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Abstract
The difficulties of the microscopic models in accurate representation of the real traffic phenomena stem from its complexities 
in the collection and processing of reliable time-series car-following data of non-lane-based traffic environments. Proper 
estimation of car-following data can suitably ameliorate the realism of traffic sub-models and is still a demanding task. This 
study describes an image-based in-vehicle trajectory data collection system for the estimation of reliable dynamic time-
series data, using camera calibration and in-vehicle GPS information. A copula-based methodological framework is also 
investigated in this study for evaluating safety in the car-following processes, by accommodating the dependence structure 
of longitudinal gap, centerline separation and vehicle speeds. Results of the study demonstrated the importance of centerline 
separation in apprehending the car-following processes. In particular, the probability of maintaining lower gaps increases 
with the decrease in speed and increase in centerline separation. A 15–20% reduction in the longitudinal gaps is observed 
for speeds greater than 60 kmph. As importantly, the study recommends the applicability of tri-variate Gaussian copula in 
assessing the safety or ‘safe distance-keeping’ criteria of drivers in the car-following processes, which can indeed augment 
the accurate representation of drivers’ behavior and development of the car-following models, advanced driver assistance 
systems and for safety evaluation in the car-following process of non-lane-based traffic environments.
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Introduction

The utilization of microscopic simulation modeling and 
intelligent transport systems (ITS) to evaluate traffic sys-
tem performance has proved the inadequacy of the existing 

models, including car-following ones, to accurately represent 
the behavioral phenomena in complex real-world contexts. 
Despite the recent advancements of new technologies (such 
as ITS) for road system applications, achieving a detailed 
understanding of the dynamic behavioral response of drivers 
in ‘car-following processes’ has been a major safety concern 
since decades [1].

Although many studies have supported the car-following 
theories and development of its subsequent sub-models, cali-
bration and validation of the models as well as an empiri-
cal verification of the underlying assumptions have led to 
serious difficulties with both collection and processing of 
accurate, unbiased time-series data in a common space–time 
reference system [2, 3]. As improved accuracy in the exper-
imental data collection can substantially ameliorate the 
behavioral phenomena from a microscopic perspective and 
the realism of traffic sub-models, proper estimation of time-
series data has still proven to be challenging.

Anecdotal evidence, however, demonstrates several tech-
niques for gathering time-series data which include, static 
laboratory simulators [4], instrumented vehicles equipped 
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with radar sensors [1, 5, 6] or onboard global positioning 
system (GPS) receivers. Although driving simulator-based 
experiments lack the flexibility of representing real traffic 
phenomena; howbeit, in the domain of instrumented vehi-
cles, the dynamics of the following vehicle can be thor-
oughly analyzed for long stretches along a route. On one 
hand, instrumented vehicles can adequately capture the rela-
tive spacing and speeds using sensors; while on the other 
hand, an accurate positional data of the equipped vehicles 
can be obtained with the satellite-based GPS technology [7].

The advancements in real-time GPS technology have 
expedited a new horizon in the field of traffic engineering. 
In the context of car-following theories, Hatipkarasulu et al. 
[8] and Jiang and Li [9] have underlined the flexibility of 
vehicle-mounted GPS receivers to collect the position and 
speed data with a positional accuracy of 1–5 m and speed 
accuracy of 0.16 kmph. Additionally, by utilizing time-series 
data for a platoon of ten vehicles in a probing field, Gurusin-
ghe et al. [7] demonstrated the superiority of the GPS tech-
nology in accurately estimating data than other conventional 
methods. Punzo and Simonelli [2] used kinematic differ-
ential GPS instruments to investigate the methodological 
issues of car-following model calibration and validation by 
accurately monitoring the trajectories of four vehicles in 
a platoon under real traffic conditions. The peer-reviewed 
literature has also elucidated the efficacy of real-time dif-
ferential GPS receivers in suitably modeling the following 
behavior of cars [10–12].

Despite the high expected accuracy of kinematic GPS in 
vehicle tracking, the estimation of time-series trajectories 
to apprehend the car-following process of weak-lane disci-
pline traffic is indeed a demanding task. Recent literature has 
underlined the importance of lateral descriptor (centerline 
separation) of traffic in modeling the staggered-following 
behavior [13–16], where the following vehicles often tend to 
maintain some lateral separation with its immediate leader, 
either to perceive the forward visual field with more confi-
dence or to anticipate the behavioral response of the front 
vehicles and its associated proximity risks in the car-fol-
lowing processes. However, the requirements for staggered-
following trajectory data are indeed stringent. For instance, 
in the field of satellite-based GPS technology, inter-vehicle 
longitudinal spacing can be obtained from the recorded 
vehicle positions with an accuracy of 1 m; on the contrary, 
the estimation of lateral separation from the GPS receivers 
may produce unreliable results. Understanding that a proper 
evaluation of car-following behavior in non-lane-based traf-
fic environments requires an accurate characterization of the 
microscopic traffic variables and reliable experimental data, 
a suitable integration of the satellite-based GPS technology 
with an image-based data collection scheme can substan-
tially improve the collection and processing of continuous 
time-series data for the staggered-following scenario.

