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Abstract
Traffic conflict techniques (TCTs) are one of the most frequently used proactive surrogate safety measures which can be 
used to estimate traffic safety even before the occurrence of a crash. This study explores the variation in rear-end conflict 
with respect to signal timing and distance from stop lines at signalized intersections with non-lane-based behavior under 
mixed traffic conditions. More than 4500 vehicle trajectories were extracted for every 0.2-s interval using a semi-automatic 
tool from field-recorded video footage from two signalized intersections in India. Two popular surrogate safety measures, 
time to collision (TTC) and deceleration rate to avoid crash (DRAC), were used to identify critical interaction between 
different vehicle types at varying threshold values. The temporal variation of traffic conflict showed that the majority of 
conflicts are happening in the first half of red and green time, whereas more severe conflicts occurred at the beginning of 
red time. Two-wheelers and three-wheelers showed the highest lateral movement and aggressiveness, resulting in critical 
vehicle interactions closer to the stop line. Variation in conflict proportion based on lane type showed that smaller vehicles 
prefer curb-side lanes over median-side lanes. Temporal and spatial distribution of conflict based on vehicle type and con-
flict severity distribution gives a better understanding of how the signal timing influences traffic safety in non-lane-based 
mixed traffic conditions. These results can be used most beneficially for enhancing the safety and performance of signalized 
intersections in developing countries.
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Introduction

Background

Signalized intersections are important points in the road 
network which help to eliminate the critical conflict points 
at the junction. Even though signalized intersections are 
considered efficient in controlling traffic, they have the 
second-highest number of accidents after un-signalized 
intersections according to the Road Accidents in India-2018 
report by the Ministry of Road Transport and Highways of 
India (MoRTH) [1]. Road accidents result from various fac-
tors that can be broadly categorized into human errors and 
roadway/traffic factors. The most common accident types at 
signalized intersections are rear-end and angled collisions. 

Major causes of accidents are driver’s inattentive driving 
and inadequate distance between the follower and the leader 
vehicle [2]. For many years, safety analysis for signalized 
intersections has often been undertaken with historic acci-
dent data which is a reactive approach. Furthermore, in 
developing economies like India 70% of non-fatal and 22% 
of fatal road traffic injuries go unreported resulting in several 
limitations related to the use of accident data for safety [3]. 
In order to use historical collision data for safety analysis, 
collisions need to occur and must be recorded over a long 
period (usually years) to be used for a statistically sound 
safety analysis [4, 5]. Because of these issues, several pro-
active surrogate safety measures have been introduced to 
evaluate the safety.

Traffic conflict techniques (TCTs) are one of the most 
frequently used proactive surrogate safety measures. Traffic 
conflict is “an observable situation in which two or more 
road users approach each other in space and time to such 
an extent that there is a risk of collision if their move-
ments remain unchanged’’ [6]. The most interesting aspect 
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of TCTs is their ability to analyze safety issues within a 
shorter period compared to the use of accident data. Hence, 
any safety program can also be implemented more effec-
tively in a timelier manner. Traffic conflicts can be observed 
and occur more frequently than collisions. These Surrogate 
measures of safety help in identifying observable critical 
vehicle interactions that could have led to a crash. Thus, 
by reducing traffic conflicts the number of road collisions 
can also be reduced. Furthermore, these identified non-
crash events can be converted into the corresponding crash 
frequency or crash severity, thus enabling safety evaluation 
without depending on a huge amount of crash data [7]. The 
area of traffic conflicts has been studied by many research-
ers, and the TCTs can be broadly divided into temporal, 
spatial, deceleration-based indicators, etc. Surrogate safety 
indicators such as time to collision (TTC) [8], time to acci-
dent [6], time exposed time-to-collision (TET)indicator, 
time integrated time-to-collision (TIT) indicator, modi-
fied TTC (MTTC) [9], time headway, deceleration rate to 
avoid crash (DRAC) have been frequently used in surrogate 
safety analysis, especially in lane-based traffic conditions. 
TTC and DRAC concept has been best suited for situations 
where there is a higher chance of rear-end collisions [5]. 
The lower the TTC values, higher the chances of collision. 
The minimum TTC value that can separate between safe and 
unsafe vehicle interaction is termed the threshold value and 
is used for estimating conflict severity. Existing studies have 
adopted TTC thresholds varying from 1 to 5 s. The higher 
the DRAC value, more severe the conflict. Several studies 
have considered DRAC threshold varying from 6 m/s2 (more 
severe) to 0 m/s2 [5, 7, 10]. This large variation in threshold 
value is due to the variation in road type, vehicle type, and 
driver behavior. Sites closer to the signalized intersection 
junctions have a higher percentage of conflicts [10]. Traf-
fic variables have a significant impact on rear-end conflicts 
at varying threshold levels at the signalized intersection 
[11, 12]. Hence, it is difficult to finalize a single threshold 
value universally [13]. In such circumstances, determining 
a threshold value suitable for respective traffic conditions 
becomes essential [14]. Safety evaluation of signalized inter-
sections based on historical accident data, annual average 
traffic volume, geometric characteristics of the intersection, 
etc., is widely used in lane-based conditions. A large number 
of these existing studies have considered traffic conditions 
involving passenger cars alone. But those methods need not 
be very accurate while evaluating safety in non-lane-based 
traffic conditions where vehicles occupy any position across 
the width of the road. In mixed traffic conditions which con-
sist of different vehicle types with non-lane-based move-
ment, drivers often travel in a haphazard manner resulting 
in more crash rates [15, 16]. For effective safety assessment 
using TCTs in non-lane-based mixed traffic conditions, pre-
cise vehicle trajectory data are crucial in determining the 

conflicting leader–follower pair [15, 16]. The majority of 
signalized intersection studies in India are focused on the 
countdown timer, density, flow, vehicle speed, acceleration 
characteristics, the impact of two-wheeler proportion on 
safety, etc. However, most of these analyses and interpreta-
tions were based on crash data [17]. Furthermore, previous 
studies prove that important signal cycle-related variables 
such as signal timing, queue length, vehicle arrival type, 
dilemma zone influence signalized intersection safety sig-
nificantly [11, 18, 19].

