of 
field vibration tests were conducted over the geocell rein-
forced foundation beds. The details of field experiments 
performed for data collection are concisely discussed in the 
following section.

Details of Field Vibration Test

In total, 50 numbers of field vibration tests were performed 
over the geocell reinforced soil beds with varying configura-
tions of load, geocell geometry, and footing embedment. The 
schematic sketch of the field vibration test is shown in Fig. 4. 
Test bed was prepared in the excavated pit of 3600 mm 
length, 3600 mm width, and 1200 mm height. The width and 
depth of the reinforced foundation bed were considered as 
6B and 2B (B is the width of a concrete block), respectively, 
to minimize the boundary effect on the experimental results 
[13, 48]. To prepare the compacted bed, silty sand (SM) 
was used. The geocell made up of novel polymeric alloy 
(NPA) was used as a reinforcement. In addition to the silty 
sand, different materials namely, aggregate, construction and 
demolition waste (CDW), steel slag, and sand were used to 
fill the geocell pockets. These materials were classified as 
GP, GW, SW, SP, and SM respectively, based on the Unified 
Soil Classification System. The geotechnical properties of 

(2)Y(i) = �0 +

M
∑

p=1

�p�p(x)

(b)  
 

5 
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Fig. 2   Schematic view of genetic models: a randomly generated GP 
tree with the expression of cos (6a1−a2); and b Multi-gene model
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all the geo-materials are listed in Table 2. Elastic modulus 
(E) of infill materials was determined by performing the 
consolidated undrained triaxial test. Similarly, different geo-
cell properties are listed in Table 3. Further, the detailed 
procedure of preparing the geocell reinforced bed has been 
reported by Venkateswarlu and Hegde [48].

After preparing the reinforced bed, the assembly of 
concrete block and oscillator was used to generate the 
vibration similar to a rotary machine. Dynamic force ema-
nated by the oscillator relies on operating frequency and 
eccentric angle. During the test, the eccentricity controller 
was used for varying the eccentric angle (θ). A detailed 
description of θ and the estimation of dynamic force has 
been provided by Venkateswarlu et al. [4] elsewhere. To 
run the oscillator at varying operating frequencies, it was 
connected to a 6HP capacity DC motor with the flexible 
shaft assembly. The operating frequency was controlled 
using a speed control device (SCD). Accelerometers were 
used to measure the peak particle velocity (PPV) of soil 
particles at the applied dynamic force. It can monitor the 
PPV corresponding to three orthogonal directions. The 

resolution and maximum measuring range of the acceler-
ometer were 0.01 mm/s and 200 mm/s, respectively. Total, 
10 numbers of accelerometers were placed on the ground 
surface at an interval of 0.5 m from the face of the con-
crete block. Further, PPV was also measured at selected 
locations using 3D geophones to assess the accuracy of 
accelerometer recordings.

Total, four different series of experiments were con-
ducted over the geocell reinforced bed to understand the 
PPV variation. It includes series I: vibration tests on geo-
cell reinforced bed with varying geocell width (b) from 3 
to 6B with an increment of 1B (B is the width of a con-
crete block). In series II, the depth of placement of geocell 
(U) was varied from 0.1B to 0.5B in the range of 0.2B. 
The geocell reinforcement was infilled with different geo-
materials in Series III. Similarly, the footing embedment 
was varied from 0B to 0.5B with an increment of 0.25B 
in the series IV. In each case, the variation of PPV was 
examined at two different dynamic force (Fd) levels i.e., 1 
kN and 1.5 kN. A fresh reinforced test bed was prepared 
for each new test.