Vehicle detection and tracking in mixed traffic conditions 
remain a challenge. Intrusive and non-intrusive techniques 
have been tried and tested; however, it is observed that only 
the image-based technique is able to trace vehicles with bet-
ter accuracy [17]. Further, several efforts have been made to 
extract vehicle trajectories from video images. Some efforts 
were initially made by Metkari et al. [18], Jin et al. [19] and 
others by marking road sections by strips. In some works, the 
road sections were physically marked with strips of known 
width. On the other hand, efforts were made to calibrate the 
field data-points from their corresponding points visible in 
the image. Fukui [20], Courtney et al. [21], Bas and Chris-
man [22] and Fung et al. [23] are the leading efforts in this 
regard. Errors were observed with changing camera orien-
tations, and modifications necessary to avoid errors due to 
camera orientation angles are best described in Fung et al. 
[23]. Camera calibration techniques and image detection 
techniques are simultaneously used in several vehicle trajec-
tory data extraction softwares, and the most popular one for 
mixed traffic is traffic analyzer and enumerator (TRAZER). 
However, these softwares need camera at fixed position and 
are not useful if dynamic data need to be obtained from 
within the stream. There is, thus, a need for semi-manual 
data collection method, which can manually classify and 
trace vehicle trajectories of neighboring vehicles. Softwares 
based on this concept were used to obtain vehicle trajecto-
ries [24, 25] or to study inter-vehicular gaps [26, 27]. How-
ever, in their study, the authors recorded a video of traf-
fic stream from a static camera placed at a high vantage 
point. The entire vehicular interaction cannot be recorded 
by this technique. If the entire interaction between vehicles 
needs to be captured, one has to either compromise on the 
video resolution to mark the trajectory (thereby increasing 
error) or deploy complicated methods like video-stitching 
by recording from several simultaneous videos which were 
not attempted earlier. It is, therefore, necessary to use an 
instrumented vehicle for capturing video of the entire car-
following interactions.

In this context, efforts are being directed to the develop-
ment of a suitable data collection technique for estimation 
of reliable dynamic time-series car-following data for non-
lane-based traffic. The study reported in this paper attempts 
to establish an image-based in-vehicle trajectory data col-
lection system to process the microscopic variables (such 
as longitudinal gap, centerline separation, vehicle speeds, 
accelerations, etc.) using camera calibration and in-vehicle 
GPS information on straight roads, and to provide a copula-
based methodological approach for the safety evaluation of 
vehicles in car-following process.

Firstly, a brief overview of the car-following processes is 
described, followed by a detailed description of the data col-
lection methodology which forms the core of this research 
and the resulting data estimation process is provided. A 
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discussion of the safety evaluation in the car-following 
process and methodological approach examining the safety 
criteria follows. Finally, analysis and conclusions provid-
ing an overview of the suitability of data collection exercise 
complete the paper.

Car‑Following Behavior

The car-following behavior is a control process in which 
each driver attempts to maintain a desired following dis-
tance behind the lead vehicle by accelerating or decelerat-
ing in response to the actions of the vehicle in-front. This 
continuous adjustment in vehicle speeds is governed by the 
drivers’ perceptions of adjudging the leading vehicle speed 
as well as their own speeds, proximity to the desired follow-
ing headway (or, longitudinal gap, LG) and response time 
delay which may overcompensate for small deviations from 
a target point [28, 29], resulting in the following ‘spirals’ 
which can be expressed in the relative speed-relative spac-
ing plane (Fig. 1).

Such spirals are indicative of the car-following processes 
of the driver across all speed ranges in staggered-following 
scenario and his/her perceptions to maintain a safe desired 
headway. The following behavior in weak-lane discipline 
traffic, however, requires the consideration of an indicator 
of lateral interaction [30], namely centerline separation (CS) 
for a precise representation of staggered-following behavior. 
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Fig. 1   A typical car-following ‘spiral’ showing the variation of rela-
tive speed with longitudinal spacing

Fig. 2   Typical following ‘spi-
rals’ for different CS levels
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In essence, centerline separation describes the off-centered-
ness between the leading and following vehicles in the car-
following process. Figure 2 illustrates the car-following ‘spi-
rals’ for different CS levels of staggered-following scenario.

The ‘spirals’ in the figure envisage that the continuous 
adjustment of the driver to the behavior of the vehicle in-
front occurs at all levels of CS and the inter-vehicle spacing 
gradually decreases with the increase in staggered positions 
of vehicles. This is an indicative of a typical staggered-
following behavior of non-lane-based traffic environments 
where the following vehicles often tend to circumvent the 
encumbrance of the lead vehicle to have a clear forward view 
and anticipate the criticality of the car-following process. As 
a result, they tend to maintain large centerline separation, 
thereby resulting in reduced spacing.

Such behavior illustrates the consideration of CS in the 
car-following theories, an accurate data estimation and pro-
cessing of which will enrich the realism of model develop-
ment and representation of drivers behavior in simulation 
modeling.

Experimental Data

Details of the data used in this study and a comprehensive 
discussion about the experimental setup, calibration process 
and the issues regarding data collection are provided in this 
section.