Research Motivation

India is a developing economy where the traffic constitutes 
of different vehicle types following non-lane-based move-
ment. Most of the surrogate measures used for estimating 
rear-end conflict in homogeneous lane-based traffic condi-
tion are not applicable in heterogeneous traffic condition 
because it ignores the static and dynamic characteristics of 
different vehicle types. Since vehicles occupy any position 
on the road width, incorporating the width of different vehi-
cle types while identifying the critical vehicle interaction 
helps in the better safety assessment of signalized intersec-
tions in non-lane-based traffic. The effect of lateral move-
ment of different vehicle types on safety aspects is not well 
explored and quantified based on evidence. Precise vehicle 
trajectory is essential in identifying and estimating critical 
interactions between different leader–follower pairs. How-
ever, in the Indian traffic scenario where most leader–fol-
lower pairs are short-lived, the use of proper smoothening 
techniques plays a vital role. Trajectory data extracted from 
field video data, after applying accurate smoothening tech-
niques to reduce errors, can be most effectively used for 
precise estimation of relative distance, speed, and accelera-
tion between leader–follower pairs. A previous study in lane-
based traffic conditions discusses the temporal aspects of 
rear-end conflict at signalized intersections [20]. However, 
very limited studies have attempted to study the temporal 
and spatial variation of rear-end conflict based on signal 
cycle time and traffic parameters such as queue length in 
mixed traffic conditions. Furthermore, spatial variation in 
rear-end conflict proportion based on lane type at signal-
ized intersections in non-lane-based conditions has not been 
studied. The influence of different vehicle types on conflict 
severity in the safety assessment of signalized intersections 
has not been explored in detail.

Objectives

Considering these identified gaps, it becomes evident that 
identification of critical vehicle interaction and assessment 
of the temporal and spatial variation of rear-end conflict 
is crucial for surrogate safety assessment at a signalized 
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intersection. Hence, this study aims to identify critical vehi-
cle interactions and estimates conflicts using multiple surro-
gate safety measures at varying threshold values considering 
the precise lateral and longitudinal position of different vehi-
cle types. The temporal and spatial variation of rear-end con-
flict at signalized intersections under non-lane-based traffic 
conditions is studied. The lateral movement of vehicles and 
variation in conflict proportion along lane width is investi-
gated. Furthermore, the severity of the traffic conflict based 
on signal timing and vehicle type is also studied to give 
a better understanding of vehicle behavior in mixed traffic 
conditions. Overall, this study aims for proactive safety esti-
mation by identifying critical interactions between vehicles 
with varying static and dynamic characteristics responsible 
for temporal and spatial variation of rear and conflicts at the 
signalized intersection.

Methodology

This section discusses the data collection, extraction, and 
methodology for the identification of vehicle interaction and 
estimation of critical conflict based on multiple surrogate 
safety measures at varying threshold values. The temporal 
and spatial variation of critical conflict-based vehicle types 
is also explored. In addition to the conflict frequency distri-
bution, the severity distribution of the identified conflicts is 
also investigated. Figure 1 gives the flowchart for the meth-
odology adopted in this study.

Study Location and Data Collection

Two signalized intersections from two different cities with 
varying traffic and geometric characteristics were selected 
for this study. The first location is a four-legged junction 
in Mumbai city (Tagore), with an eight-lane divided major 
approach road. The second location is a four-legged junction 
in Calicut city (Arayidathupalam), with a four-lane divided 
major approach road. The intersections are selected in such 
a way that there is an elevated vantage point with clear 

visibility of approach roads up to 150 m, visibility of traffic 
signal indication, and important intersection characteristics. 
The video camera was focused on intersection approaches 
where most of the rear-end conflicts occur. The trap length 
was fixed in such a way that the maximum queue length will 
be captured. Road markings and flag off were done along the 
edge of the road at every 9 m. With the help of these road 
markings, gridlines were superimposed on the video data 
using video editing software. Geometric measurements like 
the length and width of the approach were done using the 
measuring wheel and 30 m measuring tape. Based on the 
pilot study, it was concluded that data need to be collected 
during the non-peak hours (11 AM to 1 PM) during week-
days as the rear-end conflict required for this study is more 
prominent during the non-peak period. The major causes 
of rear-end conflict observed from the field at the signal-
ized intersection approach were the lateral movement of 
different vehicle types, conflict happening due to dilemma 
behavior, and the stop and go movement of vehicles arising 
from signal change. The conflicts happening due to dilemma 
behavior were found to be observed during the non-peak 
hours as only then do the drivers have to choose to stop or 
proceed into the intersection area. Furthermore, during peak 
hours, the signal cycles are saturated and drivers have less 
maneuverability resulting in lesser lateral movement. Pre-
vious studies show that higher approach speed and sudden 
deceleration to join the queue can result in a higher risk of 
rear-end conflict [11, 20]. However, this trend is not visible 
during peak hours due to less approach speed, as the signal 
cycles are oversaturated. Therefore, over-saturated cycles, 
where a vehicle can stay in the same approach for more than 
one cycle, were neglected in this study.