Fig. 3   Methodological architec-
ture of MARS



	 International Journal of Geosynthetics and Ground Engineering (2021) 7:63

1 3

63  Page 6 of 17

Experimental Results

PPV variation of geocell reinforced bed with respect to geo-
cell width, depth of placement, type of infill, and footing 
embedment is presented in Fig. 5a–d. Figure 5a shows the 
influence of the width of the geocell mattress on the PPV. 
The rate of reduction of PPV was found to increase with the 
increase in width of the geocell. The decreasing trend of 
PPV represents the potential of geocell in obstructing the 
motion of induced vibration. PPV reduction rate became 
marginal beyond the geocell width of 5B (B is the width of 

a concrete block). Thus, the geocell width of 5B was consid-
ered optimum for the effective mitigation of PPV. The effect 
of the depth of placement of geocell on the PPV is shown 
in Fig. 5b. Percentage reduction in PPV response was found 
inversely proportional to the depth of placement of geocell 
(U) under the concrete block. It demonstrates that the depth 
of placement of geocell is a crucial factor in reducing the 
velocity of vibration. For the substantial reduction of PPV, 
the placement of geocell is suggested at the depth of 0.1B. 
With the increase in the depth of placement of geocell, there 
could be a possibility of reflection of induced vibrations.

Fig. 4   Schematic outlook of field vibration test with ground conditions

Table 2   Properties of geo-
materials

D50 is the average diameter; Cu is the uniformity coefficient; Cc is the coefficient of curvature; 
dmax

 is the 
maximum dry unit weight; 

dmin
 is the minimum dry unit weight; and Eg is the elastic modulus of geo-

material
a ASTM D-4253 [49]
b ASTM D-4254 [50]
c ASTM D-4767 [51]
d ASTM D-3080 [52]

Geo-material Parameter

D50 (mm) Cu Cc dmax(kN/m3)a dmin (kN/m3)b Eg (MN/m2)c φ (°)d

Aggregate 10.7 1.07 1.03 17.5 15.3 60 49
CDW 9.3 47.33 4.54 19.3 15.8 43 43
Steel slag 0.6 6.58 1.08 18.9 17.2 39 39
Sand 0.45 2.63 1.28 18.6 16.5 32 36
Silty sand 0.38 22.22 10.12 17.9 14.5 28.3 32
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Figure 5c shows the PPV variation with a different modu-
lus of infill material. The geocell pockets were filled with 
five different materials of varying elastic modulus ranging 
from 28.3 to 60 MPa. Regardless of distance, PPV values 
observed in the aggregate infilled case were much lesser than 
other materials. It reveals that, selecting the infill material 

with higher modulus results in better mitigation of PPV. The 
improvement in the damping ratio of the geocell reinforced 
bed by virtue of the higher elastic modulus of infill material 
was the reason for the maximum reduction of PPV. Hence, 
increasing the modulus of infill material is an alternative 
way of enriching the screening efficacy of geocell reinforced 

Table 3   Properties of the 
geocell reinforcement

a ISO 10319 [53]

Property type Parameter Value

Physical Polymer composition NPA
Cell depth (mm) 120
Weld spacing (mm) 330
Thickness of the strip (mm) 1.53
Cell wall surface Perforated and textured
Open area on the surface (%) 16
Diameter of each hole on the surface (mm) 10
Total number of cells per square meter 39
Density (g/cm3) 0.95 (± 1.5%)

Mechanical Peak tensile strength (kN/m) 23.8 (± 6%)a

Failure strain (%) 12
Modulus of elasticity (MPa) 280

Endurance Coefficient of thermal expansion (ppm/°C)  < 80
Durability to UV degradation (minutes)  > 400
Oxidation induction time (minutes)
Creep reduction factor

≥100
< 3.5
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Fig. 5   PPV variation of geocell reinforced bed with a width of geocell mattress; b depth of placement of geocell; c infill material modulus; and 
d embedment of footing
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beds. The effect of footing embedment on PPV in the pres-
ence of a geocell reinforced bed is shown in Fig. 5d.

A reduction in PPV values was observed with the increase 
in footing embedment. Not much variation in PPV was 
observed beyond the depth of embedment of 0.25B. Hence, 
minimum Df is beneficial for a significant reduction of PPV. 
The reported PPV results for geocell-reinforced cases were 
corresponding to the dynamic excitation of 1.5 kN. In addi-
tion, PPV response for all the cases was also studied at the 
dynamic force of 1 kN. At a dynamic force of 1 kN, the 
observed PPV trend was similar to that of 1.5 kN dynamic 
force with reduced magnitude. Hence, PPV variation cor-
responding to 1 kN dynamic force has not been presented 
in the manuscript. However, PPV response corresponding 
to both the dynamic forces was used to develop the PPV 
prediction models.