Instrumented Vehicle Setup and Data Collection

The data used in this study were collected from a series 
of experiments conducted in March 2018 along straight 
sections of the NH-27, a four-lane divided carriageway in 
Guwahati, India, under real traffic conditions. Experiments 
were conducted by driving two vehicles in the car-following 
state along rural highway covering a total stretch length of 
37.33 km during the afternoon hours, 2:00–4:30 p.m. The 
vehicles were equipped with GPS receivers [Racelogic video 
V-box] that recorded the position of each vehicle at 0.1-s 
interval, and a video system attached to the windshield of the 
cars, allowing a complete visual record of the experiment. 
From the positional data of GPS receivers, vehicle speeds, 
longitudinal/lateral acceleration are calculated through suc-
cessive derivations of the space traveled; while inter-vehicle 
longitudinal and lateral gaps are evaluated from the synchro-
nized recorded video by a semi-automated trajectory extract-
ing system [detail discussion in the “Calibration process”].

In the process of data collection, careful attention was 
devoted to the experimental setup. The drivers of both the 
vehicles were familiar with the traveled path, but were not 
aware of the purpose of experimental design. The driver 
of the leading vehicle was instructed to maintain different 

speeds in the range of 30–90 kmph at an interval of 10 kmph 
each (that is, 30  kmph, 40  kmph, 50  kmph, 60  kmph, 
70 kmph, 80 kmph and 90 kmph) based on prevailing traf-
fic conditions of the considered road stretch. On the other 
hand, the driver of the following vehicle was asked to fol-
low the leading vehicle maintaining a safe distance based 
on his perception. In response to the actions of the leading 
vehicle, the following process of the subject vehicle was then 
captured based on the proposed data collection technique. 
As the aim of the experiment was to collect car-following 
data, the lane-changing maneuver and intrusions of other 
vehicles were avoided. Data for any unimpeded intrusions 
in unavoidable circumstances were discarded. In particular, 
the car-following data were processed for only such sce-
narios when the subject vehicle was under the influence of 
the leading instrumented vehicle. Moreover, the study was 
conducted for only straight sections where effect of external 
factors such as curves and gradients affecting the traffic flow 
was not considered. An example of a car-following scenario 
and a staggered-following scenario recorded from the cam-
era attached to the following vehicle is presented in Fig. 3.

Fig. 3   A typical a car-following and b staggered-following scenario 
recorded from the camera attached to the following vehicle. LG lon-
gitudinal gap, CS centerline separation; Red dot indicates the position 
of the camera attached to the following vehicle, i (color figure online)
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Calibration Process

In an attempt to extract and analyze the inter-vehicle spac-
ing (both longitudinal and lateral) from the video footage, 
a semi-automated trajectory system is employed in this 
research where each vehicle’s location on the screen is rec-
ognized and tracked at different time stamps using frame-
by-frame analysis. The screen coordinates of the vehicle’s 
position recorded at each tracking are then transformed to 
real-world coordinates by employing the camera calibra-
tion equations devised by Fung et al. [23]. For brevity the 
detailed process is not discussed in this paper. The same cali-
bration technique was also used to study the car-following 
behavior and lateral gap maintaining behavior of vehicles in 
non-lane-based traffic scenario [17, 26, 27].

The four reference points in the video sequence and their 
respective coordinates in the real world need to be captured 
and based on the calculated camera parameters (pan angle, 
tilt angle, swing angle, focal length and distance of the plane 
from the camera lens) and screen coordinate of each point, 
the real-world coordinate of the respective point can be esti-
mated. As described in Fig. 4, four endpoints of the road 
edge markings are selected in this process to form a calibra-
tion pattern of rectangle ABCD.

With reference to Fig. 4, four endpoints representing an 
exact rectangle in the world coordinates of known dimen-
sions (AB = CD and AC = BD) are selected and using the 
semi-automated trajectory extractor, the corresponding 
end-point is traced to obtain its respective screen coordi-
nates. Each end-point is, however, clicked several times 
on the screen, and for further data estimation and process-
ing, the average pixel value for each point is considered to 
reduce errors in manual mouse-clicks. For the estimation of 

inter-vehicle spacing, it is considered that the edge of the 
test vehicle (EG or FH) is parallel to the road edge (AB or 
CD), and the longitudinal and lateral distance of the end-
point (either B or D) from one front corner of the test vehi-
cle (either E or F) is known. For any point P representing 
the mid-point of the rear bumper of the leading vehicle, the 
transformed real-world coordinates are estimated similar to 
the methodology described above. With all known measured 
distances and transformed real-world coordinates, the inter-
vehicle spacing can be accurately estimated according to the 
expression described below:

where the distances 
(
xB − xE

)
 , 
(
yE − yB

)
 and 

(
yP1 − yE

)
 are 

accurately measured in the field during the calibration exer-
cise (that is, before the start of experiment when the vehicle 
is stationary).