Intersections with varying approach road widths were 
selected to study the variation in vehicle behavior based on 
road widths. The selected approaches were straight and flat, 
to avoid the effect of curves and grades. These intersections 
also have fewer numbers of cyclists, pedestrians, on-street 
parking, and bus stop near the signalized intersections area 
to minimize the effect of side friction. At both intersec-
tions, the traffic consists mostly of two-wheelers and cars. 

Fig. 1   Gives the flowchart for 
the methodology
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Arayidathupalam junction has a more two-wheeler propor-
tion (44%) compared to Tagore (29%), whereas Tagore junc-
tion has more proportion of cars (41%) compared to Arayi-
dathupalam junction (29%). The details of the intersection 
approach selected are given in Table 1.

Data Extraction

Several studies have demonstrated conflict data collection 
using field observers, video data, and simulation models to 
evaluate the safety of various road entities like intersections, 
road segments, etc. [4, 5, 9, 21]. In developing countries like 
India, where traffic constitutes of different vehicle types and 
weak lane discipline, an effective tool for vehicle trajectory 
extraction is necessary. Semi-automatic tool ‘IITB Traffic 
Data Extractor’ was used for trajectory extraction from video 

graphic data [22]. Figure 2 shows the screenshot of data 
extraction using the IITB traffic data extractor.

Using video editing software, the video data were first 
overlaid with girds having width of 3.5 m (lane width) and 
9 m length, developed based on the field flag-off points. This 
was done to accurately obtain the field reference points. 
After uploading the video into the IITB traffic data extrac-
tor, the calibration rectangle based on field reference points 
in the video is inputted. Knowing the trap length and width 
of the road, the reference points are entered. A trap length 
of 144 m was selected at Tagore junction and 88 m at Arayi-
dathupalam junction. For example, the length and width of 
the calibration rectangle for the Tagore junction are 144 m 
(trap length) and 14 m (road width), respectively. The next 
step is inputting the accuracy in seconds with which the 
trajectory needs to be extracted. In this study, the trajectory 
data were extracted for every 0.2 s in both locations for 1 h. 

Table 1   Characteristics of selected intersection

Junction name Selected approach Number of vehicle tra-
jectories extracted

Number of lanes per 
approach per direction

Cycle length 
(seconds)

Traffic signal tim-
ing (seconds)

Arayidathupalam South 1556 vehicles 4 142

 

Red: 96

Amber: 3
Green: 43

Tagore North 3100 vehicles 2 160

 

Red: 72

Amber: 3
Green: 85

Fig. 2   Screenshot of IITB traffic 
data extractor
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To get a vehicle’s trajectory, the user should start clicking 
on the front center point of the vehicle until the vehicle dis-
appears from the video frame. After each click, the video 
automatically advances to the next frame. The vehicle types 
considered include two-wheeler (Tw), three-wheeler (Thw), 
car, light commercial vehicle (LCV), heavy commercial 
vehicle (HCV), and bus. Indian Highway Capacity Manual 
(Indo-HCM) was taken as the reference for this classifica-
tion [23]. The user has to manually select the type of vehicle 
that is required to be tracked. After tracking the first vehicle 
along the length of the intersection approach, it has to be 
saved and the next vehicle can be tracked. To avoid confu-
sion, the previously tracked vehicle is marked with a green 
dot by the software. The extraction was done for both turning 
and through moving vehicles in the intersection approaches. 
A total of 1556 vehicle trajectories (20 signal cycles) were 
extracted at the Arayidathupalam junction and 3100 vehicle 
trajectories (20 signal cycles) at the Tagore junction. Even 
though only two locations were considered, a huge amount 
of trajectory data (4656 vehicle trajectories) were considered 
in this study. Also, the signalized intersections selected in 
this study were from two different cities with varying traffic 
and geometric characteristics. This helps in capturing micro-
level trajectories for assessing the variation in behavioral 
interaction of drivers based on traffic composition, queue 
length, road width, etc. However, the semi-automatic tra-
jectory extraction is exhausting and time-consuming. For 
example, trajectory extraction of 1000 vehicles for a distance 
of 100 m takes at least 107 effective working hours. This 
indicates the need for an automatic tool for accurate data 
extraction in mixed traffic conditions.

The trajectory output file obtained from the IITB traffic 
data extractor contains the frame number, unique vehicle ID, 
time, vehicle type, and X and Y field coordinates of vehicles. 
Due to the frequent stopping action of vehicles at the signal-
ized intersection, the trajectory data often have measurement 
errors. Fitting a higher-order polynomial to the trajectories 
of vehicles results in a function oscillating highly between 
successive observations, giving rise to unrealistic behavior. 
Hence, in mixed traffic conditions smoothing the vehicle 
position to estimate a continuous trajectory based on fitting 
a local curve at the points of interest is recommended. For 
each vehicle trajectory, the following two steps were carried 
out: first, estimation of a smooth time-continuous trajectory 
function from discrete vehicle position observations using 
weighted local regression. The locally weighted regression 
approach proposed and validated by Toledo et al. was used 
for data smoothing [15, 24]. The trajectory function around 
the point of interest is assumed to be a polynomial function 
of time and is estimated by using only observations in its 
neighborhood. A window size of 7 and polynomial order 
of 4 were used for smoothening the longitudinal and lateral 
positions. Compared with the raw data, in the longitudinal 

direction, the smoothed data have a mean average error 
(MAE) of 0.202 m and a root mean square error (RMSE) of 
0.278 m. In the lateral dimension, the MAE and RMSE are 
0.048 m and 0.071 m, respectively. The second step involves, 
estimating the instantaneous speed by taking the first deriva-
tive of the fitted trajectory function and instantaneous accel-
eration by taking the second derivative.