Dataset

Dataset used in the present study comprised of input and 
output data of parameters. Overall, the total database con-
sists of 240 PPV records collected from the experiment were 
used to develop the PPV prediction model. In practice, a 
variation of PPV in the presence of a geocell reinforced bed 
majorly relies on reinforcement geometry, infill material, 
footing condition, foundation bed, and vibration source char-
acteristics. It is worth mentioning that the consideration of 
all the parameters in the model development also brings 
more uncertainties. In addition, the use of more input param-
eters may not be able to improve predictive performance. 
Thus, to select the appropriate number of input parameters 
trial and error method was carried out using GP. Overall, 
four different cases with the change in input parameters were 
considered as per Table 4. The coefficient of determination 
(R2) was used to assess the predictive performance of each 
condition. From the analysis, higher R2 was observed in 
case-1 compared to other cases. It reveals that the model 

with six input predictors is more effective to predict the PPV 
response. Hence, six parameters, namely, distance from the 
source of vibration (d); width of geocell mattress (b); depth 
of placement of geocell (U); depth of embedment of footing 
(Df); elastic modulus of infill material (Eg); and the dynamic 
force (Fd) were selected as input indices.

Figure 6 represents the graphical illustration of input 
parameters. The width and depth of placement of the geocell 
mattress incorporate the reinforcement effect in the model. 
To represent the stiffness behavior of infill material, the 
elastic modulus of infill material was considered. Depth of 
embedment of block covers the realistic scenario of partial 
or fully embedment nature of footing. Dynamic force signi-
fies the characteristics of the vibration source including the 
weight and operating frequency. Distance from the vibra-
tion source accounts for the dissipation of PPV caused by 
the material damping of soil. On the other side, PPV was 
considered as an output parameter. Table 5 illustrates the 
statistical limits of the data of different indices considered 
in the present study. Prior to the model development, total 
data have been divided into training, testing, and validation 
as 70%, 20%, and 10%, respectively.

Evaluation of Statistical Performance

Different parameters were evaluated to study the statistical 
performance of a developed model. It includes MSE (mean 
square error), RMSE (root mean square error), R (coefficient 
of correlation), R2, and NSE (Nash–Sutcliffe model effi-
ciency) coefficient. To obtain the optimum model, it should 
possess higher values of R, R2, and NSE. Similarly, lower 
values of RMSE, and MSE represent better prediction per-
formance. Table 6 summarizes the list of expressions used to 
determine the aforementioned performance measures.

From Table 6, MSE is the average of the squares of the 
errors. The error represents the deviation between the esti-
mated and actual values. Generally, MSE values must be 
close to zero and always non-negative. RMSE is a differ-
ent mode of representation of MSE. It is the result of the 
square root of the standard deviation of residuals and MSE. 
To measure the strength of the relationship between two 
variables, the correlation coefficient (R) was determined. It 
generally ranges from − 1 to 1. The value close to 1 speci-
fies a strong positive relationship between the variables. The 
coefficient of determination (R2) describes the amount of 
variance in the dependent variable, which is anticipated from 
the independent variable. It is usually expressed between 0 
and 1. Finally, the Nash–Sutcliffe model efficiency coeffi-
cient (NSE) evaluates the relative magnitude of the residual 
variance compared to the measured variance and varies 
between -infinity to one [54]. The training and testing data-
set were normalized in the range of [0, 1] using the following 
equation prior to establish the model.

Table 4   Influence of input parameters on the outcome of a model

X1 is the distance from the source in m; X2 is the width of geocell in 
m; X3 is the depth of placement of geocell in m; X4 is the modulus of 
infill material in kPa; X5 is the depth of embedment in m; X6 is the 
dynamic force in kN; X7 is the tensile strength of geocell in kN/m; X8 
is the bulk unit weight of the foundation bed in kN/m3; and X9 is the 
aspect ratio (height to pocket diameter of geocell mattress

Condition Input parameters Coefficient of cor-
relation (R2)