The real time of sampling, the global coordinates and 
speed of each vehicle involved in the experiment are directly 
obtained from the GPS receivers at 10-Hz frequency; while 
the positional data of the vehicle in-front are extracted from 
the video recorders at each 5-Hz frequency level. After suit-
able transformation, the GPS data and the extracted video 
data are then synchronized to obtain speed of both the vehi-
cles, global time, longitudinal gap and centerline separa-
tion at every 0.2-s intervals. While extracting data from the 
video, an extractor may make an erroneous mouse click with 
a fixed standard deviation (in pixels) on the screen, and an 
average extractor makes mouse-clicking with an accuracy 
of six pixels [26]. These six pixels correspond to different 

Longitudinal gap =
(
xP − xB

)
+
(
xB − xE

)
,

Centerline separation =
||
|
yP − yB −

(
yE − yB

)
+
(
yP1 − yE

)||
|
,

Fig. 4   Camera calibration tech-
nique considered in the study a 
rectangle ABCD viewed from 
the camera b top view (or, bird 
eye view) of the calibration pat-
tern along with the lead vehicle
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distances in the field, and error in calculating longitudinal 
gap will increase as field distance from point B (refer Fig. 4) 
increases. The maximum error (normally distributed, 3σ) 
increases from 1.2% for a point exactly on point B, to 11.7% 
for a point 30 m ahead of B for the experiment conducted 
on Guwahati roads (when point B was 8 m ahead of test 
vehicle’s front edge). Moreover, the accuracy in the speed 
measurement is 0.16 kmph [31].

The underlying assumptions of the experimental setup 
process are (a) the road under surveillance should be rea-
sonably straight such that both the vehicles rest on the same 
plane and (b) careful attention should be paid to the fix-
ture of the camera on the vehicle since any change in the 
camera orientation may result in improper data estimation. 
Such considerations can indeed produce significant reliable 
and accurate experimental data for understanding the car-
following process of non-lane-based traffic streams.

Results

Preliminary Analysis

The synchronized GPS and extracted video data resulted 
in 7002 cases of car-following events (data being obtained 
at each 0.2-s intervals) which would essentially help in 

understanding the following behavior as well as its associ-
ated proximity risks. A summary of the descriptive statistics 
of the inter-vehicle spacing (both longitudinal and lateral) 
and vehicle speeds for the extracted data is presented in 
Table 1.

Statistics of the traffic variables show that the car-follow-
ing data cover a wide range of vehicle speeds lying in the 
range of 9–78 kmph. The extent of off-centeredness (CS) 
of the subject vehicle with the front leader is observed to 
range from a minimum of zero to a maximum of 2.50 m. The 
observed range of longitudinal gap further justifies that the 
dataset covers the entire spectrum of all car–car interactions 
because the peer-reviewed literature suggests a maximum 
longitudinal gap of 30 m for a close-following behavior [15, 
32].

The skewness and kurtosis values of longitudinal gap fur-
ther indicate that the distributions have sharper peaks and 
heavier tails than that of a normal distribution; while kurto-
sis value of CS indicates that the data are normally distrib-
uted. Most of the speed data are characterized by skewness 
close to zero and negative skewness values indicating that 
the speed data are more symmetrically distributed than that 
of longitudinal gap, the tails of the distribution are lighter 
and have a flatter peak than a normal distribution; a com-
parison of the mean and median values further corroborates 
this result.

Dependence Structure Between the Traffic Variables

With an aim to comprehend the behavioral characteristics of 
longitudinal gap (LG), vehicle speed and CS and the poten-
tial dependence relationship between them, a summary of 
mean and median values of inter-vehicle spacing (LG, CS) 
for different ranges of vehicle speeds is presented in Table 2.

The table shows that the mean and median values of 
longitudinal gap increase with the increase in following 
vehicles speeds and decrease with the increase in center-
line separation. Further, vehicle speeds are observed to 
follow a decreasing trend with centerline separation. This 
observed trend is indicative of the fact that longitudinal 

Table 1   Descriptive statistics of the microscopic traffic variables

Statistical parameters Longitudi-
nal gap (m)

Centerline 
separation 
(m)

Speed (kmph)

Mean 12.32 1.39 49.96
Median 11.89 1.44 49.47
Standard deviation 4.31 0.48 10.11
Minimum 2.94 0.00 9.09
Maximum 29.88 2.50 78.38
Skewness 0.68 − 0.46 0.03
Kurtosis 0.61 0.03 − 0.10

Table 2   Statistics of the 
variables for different speed 
ranges

Speed Range 
(kmph)

Longitudinal gap (m) Centerline separation 
(m)

Speed (kmph) Sample

Mean Median Mean Median Mean Median

< 20 4.97 3.81 1.76 1.81 15.21 16.67 25
20–30 7.45 7.19 1.48 1.48 25.62 26.79 92
30–40 10.47 10.74 1.55 1.54 36.75 37.01 803
40–50 11.92 11.92 1.48 1.53 43.96 43.78 2659
50–60 12.79 11.81 1.27 1.28 55.13 55.06 2213
60–70 13.86 13.56 1.28 1.34 63.76 63.18 1044
70–80 15.44 13.46 1.25 1.27 72.78 72.29 167
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gap and vehicle speeds are dependent on the lateral posi-
tioning of vehicles in car-following processes of non-lane-
based traffic streams. Because following vehicles at large 
CS encounters a wide forward field of view and tends to 
avoid the encumbrance of lead vehicles, they tend to fol-
low the leaders closely maintaining lower longitudinal 
gap and speed. The correlation coefficients of LG and CS 
( � = −0.257, �s = −0.376, r = −0.439 ), speed and CS 
( � = −0.198, �s = −0.293, r = −0.264 ), and LG and speed 
( � = −0.172, �s = 0.254, r = 0.293 ) further corroborate the 
dependence relationship of the microscopic traffic variables.