Surrogate Safety Measures Considered

The following surrogate safety measures are estimated based 
on the vehicle trajectory at each time step of the two vehicles 
involved in the conflict. Surrogate measures considered are 
TTC and DRAC. Even though these measures are mostly 
used in estimating rear-end conflict in lane-based traffic con-
ditions, they are also best suitable in estimating rear-end 
and angled conflict [25]. These surrogate measures can be 
used for non-lane-based traffic conditions by incorporating 
the vehicle width of the interacting vehicles. This process is 
explained in detail in “Estimation of critical conflict”. TTC 
and DRAC have been best suited for situations where there 
is a higher chance of rear-end conflicts and merging interac-
tions [5, 11]. This study is mostly focused on the rear-end 
conflicts happening at the signal approaches.

TTC is “the time that remains until a collision between 
the vehicles would occur if they continued on their present 
course at their present rates” [8]. TTC equation for rear-end 
conflict case where vehicle 1 is the leader and vehicle 2 is 
the follower is given below.

where, X1 and X2 are the longitudinal positions of leader and 
follower, respectively; V1 and V2 are the speeds of leader and 
follower, respectively; l1 is the length of the leader vehicle.

Out of all the TTC values at various points in time, the 
minimum TTC value that differentiates the safe and unsafe 
traffic operations is termed the threshold TTC and is used for 
estimating conflict severity. The TTC value of two interact-
ing vehicles is estimated for each time step, and the mini-
mum TTC value is compared with the threshold value. If the 
minimum TTC value is less than the threshold, then it is a 
critical rear-end conflict.

DRAC is the “rate at which a vehicle must decelerate to 
avoid collision with other conflicting vehicles” [5, 7].

where, X1 and X2 are the longitudinal positions of leader and 
follower, respectively; V1 and V2 are the speeds of leader and 
follower, respectively; l1 is the length of the leader vehicle.

(1)TTC =

(
X1 − X2 − l1

)

V2 − V1

if v2 > v1

(2)DRAC =

(
V2 − V1

)2

2
(
X1 − X2 − l1

)
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From each leader–follower interaction, the maximum 
DRAC was compared to a threshold to separate the critical 
from non-critical interaction. If the maximum DRAC value 
is greater than the threshold, then it is a critical rear-end 
conflict.

Estimation of Critical Conflict

In weak lane-based traffic where vehicles maneuver based 
on the available longitudinal and lateral gap between 
vehicles, vehicles often have more than one leader vehi-
cle. Precise vehicle position, speed, and acceleration are 
required to identify the critical interacting leader–follower 
pair. The methodology for estimating critical conflict con-
sists of four broad steps. First, critical interactions between 
vehicles are identified from every instant of the interact-
ing vehicle trajectories. Second, TTC and DRAC values 
are computed for all these vehicle interactions. Third, the 
estimated TTC and DRAC values are compared with the 
threshold values to estimate the critical conflict. Finally, 
the total number of critical conflicts per signal cycle is 
estimated. Detailed Matlab coding was developed for auto-
matic extraction of critical conflicts for varying threshold 
values from the vehicle trajectory input. The user has to 
input the trajectory file containing the vehicle ID, vehi-
cle type and vehicle position, and the required threshold 
values for estimating the critical conflict. The input tra-
jectory file obtained from the IITB traffic data extractor 
contains the vehicle ID, time, vehicle type, and X and Y 
position coordinates. This file is inputted into the Matlab 
code which automatically estimates the vehicle speed and 
acceleration. The code compares the vehicle positions to 
find out the interacting vehicles at each instant of time. To 
identify the interacting vehicles, the central line position 
of the vehicle, the width of the vehicle, lateral overlap, and 

longitudinal gap of that vehicle with all the other vehicles 
present in that time step are considered. A virtual strip of 
width equal to the width of the subject vehicle is consid-
ered along the road segment. Filter out the leader vehicles 
(interacting vehicles) if their width overlaps with the vir-
tual strip of the subject vehicle. Out of all the overlapping 
vehicles at that particular instant of time, the Matlab code 
estimates and records the details of the one leader which is 
closest to the subject vehicle under consideration. Estimate 
the TTC and DRAC values between the subject vehicle 
and that leader. This same method is continued for all the 
other vehicles in that particular time step. Once a time 
step is over, the next time step is considered and the same 
steps are repeated.

A subject vehicle can have two or more leader vehicles 
and follower vehicles if they are not following lane base 
traffic movement. Figure 3 shows an example for identify-
ing interacting leader–follower pair. The longitudinal gap 
(Lx) is the clear gap between two vehicles in the direction 
of movement. It is measured between the front center point 
(denoted by a red dot in Fig. 3) of the subject vehicle and 
the rear end of the interacting vehicle (leader vehicle). 
Lateral overlap (Ly) is the extent to which the width of the 
subject vehicle overlaps with the width of the interacting 
vehicle [16]. The longitudinal gap (Lx) and lateral overlap 
(Ly) can be computed using the following expressions:

where, (Xs, Ys) is the front center coordinates of the subject 
vehicle; (Xi, Yi) is the front center coordinate of the interact-
ing vehicle, i.e., the leader vehicle; WS and Wi are the width 

Lx = Xi − Xs − Li

(3)Ly = |Ys − Y1| −

Wi

2
−

Ws

2

Fig. 3   Leader follower positions 
in non-lane-based traffic
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of the subject vehicle and interacting vehicle, respectively; 
Li is the length of the interacting vehicle, i.e., the leader 
vehicle.