Training Testing

Case 1 X1, X2, X3, X4, X5, X6 0.9918 0.9825
Case 2 X1, X2, X3, X4, X5, X6, X7 0.9859 0.9779
Case 3 X1, X2, X3, X4, X5, X6, X7, X8 0.9819 0.9698
Case 4 X1, X2, X3, X4, X5, X6, X7, X8, X9 0.985 0.9763
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Fig. 6   Input parameter variation with the dataset number: a distance from the source; b width of geocell mattress; c depth of placement of geo-
cell; d modulus of infill material; e embedment of footing; and f dynamic force

Table 5   Summary of the dataset

X1 (distance 
from the source 
in m)

X2 (width of 
geocell in m)

X3 (depth of place-
ment of geocell 
in m)

X4 (elastic 
modulus of infill 
material in kPa)

X5 (depth of 
embedment 
in m)

X6 (dynamic 
force in kN)

y (PPV in mm/s)

Maximum 5 3.6 0.3 60,000 0.3 1.5 18.146
Minimum 0.5 1.8 0.06 28,300 0 1 2.014
Average 2.75 2.90 0.09 33,816.67 0.04 1.25 5.57
Standard deviation 1.436 0.412 0.071 9910.166 0.089 0.250 2.871
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where yn is the normalized value of variable y, ymax and 
ymin represent the maximum and minimum values of the 
variable y, respectively. Finally, obtained PPV was denor-
malized using the following expression.

Development of PPV Prediction Model

Prediction Model Using GP

In the case of MGGP, parameters used for finding the best 
symbolic expressions are the population size, number of 
generations, number of genes, tournament size, Elite frac-
tion, Mutation-Crossover-Copy fractions, gene depth, 
and Build method. The best value of each parameter was 
obtained by running the model numerous times with distinct 
combinations of parameters. The optimal values of various 
controlling parameters were determined from the trial and 
error method listed in Table 7. During the trial and error pro-
cess, a specific parameter was varied for a range by keeping 
the remaining parameters constant.

This process was continued until achieving the optimal 
solution. The exercises were carried out three times for 
eliminating the biases from each solution. Further, the sim-
plified equation resulting from GP to quantify the PPV is 
expressed by,

(3)yn =
y − ymin

ymax − ymin

(4)y =
(

yn
)(

ymax − ymin

)

+ ymin

(5)

y = 1.22 sin
2(x

2
) − 465.0 cos

�

x
2

3
× x

2

6

�

− 0.385 sin
�

x
8

1

�

+ 5.84 sin

�

x
6

�

x
3
− x

5

�

√

x
1

�

+ 59.2 sin
�

x
1
cos

�

x
2

3

��

+ 0.144 exp
�

cos
�

x
2

4

��

+ 918.0

�

x
6

√

x
6

x
1
x
4

− 60.2 sin(x
1
)

+ 0.00361 cos(sin x
2
) exp

�

x
5

x
3

�

− 0.144x
2

1
+

�

2.07 sin(x
2
)
�2

√

x
1

+ 467.0

Table 6   Summary of the 
expressions for different 
performance indices

N represents total number of observations, fi and yi are the experimental and predicted PPV values, respec-
tively

Parameter Expression Best criteria

MSE (Mean Square Error) 1

N

∑N

i=1
(fi − yi)

2 0

RMSE (Root Mean Square Error)
�

1

N

∑N

i=1
(fi − yi)

2 0

R (Coefficient of Correlation) N(
∑

fiyi)−(
∑

fi)(
∑

yi)
�

√

N
∑

y2
i
−(yi)

2

��

√

N
∑

f 2
i
−(fi)

2

�

1

R2 (Coefficient of Determination)
1 −

�

∑N

i=1 (fi−yi)
2

∑N

i=n
f 2
i

�

1

NSE (Nash–Sutcliffe model efficiency coef-
ficient) 1 −

�

∑N

i=1 (fi−yi)
2

∑N

i=1 (yi−ymean)
2

�

1

Table 7   Optimum details of control parameters for GP

S. No Controlling parameter Optimum value Range

1 Build method Ramped half and half Full-Grow-
Ramped 
half and 
half

2 Max gene depth 6 2–10
3 Max genes 10 1–12
4 M-C-D probabilities 0.6–0.35–0.05 0–1
5 Tournament size (%) 60 10–80
6 Elite fraction 0.5 0.05–0.5
7 Population 1000 25–1500
8 Generation 100 10–150
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where x1 is the distance from the source in m; x2 is the 
width of geocell in m; x3 is the depth of placement of geocell 
in m; x4 is the modulus of infill material in kPa; x5 is the depth 
of embedment in m; x6 is the dynamic force in kN; and y is the 
peak particle velocity in mm/s.