To attain additional insights into the statistical differences 
of inter-vehicle spacing according to the following vehicle’s 
speeds, a one-way analysis of variance test is conducted; the 
results of which indicated significant statistical difference in 
longitudinal gaps [F(6,6996) = 110.46; p < 0.001] and cen-
terline separations [F(6,6996) = 70.51; p < 0.001] across all 
speed ranges. This finding justifies that the longitudinal and 
lateral separations of the subject vehicle with the vehicle 
in-front vary significantly according to the speeds of the 
following vehicle in the car-following processes.

Phenomenology of Safe ‘Distance‑Keeping’ 
in the Car‑Following Scenario

Achieving a comprehensive understanding of how drivers 
control their vehicles while following another vehicle, how 
substantial the safety problem is, how much percentage of 
drivers exhibit such unsafe critical events and how the safety 
requirements can be modeled, is still a matter of debate and 
requires more attention. The homeostasis theory proposed by 
Wilde [33] emphasizes that a driver always tend to maintain 
a constant level of risk exposure by adjusting his behavior, 
that is, by controlling speed and headway. Similarly, Sum-
mala [34] proposed the ‘zero-risk theory’ which states that 
a driver acts to control the risk level when the risk exceeds 
the safety margins. Although quantifying the ‘safety’ is dif-
ficult, many pioneering efforts were devoted to recommend 
the threshold values for headways which could essentially 
distinguish between relatively safe and dangerous encounters 
in the car-following processes of lane-based traffic [35–40]. 
Anecdotal literature on the car-following models, however, 
suggest the consideration of different parameters namely, 
space headway, speed, relative speed, relative acceleration, 
desired speed, maximum acceleration, etc. to predict the 
decision of the following vehicle in response to the actions 
of the leader. Amongst all, space headway (summation of 
longitudinal gap and vehicle length) and speed form the 
basis of most of the car-following models. The drivers in 
real-world scenario can actually perceive available distance 
more precisely than time measurement and considering fur-
ther the utilization of safe longitudinal gap information in 
the development of car-following models (safety distance 

models or Gipp’s model), evaluation of safe longitudinal gap 
is assessed in this study rather than time-headway. Particu-
larly, with regard to non-lane-based traffic scenario, there is 
still a paucity of research concerning the applicability and 
evaluation of safety criteria, where in addition to speed and 
headway, centerline separation has proved to be an essential 
indicator in describing the vehicle following processes.

Understanding that the utilization of safety indicator in 
weak-lane discipline traffic requires an integration of the 
longitudinal (longitudinal gap and vehicle speed) as well as 
the lateral descriptor (centerline separation), the headway 
thresholds recommended in the literature may not represent 
the actual scenario in non-lane-based traffic environments 
as these minimum thresholds are envisaged to vary across 
different lateral positions of vehicles. A methodological 
approach using copulas is thus employed in this research to 
accommodate the dependence structure of the time-series 
data of longitudinal gap, vehicle speeds and centerline sepa-
ration. A concoction of the peer-reviewed literature reveals 
that the average minimum safe and comfortable time-head-
ways in car-following scenario lie in the range of 0.64–1.78 s 
[35, 36, 38–40] for vehicle speeds of 45–150 kmph.

With an aim to quantify the ‘safety’ in car-following pro-
cesses, the lower 5% values of longitudinal gaps at each 
speed and centerline separation are selected in this study. 
Firstly, the CS data were segregated into different groups 
(0–0.5 m, 0.5–1 m, 1–1.5 m, 1.5–2 m and 2–2.5 m) and for 
each CS group, the corresponding dataset of longitudinal 
gap and speeds were separated as well. Secondly, a variety 
of speeds belonging to each CS group were then further 
separated into approximate speed values (± 3 kmph) of 
30 kmph, 40 kmph, 50 kmph, 60 kmph, 70 kmph, 80 kmph 
and 90 kmph and the corresponding LG data for each speed 
were also separated. Finally, for each demarcated CS group 
and approximate speed value, the minimum 5% data of LG 
were selected for evaluating the safe distance requirements 
in the car-following process. This lower 5% LG values 
obtained for each speed and CS ranges are then compared 
with the recommended thresholds described in the existing 
literature and are accordingly, anticipated as the minimum 
safe distance-keeping requirements for the driver in the fol-
lowing scenario. Figure 5 depicts variation of the average 
safe longitudinal gap (considering lower 5% values) with 
vehicle speeds and centerline separation.