Here, the subject vehicle has two leader vehicles (Leader 
1 and Leader 2) since their width overlaps with the virtual 
strip of the subject vehicle (Ly < 0). The details for the leader 
(Leader1) closest to the subject vehicle are recorded, i.e., 
leader vehicle with the lowest Lx value. Hence, TTC and 
DRAC values are estimated between this pair (subject vehi-
cle and Leader1). The output file generated by the Matlab 
code contains the time (sec), follower ID, follower vehicle 
position, follower vehicle type, follower speed, follower 
acceleration, leader ID, leader vehicle position, leader 
vehicle type, leader speed, leader acceleration, TTC value, 
DRAC value.

If the estimated TTC values of a given interaction are 
lesser than the threshold value, the conflict is noted down 
as critical. Fixed threshold values (0.5 s, 1 s, 1.5 s, 2 s, 3 s) 
were considered for estimating the TTC value, and four 
thresholds of 6 m/s2 (the most severe), 4.5 m/s2, 3 m/s2, and 
1.5 m/s2 were considered for DRAC to address the severity 
levels [5]. The code gives the flexibility to input any required 
threshold value depending upon the user’s requirement. 
These thresholds are chosen based on previous literature 
where they adopted different TTC thresholds varying from 
1 to 5 s and DRAC thresholds varying from 6 m/s2 to 0 m/
s2 [5, 7, 10]. In this study, TTC threshold ≤ 3 s is considered 
because, from the field video data, it was observed that vehi-
cle interactions with TTC values higher than 3 s were able 
to comfortably stop, avoiding a critical rear-end interaction. 
Analyzing the speed and distance gap of interacting vehi-
cles from the field data ensured that the non-critical interac-
tions and non-influencing leader vehicles get automatically 
removed. For TTC and DRAC, considering varying thresh-
old values helps in understanding the variation in rear-end 

conflict severity. Different threshold values were considered 
in this study to identify the best suitable threshold value for 
mixed traffic conditions. To identify the optimal threshold, 
the correlation between conflicts estimated and real crashes 
has to be determined.

Results and Discussions

Conflict Frequency Distribution

The output from Matlab coding is analyzed to understand 
the temporal variation of critical conflict w.r.t the signal 
timing. In this study, multiple conflict indicators with vary-
ing threshold values were used to address the severity of 
the conflicts. Figure 4 and Fig. 5 give the temporal varia-
tion of conflicts with respect to the signal timing at varying 
TTC threshold values (0.5, 1, 1.5, 2, 2.5, and 3 s) for Tagore 
and Arayidathupalam junction, respectively. The colored 
bar along the X-axis direction denotes the red, green, and 
amber signal timings. The conflict events obtained from both 
locations were divided into 21 bins based on the recorded 
conflict time to the signal time. For uniform representation, 
the conflict occurrence time was expressed as a percentage 
of the signal timing. While clubbing all the conflict occur-
rences for all the signal cycles, the conflicts that happened 
during the red time should come under red signal time. For 
example, the red and the green signal timing were divided 
into 10 bins for both locations. The yellow time was repre-
sented as one separate bin. From both the figures, it can be 
noted that a greater number of conflicts happen in the first 
half of the red signal time and the first half of the green 
signal time. The conflicts happening in the first half of red 
signal time are due to the stopping action of vehicles to the 
red signal when the vehicles suddenly decelerate to join 

Fig. 4   Conflict Frequen-
cies (based on different TTC 
thresholds) versus traffic signal 
timing, Tagore junction
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the queue. The conflicts happening in the first half of green 
signal time are mainly due to the queue release during the 
green time.

From Fig. 4, it can be noted that for the Tagore junction 
more conflicts are happening at the first half of the green 
signal time followed by the first half of the red time, whereas 
in the Arayidathupalam junction (Fig. 5) more conflicts are 
happening at the first half of red time followed by the green 
time. There is a significant difference in the peak conflict 
trend at both locations. This can be attributed to the fact that 
Tagore junction with more approach width (14 m), more 
traffic volume, and longer queue length takes more time 
for queue dissipation. During the start of the green time, 
the stopped vehicles start to discharge, while other vehicles 
are arriving at higher speeds to the end of the queue result-
ing in a higher peak during the green time. Furthermore, 
the sudden sharp peak at the beginning of red time for the 

Arayidathupalam junction is because of the lesser approach 
width (7 m) leading to faster backward queue propagation 
resulting in an increase in backward moving shock wave 
speed. A similar trend can be noted in Fig. 6, which shows 
the temporal variation of conflicts with respect to the sig-
nal timing at varying DRAC threshold values (1.5, 3, 4.5, 
and 6 m/s2). DRAC gives the rate with which the interact-
ing vehicle has to decelerate to avoid a collision from hap-
pening. The higher the DRAC, more critical is the conflict 
as the interacting vehicles have to suddenly decelerate to 
avoid a collision. In conclusion, Figs. 4, 5 and 6 give a better 
understanding of how signal timing can affect the conflict 
frequency.