Prediction Model Using MARS

The MATLAB code based on MARS methodology has been 
used to predict the PPV [55]. It is capable of building the 
optimum model through the change in the number of basis 
functions. In the present study, the optimum number of BFs 
was identified through different performance metrics namely, 
R2, MSE, and GCV. The variation of these predictors with 
the number of BFs is shown in Fig. 7. The R2 variation was 
found constant with the increase in BFs beyond 28 (Fig. 7a). 
Similarly, minimum GCV was observed when the number of 
BFs was equal to 28. Increase in the number of BFs beyond 
28 increased the GCV as shown in Fig. 7b. It reveals the over-
fitting among the predicted functions. Thus, 28 numbers of 
BFs were selected to develop the model. The expression cor-
responding to each BF is summarized in Table 8.

Finally, the PPV prediction equation (y) obtained from 
the MARS method is expressed as,

(6)

y = 0.2215 − 1.5468 × BF1 + 2.2992 × BF2

+ 0.4959 × BF3 − 0.2821 × BF4

− 0.08549 × BF5 + 0.3225 × BF6

− 0.1158 × BF7 − 11.2947 × BF8 + 1.2386 × BF9

+ 0.05819 × BF10 − 0.3597 × BF11 + 0.05691 × BF12

+ 40.6836 × BF13 − 0.1616 × BF14 − 0.0791 × BF15

− 0.1795 × BF16 − 2.1748 × BF17 − 37.0667 × BF18

+ 0.0529 × BF19 − 0.1324 × BF20 − 0.02376 × BF21

+ 2.4643 × BF22 − 1.1572 × BF23 + 1.1676 × BF24

+ 1.4031 × BF25 − 0.7548 × BF26 + 0.7782 × BF27

− 1.5092 × BF28
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Fig. 7   Variation of predictors with the number of basis functions: a 
R2; and b MSE and GCV

Table 8   Summary of expressions for basis functions

BF number Expression

1 BF1 = max (0, x1–0.22)
2 BF2 = max (0, 0.22− x1)
3 BF3 = max (0, x3–0.5)
4 BF4 = max (0, 0.5−x3)
5 BF5 = max (0, x2–0.66)
6 BF6 = max (0, 0.66− x2)
7 BF7 = max (0, x4–0.009374)
8 BF8 = max (0, 0.0093749− x4)
9 BF9 = max (0, x1–0.11)
10 BF10 = max (0, 1− x6) × max (0, x1–0.22)
11 BF11 = max (0, 1− x6) × max (0, 0.22−x1)
12 BF12 = BF9 × max (0, x4–0.0093749)
13 BF13 = BF9 × max (0, 0.0093749− x4)
14 BF14 = max (0, 1− x6) × max (0, x4 + 0)
15 BF15 = max (0, 1− x6) × max (0, 0.66−x2)
16 BF16 = BF3 × max (0, x1–0.11)
17 BF17 = BF9 × max (0, 0.33− x2)
18 BF18 = BF1 × max (0, 0.0093749−x4)
19 BF19 = max (0, 1−x6) × max (0, x4–0.125)
20 BF20 = BF4 × max (0, 1−x6)
21 BF21 = max (0, 1−x6) × max (0, 1−x5)
22 BF22 = BF1 × max (0, 0.33− x2)
23 BF23 = BF6 × max (0, x1–0.66)
24 BF24 = BF6 × max (0, x1–0.77)
25 BF25 = BF4 × max (0, 0.55−x1)
26 BF26 = BF4 × max (0, x1–0.66)
27 BF27 = BF4 × max (0, x1–0.44)
28 BF28 = BF4 × max(0, 0.44−x1)