The plots depict a pragmatic increasing relationship of 
the longitudinal gap with speed for each level of CS and also 
a decreasing trend of safe longitudinal gap and speed with 
CS is observed for speeds of 30 kmph, 40 kmph, 50 kmph, 
60 kmph, 70 kmph and 80 kmph. Considering lower CS 
values as a replication of actual car-following events of 
lane-based traffic, a direct comparison of the safe longitu-
dinal gap (Fig. 5) with the recommended thresholds can be 
acquired for CS less than 0.5 m. In our study, the average 
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safe longitudinal gaps for speed of 40 kmph, 50 kmph and 
80 kmph are obtained as 8.55 m, 8.85 m and 18.41 m, respec-
tively, which is similar to the safe LG value indicated by 
Duan et al. [40] where they found the safe longitudinal gap 
range as 8.70–23.10 m for speeds of 45 kmph and 90 kmph. 
Similarly, in a study by Taieb-Maimon and Shimar [38], the 
range of safe time headway obtained was 0.64–0.69 s for 
vehicle speeds of 50 kmph, 60 kmph, 70 kmph, 80 kmph, 
90 kmph and 100 kmph. Direct comparison of the recom-
mended safe longitudinal gap value (8.88–19.17 m) with our 
data (8.85–18.41 m for speeds in the range of 50–80 kmph) 
indicated that the safe longitudinal gaps considered in our 
study for different vehicle speeds are similar to the values 
obtained by Taieb-Maimon and Shinar’s [38] work. This 
indeed justifies that the average safe longitudinal gaps con-
sidered in our study (corresponding to lower 5% values) can 
be used to represent the safe following conditions in car-
following and staggered-following cases of non-lane-based 
traffic environments. The lower 5% values of longitudinal 
gaps corresponding to each speed and CS level are, there-
fore, utilized for the development of the copula model.

Application of Copulas in Safety Evaluation

As identified previously, the risk level of drivers defined 
for lane-based homogeneous traffic may not imply the same 
level of risk in non-lane-based traffic cases. Considering the 
dependence relationship among safe LG, speed and CS, a 
copula-based methodological framework can address the 
relationship of micro-level parameters used in the car-fol-
lowing models with the lateral descriptor which will, in turn, 
ascertain the propensity of crash risks at any lateral position-
ing of vehicle in non-lane-based traffic streams.

Concept of Copulas

A copula is a joint cumulative distribution function that 
links a stochastic multivariate relationship to its univariate 

marginal distributions of any dimension, such that each 
margin is uniformly distributed in [0, 1]. For uniformly 
distributed continuous random variables 

(
X1,X2,… ,X

n

)
 

with marginal cumulative distr ibution functions (
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,… ,F

n

(
x
n

))
 , a joint n-dimensional cumu-

lative distribution function (CDF) F
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)
 can be 

generated as follows:

Equation  (1) shows that the joint CDF F can be 
described by the margins F1,F2,… ,F

n
 and the bivariate 

copula C, which captures the dependency structure among 
X1,X2,… ,X

n
.

Selection of Univariate Marginal Distributions

The first step in the estimation of a suitable copula model 
requires proper selection of optimal marginal probability dis-
tributions. Several probability distributions were employed 
in this study to select the best-fitted marginal probability 
distribution function for safe LG data, speed and CS data. 
The best-fitted distribution was selected when the Akaike-
Information Criteria (AIC) and three statistical goodness-
of-fit tests namely Kolmogorov–Smirnov (K–S) test, Ander-
son–Darling (A–D) and Cramer–von Mises (C–vM) test 
statistics were minimal, rendering the null hypothesis unable 
to be rejected at α = 0.05 [16, 41]. Table 3 presents a sum-
mary of the results of the goodness-of-fit test.

Based on the goodness-of-fit index, AIC and log-like-
lihood criterion, logistic distribution was selected as the 
best fitted for safe longitudinal gap [location = 12.514, 
scale = 2.893] and speed data [location = 47.221, 
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Fig. 5   Variation of the safe lon-
gitudinal gap with speed and CS
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scale = 5.995]; whereas, normal distribution [mean = 1.284, 
standard deviation = 0.525] provided the best fit for CS.

Estimation of Suitable Copula Model

Constructing a joint distribution model for 3D variables 
(LG, CS, speed) requires good assessment of suitable tri-
variate copula functions in comparison with their observa-
tions. The selection of suitable copula model was performed 
intuitively based on the designated dependence domains and 
the nature of association of the data [42].

Considering the flexibility of multivariate Gaussian cop-
ula in modeling all ranges of dependence structure (−1, 1) 
and the widespread popularity of Archimedean copulas, five 
copula functions namely, Gaussian, Gumbel, Frank, Clay-
ton and Joe are employed in this study. However, since the 
multivariate Archimedean copulas (Frank, Gumbel, Clayton 
and Joe) lack the flexibility of modeling negative depend-
ence structure for higher dimensions (n ≥ 3) , the original CS 
data are transformed to a new variable CS′ , where CS�

=
1

CS
 , 

and subsequently the tri-variate Frank, Gumbel, Clayton and 
Joe copulas are used to fit the LG, speed and the transformed 
centerline separation data. Moreover, the performances of 
tri-variate Gaussian, Frank, Clayton and Joe copulas with/

without the transformed variables are assessed based on log-
likelihood and AIC criterion, and the parameters of each 
copula are estimated using maximum pseudo-likelihood 
method. The dependence parameter value (θ) of each copula 
function along with the log-likelihood (LL) and Akaike’s 
information criterion (AIC) values are listed in Table 4.