Similar observations were obtained for lane-based traffic 
conditions as well [11]. But unlike lane-based traffic, the 
proportion of conflicts happening during the green time is 
higher for non-lane-based traffic conditions. Furthermore, 

Fig. 5   Conflict frequencies 
(based on different TTC thresh-
olds) versus traffic signal tim-
ing, Arayidathupalam junction

Fig. 6   Conflict frequencies (based on different DRAC thresholds) versus traffic signal timing
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previous studies in lane-based traffic conditions show that 
optimizing signal timing has resulted in a reduction in traffic 
conflicts [26]. These results can be further used for estimat-
ing the optimal signal timing to reduce the number of con-
flicts, thus improving safety.

The effect of vehicle type on the variation of conflict fre-
quency is very crucial in understanding safety in mixed traf-
fic conditions. ‘Road accidents in India-2018’ report shows 
that two-wheelers contribute to more than 40% of accidents 
in India [1]. In this study, the conflict variation w.r.t to the 
follower vehicle is considered. From Fig. 7, it is clear that 
conflicts caused by cars (for both locations combined) are 
more when compared to other types of vehicles for all 
threshold conditions. This is because of the high proportion 
of cars in the traffic composition. At TTC threshold less than 
0.5 s, the numbers of conflicts caused by three-wheelers are 
comparatively high when compared to conflicts caused by 

three-wheelers at other thresholds. This can be related to 
how three-wheeler drivers behave in mixed traffic condi-
tions. Three-wheeler drivers often make risky maneuvers 
which include a sudden change in direction, sudden lane 
change, etc. Figure 8 shows the variation of conflict fre-
quency based on vehicle type at different DRAC thresholds. 
The higher proportion of two-wheeler and three-wheeler 
at DRAC ≥ 6 m/s2 indicates that smaller vehicles resort to 
risky maneuvers resulting in a higher deceleration rate to 
avoid a crash. The higher the DRAC value, the more severe 
the conflict. From Fig. 8, a clear increase in the proportion 
of smaller vehicle types can be noticed at higher DRAC 
threshold values. However, Fig. 7 does not show an evi-
dent increase in the proportion of smaller vehicles for more 
critical TTC thresholds, except for the slight increase in the 
proportion of three-wheelers at TTC ≤ 0.5 s. This might 
be because TTC despite being a popular traffic conflict 

Fig. 7   Variation of conflict frequency based on vehicle type at different TTC thresholds, all locations combined

Fig. 8   Variation of conflict frequency based on vehicle type at different DRAC thresholds, all locations combined
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technique for estimating rear-end conflict fails to incorporate 
the deceleration rates of vehicles involved. However, DRAC 
on the other hand appears to be more realistic in incorporat-
ing the deceleration rate of vehicles. Previous studies show 
that better surrogate safety models were obtained for DRAC 
as the traffic conflict technique [20].

Spatial Variation of DRAC​

To gain further insight into these risky maneuvers of vehi-
cles, the spatial variation of the DRAC value is analyzed. 
From the traffic video data collected from the field, it was 
observed that most of the two-wheelers and three-wheelers 
always try to percolate through the traffic along their desired 
but haphazard path to occupy the area closer to the stop 

line during the red time. Figure 9a and b show the average 
DRAC value for different vehicle types based on distance 
from the stop line. For better understanding, separate graphs 
were plotted to show the spatial variation of DRAC dur-
ing red and green signal time. The red signal time includes 
the flow condition where the vehicles slow down to stop as 
the signal turns red, and as the red signal progresses more 
vehicles start joining the end of the queue. The green signal 
time (green time plus yellow time) includes the congested 
flow condition where vehicles discharge from the stop line 
on the onset of the green signal, and the queue release in the 
upstream section of the stop line followed by the unaffected 
flow condition were the vehicles arriving at the intersection 
do not face any congestion or delay. From Fig. 9a, during the 
red signal time, a high DRAC value can be observed near 

Fig. 9   a Spatial variation of DRAC during red signal time. b Spatial variation of DRAC during green signal time
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the stop line and closer to the maximum queue length. The 
high DRAC value observed closer to the stop line is due to 
the sudden deceleration of vehicles as they approach the stop 
line. A higher DRAC value can also be observed closer to 
the maximum queue length, indicating that the vehicles have 
to undergo sudden deceleration as they join the queue. The 
average maximum queue length (indicated by a red dashed 
line in Fig. 9a) is 80 m at Arayidathupalam and 118 m at 
Tagore. The highest DRAC value in both locations dur-
ing red time is observed near the maximum queue length, 
indicating that the deceleration zone is dependent on the 
maximum queue length. Two-wheelers and three-wheelers 
show higher DRAC values, especially closer to the stop line 
emphasizing the fact that smaller vehicles instead of wait-
ing at the end of the queue often move through the available 
space in the traffic to stop at a distance closer to the stop 
line. They are observed to be more aggressively decelerat-
ing as they approach the stop line. Furthermore, nonzero 
DRAC value at the stop line is because some vehicles, espe-
cially smaller vehicles, neglect safety and stop beyond the 
stop line, which is a common cause of concern at signalized 
intersections in India. Figure 9b shows the spatial variation 
of DRAC value during the green time. As the signal turns 
green, the vehicles start to discharge at different rates result-
ing in some of the vehicles suddenly decelerating to avoid a 
collision. The deceleration is higher at a distance closer to 
the stop line, especially for smaller vehicles such as three-
wheelers and two-wheelers. Comparing the figures and ana-
lyzing the difference in trend gives a better understanding of 
how average maximum queue length affects the deceleration 
characteristics of vehicles.