	 International Journal of Geosynthetics and Ground Engineering (2021) 7:63

1 3

63  Page 12 of 17

Performance of Developed Models

Figure 8a, b shows the goodness of fit between predicted 
and actual values of PPV for the training dataset obtained 
from both models. To understand the accuracy of each 
model, the value of the coefficient of determination (R2) 
has been presented. From figure, a good match was noticed 
between predicted and observed PPV values. Similarly, 
Fig. 9a, b shows the correlation between predicted and 
actual PPV values for the testing dataset. Regardless of the 
dataset, the MARS model has exhibited a higher R2 value 
in comparison with the GP model. For further compari-
son, ± 10%, and ± 20% error lines have been drawn in the 
figures. It was noticed that the maximum PPV outputs pro-
duced from the MARS model fall between the ± 10% error 
lines in both the training and testing conditions as com-
pared to the GP model. It reveals that the MARS model 
could predict the PPV response with a less than 10% error. 
For further quantifying the predictive performance of each 
model, different statistical parameters for the training, 

validation, and testing datasets were calculated and listed 
in Table 9. It was observed that the MARS model has 
exhibited the minimum values of MSE and RMSE, and 
higher values of r, R2, and NSE. It indicates the effective 
training and testing ability of the MARS model in com-
parison to the GP model.

Sensitivity Analysis

Sensitivity analysis was performed to understand the influ-
ence of each input parameter on the PPV response. It is 
advantageous to examine the parameter, which significantly 
influences the outcome of a model. Overall, a sensitivity 
study is useful to minimize the number of input parameters 
and to reduce the iterations count required to run the model 
without jeopardizing the result. Generally, the approach fol-
lowed for conducting the sensitivity analysis is different for 
different models.

In GP, the sensitivity analysis is performed by determin-
ing the frequency of each input parameter. Several research-
ers have followed a similar method [56, 57]. The frequency 
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Fig. 8   Predicted PPV versus observed PPV of training data using: a 
GP; and b MARS model
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was evaluated based on the appearance of a variable in the 
best thirty programs developed through MGGP. It is gener-
ally represented between 0 to 1. The value 1 indicates a 100% 
appearance of a parameter in all the evolved programs. Vari-
ation of frequency for different input parameters is shown in 
Fig. 10a. Interestingly, the sensitivity results of MGGP were 
also revealed that distance from vibration source to point 
of measurement is the most influencing parameter. In real-
ity, distance from the vibration source highlights the damp-
ing behavior of soil mass. A similar observation was also 
noticed from the MARS model as shown in Fig. 10b. The 
input parameter, which exhibits a high amount of variance, is 
considered as the most influencing parameter in the MARS. 
It is worth mentioning that, this observation is true from the 

practical point of view as well. Higher dissipation of vibra-
tion energy with the increase in distance by soil damping is 
the reason for the reduction of PPV.

Further, the influence of each input parameter on the 
PPV was also studied. All the input parameters were varied 
between − 20% and 20% of the mean value. Figure 11 shows 
the variation of PPV with the percentage change of input 
parameters for different models. Distance from vibration 
source to point of measurement was found as the most influ-
encing parameter in the case of both models. Slight variation 
in distance resulted in a significant variation of PPV. Apart 
from distance, the trend of other parameters namely, width 
of geocell, modulus of infill, and embedment of footing was 

Table 9   Summary of statistical 
parameters for different models

Statistical 
parameter

GP MARS

Training Validation Testing Training Validation Testing

MSE 0.073 0.079 0.1154 0.0402 0.0366 0.0605
RMSE 0.2703 0.2811 0.3397 0.2005 0.1913 0.2469
r 0.996 0.9958 0.992 0.9975 0.9981 0.9953
R2 0.992 0.9918 0.984 0.9949 0.9964 0.9906
NSE 0.992 0.99 0.983 0.995 0.996 0.994
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observed similar to field study. It highlights the better gen-
eralization ability of GP and MARS models in anticipating 
the response of each input predictor.

Finally, Taylor’s diagram is presented in Fig. 12 to under-
stand the overall predictive performance of both models. 
Generally, this diagram visualizes, how close the developed 
models can predict the experimental PPV response in a 
single framework. In the figure, black solid lines indicate 
the Pearson correlation coefficient (PCC). Similarly, dotted 
radial lines shown with the blue and red color represent the 
standard deviation (SD), and RMSE, respectively. For the 
experimental database, SD and PCC values were observed 
as 3.23 and 1, respectively. The SD and PCC values of (3.21, 
0.995), and (3.11, 0.989) were observed for MARS, and GP 
models, respectively. Thus, this observation reveals that 
the performance of the MARS model is much closer to the 
experimental response than the GP model. Thus, it is admis-
sible that the developed MARS model is more reliable in 
predicting the PPV response than GP.