The results indicate that tri-variate Gaussian copula 
showed the highest log-likelihood and the lowest AIC val-
ues for LG, CS and speed data, followed by Frank, Clay-
ton, Gumbel and Joe copulas, respectively. On the basis of 
performance measures of the copula functions presented in 
Table 4, it is, thus, adjudged that tri-variate Gaussian copula, 
with logistic distribution for LG and speed, and normal dis-
tribution for CS, could be further investigated to assess the 
level of safety in the following processes of non-lane-based 
traffic environments.

Non‑Exceedance Conditional Probability Distributions

For a particular non-exceedance conditional probability, 
several combinations of the microscopic variables exceed-
ing a certain threshold can be obtained from the developed 
tri-variate Gaussian copula model. Figure 6 shows the non-
exceedance conditional probabilities of safe longitudinal gap 

Table 3   Results of goodness-
of-fit tests

Bold values indicate the best-fitted univariate model

Variables Marginal distributions Log-likelihood AIC Goodness-of-fit measures

K–S CvM A–D

Longitudinal gap Burr − 2916.96 5837.91 0.063 0.591 3.496
Logistic − 2915.74 5837.48 0.054 0.492 2.562
Weibull − 2921.91 5847.82 0.064 0.743 3.873
Gamma − 2949.63 5903.26 0.068 0.779 5.199
Lognormal − 2943.52 5891.05 0.088 1.339 8.339

CS Lognormal − 1022.52 2049.03 0.169 9.429 51.464
Logistic − 774.27 1552.54 0.080 1.816 10.733
Weibull − 754.76 1513.51 0.050 0.493 3.413
Gamma − 867.36 1738.72 0.125 5.332 28.747
Normal − 748.65 1511.05 0.057 0.758 4.347

Speed Skew-t − 4452.11 8908.21 0.482 8.241 40.117
Lognormal − 3773.22 7550.44 0.207 5.607 31.137
Logistic − 3656.51 7317.02 0.148 5.024 26.179
Gamma − 3714.38 7442.76 0.189 4.973 26.667
Normal − 3662.02 7328.04 0.152 4.824 25.133

Table 4   Parameter estimation 
and its associated LL values 
for the transformed tri-variate 
Archimedean copulas and 
Gaussian copula

Gaussian [LG, CS, Speed] Archimedean copulas [LG, CS′ , Speed]

Gumbel Clayton Frank Joe

θ − 0.51, 0.45, − 0.35 1.346 0.459 2.55 1.494
LL − 7084.631 − 8430.171 − 8393.996 − 8361.705 − 8492.915
AIC 14175.262 16862.342 16789.992 16725.41 16987.83
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given both vehicle speeds (VS) and centerline separation 
exceeding certain thresholds.

From the figure, it can be observed that the conditional 
distribution of safe longitudinal gap gradually increases with 
the corresponding conditional factor (vehicle speed) decreas-
ing and also it increases with the increase in centerline sepa-
ration. For instance, the non-exceedance conditional prob-
ability for safe longitudinal gap ℙ(LG ≤ 10m) with speeds 
exceeding 40 kmph in car-following state (CS = 0.1 m) is 
0.23; whereas for large centerline separation (CS = 1.5 m), 
the probability is obtained as 0.42. This increase in prob-
ability is due to the staggered car-following in which the 
drivers tend to follow the leaders more closely maintaining 
larger centerline separation in order to have a clear field of 
view of the forward scenario. Similarly, for a conditional 
probability of 0.85, the safe longitudinal gaps corresponding 
to vehicle speeds exceeding 60 kmph and 80 kmph in car-
following state are obtained as 21.3 m and 24.7 m; whereas 
longitudinal gaps of 17.8 m and 19.3 m are observed for the 
staggered-following scenario, respectively (about 15–20% 
decrease in longitudinal gaps for staggered following). This 
clearly indicates that the decreasing relationship of LG with 
CS holds true for each value of vehicle speed.

The joint probability density distributions of the lon-
gitudinal gap and centerline for vehicle speeds exceeding 
thresholds of 40 kmph, 50 kmph, 60 kmph and 70 kmph are 
represented in Fig. 7.

The bivariate LG–CS plots of Fig. 7 clearly depict a 
reciprocal dependent relationship between the 2D variables 

for each speed level. It can be observed that there is a grad-
ual rightward shift in the LG-axis as speed increases, which 
is quite expected. For example, a majority of the drivers in 
car-following state (say CS = 0) are observed to maintain 
safe longitudinal gaps of 17.5 m, 18.75 m, 22.5 m, 23.75 m 
for speeds exceeding 40 kmph, 50 kmph, 60 kmph and 
70 kmph, respectively; while for any arbitrary CS value (say 
CS = 1 m), the corresponding longitudinal gaps are observed 
as 14.75 m, 16 m, 17.5 m and 20 m, respectively, which jus-
tifies the negative dependent relationship of LG and speed 
with CS and positive degree of association between LG and 
speed. The results of the study, therefore, signify that car-
drivers in staggered-following cases perceive the scenario 
ahead with more confidence and can anticipate the lead 
vehicle’s behavior with better predictability; therefore, they 
usually tend to follow the leading vehicles closely maintain-
ing lower longitudinal gaps and speeds at higher CS levels.