Lateral Movement and Conflict Proportion

Each vehicle’s lateral movement between every time frame 
is estimated from the trajectory data and cumulated to deter-
mine the respective vehicle’s lateral movement while travers-
ing through the intersection approach. Two-wheeler shows 
the highest lateral movement followed by three-wheeler and 
car in both red signal time and green signal time (Fig. 10). 
In non-lane-based traffic conditions like India, two-wheelers 
often percolate laterally in the available gap between other 
vehicles. More lateral movement is observed in red signal 
time. When the signal turns red, vehicles that are nearing the 
stop line move laterally to occupy a suitable position closer 
to the stop line, whereas the vehicles arriving at the approach 
move laterally to join the lane with a lesser queue length. 
During green signal, the lateral movement is less because 
vehicles often are observed to move laterally only when they 
want to overtake a slow-moving vehicle in front or when 
they have to do a lane change for turning traffic. Further-
more, lateral movement in the Tagore location is higher 
because the wider approach road width provides vehicles 
enough space to traverse laterally without much difficulty.

To get further insight into the vehicle driving behavior, 
the proportion of conflicts caused by different vehicle types 
in different lanes during red and green signal time is studied. 
Figure 11 shows the variation in conflict proportion based 
on lane type at the Tagore location as an example. It can be 
observed that bigger physical size vehicles contribute more 
toward conflict in lanes closer to the median (median-side), 
whereas the vehicles with smaller physical sizes like two-
wheelers and three-wheelers cause more conflicts in lanes 
closer to the curb (curb-side). This is because smaller vehi-
cles prefer to occupy the lanes closer to the curb, and this 
trend is visible in traffic videos. Cars usually prefer to travel 

Fig.10   Lateral movement of different vehicle types for red and green signal time



	 Transportation in Developing Economies (2022) 8: 32

1 3

32  Page 12 of 15

in the Intermediate and median-side lanes. Separate graphs 
were plotted to show the proportion difference during the 
red signal time and green signal time. During the red signal, 
Two-wheeler contributes to more conflicts in the curb lane 
compared to green time. This might be because, as the signal 
turns green, Tw seeps through the lateral gaps available and 
move to the front of the intermediate lane which helps in 
faster traversing.

The lateral movement and lane preference of vehicle types 
help in implementing better safety traffic control measures 
such as two-wheelers exclusive lane, exclusive two-wheelers 
waiting area near the stop line. Existing studies show that 
providing an exclusive waiting area for two-wheelers near 
the stop line is very effective in improving signalized inter-
section safety and efficiency [27].

Conflict Severity Distribution

Conflict frequency given in Figs. 4, 5 and 6 does not give 
an idea about how lower the TTC value is compared to the 
threshold. Conflict severity distribution needs to be made 
to understand the actual severity of the conflict. In this 
study, the concept of minimum TTC is used for determin-
ing conflict severity. TTC is a continuous function of time 
and is estimated for every time step for which the conflict-
ing vehicles are in a collision course. Out of all the TTC 

values at various points in time, the minimum value of 
TTC for the two interacting vehicles is considered. Simi-
larly, the minimum value of TTC for all the other vehicle 
interactions is estimated. Out of all the TTC values esti-
mated for all the vehicle interactions, the lowest value of 
TTC is considered the minimum TTC. Lower time to colli-
sion values indicate that the conflicting vehicles are closer 
to each other and thus have a higher chance of collision. 
As shown in Fig. 12, it is clear that the highest severity 
conflict (minimum TTC value) is obtained at the beginning 
of the red time and the green time. At the onset of the red 
time, there are more severe interactions between vehicles, 
since many vehicles decelerate suddenly. Conflict severity 
is also high at the beginning of the green time as vehicles 
start discharging at different rates. During the yellow sig-
nal time, the TTC value shows a decreasing trend (more 
severe conflict) which can be attributed to the dilemma 
driver behavior where the traffic signal indication changes 
from green to yellow to red.

The effect of vehicle type on conflict severity is very 
crucial in understanding safety in mixed traffic conditions. 
Figure 13 gives the variation in minimum TTC based on 
follower vehicle type. The lower the TTC value, more 
severe the interaction. The minimum TTC value obtained 
was for two-wheelers and three-wheelers, indicating that 
these vehicles contribute to severe conflict. This might be 
because in mixed traffic conditions smaller vehicles like 

Fig. 11   Variation in conflict proportion based on lane type at Tagore junction
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two-wheelers and three-wheelers undertake risky maneu-
vers like sudden deceleration and lane change.

Summary and Conclusion

The main objective of this study is to estimate the safety of 
the signalized intersection at the signal cycle level using 
TTC and DRAC as surrogate safety measures. More than 
4500 vehicle trajectories were extracted from two signal-
ized intersection approaches with varying traffic and geo-
metric characteristics collected using the video capturing 
technique. The temporal variation of critical conflict w.r.t 
the signal timing showed that a greater number of conflicts 
happened at the first half of the red signal time and the 
first half of the green signal time. The conflicts happening 
in the first half of red signal time are due to the stopping 
action of vehicles to the red signal when the vehicles sud-
denly decelerate to join the queue. The conflicts happening 
in the first half of green signal time are mainly due to the 
queue release during the green time. Furthermore, by com-
paring the difference in the peak trend of the conflict fre-
quency graph it can be concluded that location with longer 
queue length gives rise to more conflicts in the first half 
of the green time. This is because, during the start of the 
green time, the stopped vehicles start to discharge, while 
other vehicles are arriving at higher speeds to the end of 
the queue resulting in a higher peak during the green time.