Experimental Versus Model Performance

Apart from the series of vibration tests described in the 
experimental study, two more field tests were conducted to 
assess the performance of developed models. Though the 
differences in mechanisms and performance of the selected 
methods, this comparison is useful in assessing the best-
suited method for predicting the PPV at the unknown load-
ing conditions. Practically, footings supporting the vibration 

sources are subjected to different dynamic loading condi-
tions. This analysis is intended to highlight the efficacy of 
the proposed model in predicting the PPV response at the 
involvement of different dynamic loads. The following are 
the details of conducted field tests with varying configura-
tions of input parameters.

Case (i): Fd = 0.5 kN; U = 0.1B; Df = 0.25B; b = 5B; and 
silty sand infill material.

Case (ii): Fd = 0.5 kN; U = 0.1B; Df = 0B; b = 5B; and 
CDW infill material.

The dynamic force considered in the above-mentioned 
cases was not in the part of a dataset used to develop the 
prediction model. A comparison of field test results with 
the model results for the two different cases is shown in 
Fig. 13a, b. Irrespective of the distance, the percentage 
deviation between the experimental and predicted PPV 
was observed less in the case of MARS as compared to 
the GP model.

For the precise computation of error variation at each 
distance, the parameter absolute error was calculated. It 
is determined by,

Fig. 12   Performance comparison between the predicted and experi-
mental response using Taylor’s diagram
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The absolute error variation at each distance for both 
the cases is shown in Fig. 14. Even for the unknown data-
set, less than 10% absolute error was observed in the case 
of the MARS model for both cases. Whereas, a higher 
error was noticed in the case of the GP model as com-
pared to the MARS model. It might be attributed due to 
the computational efficiency of the MARS model in terms 
of building the flexible models, stepwise searching, and 
quantifying the contribution of the individual input param-
eter [58].

Absolute error (% ) =
|Experimental PPV − Predicted PPV|

Experimental PPV
× 100

Conclusions

In the present study, GP, and MARS models were estab-
lished to predict the PPV response of the soil beds reinforced 
with geocell reinforcement. The data set of 240 PPV records 
obtained from the field vibration tests were used to develop the 
models. The salient points drawn from the present study are:

1.	 As per the parametric investigation, the consideration of 
six input parameters was found effective to develop the 
PPV prediction model for achieving better performance 
and avoiding the complexity of a model.

2.	 Upon the model development, different metrics namely, 
coefficient of determination, mean square error, root 
mean square error, and the Nash–Sutcliffe model effi-
ciency coefficient were evaluated to understand the pre-
diction performance. The values of the aforesaid matri-
ces endorsed the excellent performance of the developed 
models. Particularly, the MARS model has displayed a 
higher R2 value compared to the GP model in training, 
validation, and testing phases.

3.	 Sensitivity analysis of both the models revealed that the 
parameter representing the distance from the vibration 
source to the point of measurement (i.e. damping) influ-
ences the PPV most. Further, the decreasing order of the 
importance of other parameters followed as, the depth 
of placement of geocell, dynamic force, the width of 
geocell, and modulus of infill material.

4.	 The MARS model was found efficient to predict the 
PPV response with less than 10% error as compared to 
the GP model.

5.	 Based on Taylor’s diagram, the performance of the 
MARS model was found superior over the GP model 
in predicting the experimental response. Thus, it is rec-
ommended for predicting the PPV response of geocell 
reinforced foundation beds.

Overall, this study is an initiative for predicting the PPV 
variation of a geocell-reinforced bed subjected to vibration 
loading. The present model applies to specific soil types 
and loading conditions. Due to the tedious nature of field 
experiments, the density of the foundation bed, geocell ten-
sile strength, and aspect ratio (height to pocket diameter) 
were maintained constant in the present study. Using the 
principles highlighted in the present study, the prediction 
equations could be modified for other soil types and loading 
stipulations.
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