The spatial variation of conflict shows that more critical 
vehicle interactions are observed near the maximum queue 
length, indicating that the deceleration zone is dependent 
on the maximum queue length. Two-wheelers and three-
wheelers show higher DRAC values, especially closer to the 
stop line emphasizing the fact that smaller vehicles instead 
of waiting at the end of the queue, often move through the 
available space in the traffic to stop at a distance closer to 
the stop line. They are observed to be more aggressively 

decelerating as they approach the stop line. Furthermore, 
analyzing the lateral movement of vehicle types proved 
that smaller vehicles percolate laterally in the available gap 
between other vehicles resulting in riskier lateral maneuvers 
which lowered the safety standards. The lane-wise propor-
tion of conflict shows that bigger physical size vehicles con-
tribute more toward conflict in lanes closer to the median, 
whereas the vehicles with smaller physical sizes like two-
wheelers and three-wheelers cause more conflicts in lanes 
closer to the curb.

The effect of vehicle type on the variation of conflict 
frequency is very crucial in understanding safety in mixed 
traffic conditions. Conflict frequency per vehicle proportion 
showed a relatively higher percentage of two-wheelers and 
three-wheelers contributing to a more severe DRAC value 
(DRAC ≥ 6 m/s2), indicating that smaller vehicles resort to 
risky maneuvers resulting in sudden deceleration. Also, it 
can be noted that the proportion of conflicts caused by three-
wheelers was comparatively high especially at TTC < 0.5 s, 
indicating that they contribute to more severe vehicle inter-
actions. The conflict severity using the minimum TTC value 
showed that the highest severity conflict was obtained at the 
beginning of the red time followed by the green time. At 

Fig. 12   Minimum TTC value versus traffic signal timing

Fig. 13   Minimum TTC variation based on vehicle type
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the onset of the red time, there are more severe interactions 
between vehicles, since many vehicles decelerate suddenly. 
Conflict severity is also high at the beginning of the green 
time as vehicles start discharging at different rates during the 
initial queue release. During the yellow signal time, the TTC 
value shows a decreasing trend (more severe conflict) which 
can be attributed to the dilemma driver behavior where the 
traffic signal indication changes from green to yellow to red.

Research Contribution

This study is mainly focused on the proactive safety of sig-
nalized intersections in mixed traffic conditions. The use 
of field-collected video data from different signalized inter-
sections reflects actual driving behavior. One of the major 
contributions of this study is the automatic identification 
of critical vehicle interactions and conflict estimation at 
varying threshold values based on the precise longitudinal 
and lateral position of the interacting vehicles. To incorpo-
rate the non-lane-based movement, the width of vehicles 
involved is considered. The Matlab code developed takes 
required inputs depending on user requirements for auto-
matic conflict estimation. This methodology can be further 
modified to develop a Surrogate Safety Assessment Tool 
for signalized intersection safety in mixed traffic conditions. 
This study also analyses the temporal variation of rear-end 
conflict based on signal cycle time. An important practical 
application of this study is in estimating the optimal signal 
timing to reduce the number of conflicts, thus improving 
safety. Previous studies in lane-based traffic conditions show 
that optimizing signal timing has resulted in a reduction in 
traffic conflicts [26]. Furthermore, the effect of various traf-
fic and geometric parameters such as queue length, signal 
timing, lane type, width on the variation of critical conflict is 
also explored to assess the safety of signalized intersections 
at the signal cycle level. Comparing and analyzing the huge 
amount of trajectory data from two locations with varying 
traffic and geometric characteristics gives a better under-
standing of how these parameters affect traffic safety. The 
variation in conflict severity based on vehicle type gives 
better clarity on the risky maneuvers undertaken by smaller 
vehicle types such as two-wheelers and three-wheelers in 
mixed traffic conditions. In India, two-wheelers contribute to 
more than 40% of accidents [1]. Spatial variation of conflict 
proves that smaller vehicles undergo aggressive decelera-
tion especially closer to the stop line and contribute to more 
than 75% of conflict along the curbside lane. From the traffic 
video data collected for this study, it can be observed that 
most of the two-wheelers always try to percolate through the 
traffic along their desired but haphazard path to occupy the 
area closer to the stop line during the red time. To achieve 
better safety traffic control measures such as an exclusive 

two-wheeler lane, a two-wheeler waiting area near the stop 
line can be provided. Existing studies show that providing 
an exclusive waiting area for a two-wheeler near the stop 
line is very effective in improving signalized intersection 
safety and efficiency [27]. The inferences from this study 
can be further modified to improve the safety and operational 
performance of the signalized intersections in developing 
countries by optimizing the signal design and implementing 
a real-time warning system for speed reduction to minimize 
critical conflicts.

Limitations and Future Scope

The trajectory data used in this study are from two loca-
tions. More locations must be incorporated for a better 
understanding of conflict variation based on signal timing. 
This study mainly focuses on rear-end conflicts. Other types 
of traffic conflict within the intersection area such as right-
angle conflicts were not considered. More surrogate meas-
ures of safety such as MTTC and PET can be incorporated 
into estimating the conflicts. The influence of internal and 
external factors such as intersection geometry, presence of 
countdown timer, signal phase design on driver behavior 
and impact on traffic conflicts can also be studied. Optimiza-
tion of signalized intersection safety by changing the signal 
design can also be studied. Finally, more work is needed to 
investigate the relationship between collisions and conflicts. 
This study can be further developed to improve the safety 
and operational performance of signalized intersections in 
developing countries.
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