Such information can provide useful insights in the car-
following models, by which the safe ‘distance-keeping’ 
requirements at different speeds and CS values can be 
evaluated, which indeed can help in a better replication and 
representation of actual drivers’ behavior in the following 
processes.

Fig. 6   Conditional probabilities 
ℙ(LG ≤ lg|VS ≥ vs, CS ≥ cs) 
with centreline separation being 
equal to a 0.10 m and b 1.50 m
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Possible Applications of the Current Study

The tri-variate Gaussian copula can provide useful insights 
in the development of car-following models, by which the 
safe ‘distance-keeping’ requirements at different speeds and 
CS values can be evaluated. The widely used safety distance 
car-following models hypothesize that drivers usually try to 
maintain a sufficient distance with the leading vehicles at 
different speeds so as to avoid a collision if the leading vehi-
cle suddenly applies brakes. In such models, the information 
on the safe longitudinal gap thresholds obtained from the 
copulas at different speeds and CSs can be directly utilized 
in the model development which will help in a better repli-
cation and representation of actual drivers’ behavior in the 
microsimulation models.

In addition, the results of the study can also find pos-
sible applications in providing advanced collision warning 

system adaptation databases for the evaluation of conflict 
severities in the car-following process of non-lane-based 
traffic streams. With the advent of driving-assistance sys-
tems, vehicles are now equipped with adaptive cruise control 
(ACC)/collision avoidance systems (CAS) in which the sys-
tem maintains a safe headway to the vehicle in-front accord-
ing to the settings predefined by the users, and also warns 
the drivers of upcoming potential threats and imminent col-
lisions. In particular, for a given probability value, if the 
safe longitudinal gap exceeds the available gap at specified 
CS and speed levels, the warning and intervention systems 
used for detecting safety hazards in the car-following pro-
cesses may be triggered, so that any risks of imminent col-
lisions can be avoided. The work undertaken in this study 
can, therefore, be useful in the development of car-following 
models, advanced driver assistance systems and for safety 

Fig. 7   Joint probability density plots for safe LG and CS with a speed ≥ 40  kmph and b speed ≥ 50  kmph, c speed ≥ 60  kmph and d 
speed ≥ 70 kmph
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evaluation in the car-following process of non-lane-based 
traffic streams.

Conclusions and Future Scope

The major contribution of this study lies in the focus on car-
following data collection and estimation of non-lane-based 
traffic environments. Efforts are being directed to the devel-
opment of an image-based in-vehicle trajectory data collec-
tion system for an estimation of reliable dynamic time-series 
car-following data using camera calibration and in-vehicle 
GPS information. This study not only describes the stringent 
requirements of the data but also provides a copula-based 
methodological framework for the safety evaluation of vehi-
cles in the following processes.

First, the car-following ‘spirals’ indicated that the drivers’ 
adjustments of speeds in the following process occur at all 
levels of centerline separations and the inter-vehicle spac-
ing follows a decreasing trend with the lateral separation 
between the vehicles. Preliminary analysis on longitudinal 
gap (LG), speed and centerline separation (CS) also cor-
roborated a reciprocal dependent relationship between LG 
and CS, speed and CS, and a positive dependent relationship 
between LG and speed, complementing earlier researches in 
mixed traffic. The drivers in car-following state (say CS = 0) 
are observed to maintain safe longitudinal gaps varying from 
17.5 to 23.75 m for speeds exceeding 40–70 kmph, while the 
gaps for 1 m CS are observed in the range of 14.75–20 m 
for the same speeds. Understanding that an estimation of the 
safe longitudinal spacing in the following process can inher-
ently enrich the realism of car-following model development 
and representation of realistic drivers’ behavior, a tri-variate 
copula model was developed considering lower 5% longi-
tudinal gap data for each speed and CS level. Based on the 
performance measures of the copula functions, a tri-variate 
Gaussian model with logistic distribution for LG and speed, 
and normal distribution for CS, was found to assess the level 
of safety in the following processes of non-lane-based traffic 
environments. The conditional and joint probability distribu-
tions further demonstrated the importance of CS in modeling 
the car-following behavior of non-lane-based traffic streams.

The results obtained in this study can find suitable appli-
cations in the car-following model development, advanced 
driver assistance systems and in safety evaluation of non-
lane-based traffic environments as discussed in the “Pos-
sible applications of the current study”. For future scope, 
the results of the study can be extended for other leader–fol-
lower vehicle pairs that are more prevalent in mixed traffic 
streams. Various driver behaviors such as drifting, shying 
away and closing in reactions, changing lateral positions 
and the overtaking behavior can be studied using camera 
calibration methodology. The copula models ensure robust 

representation of obtained datasets thereby informing the 
effect of all explanatory terms in gap-keeping. Also, further 
studies may need to be conducted in diverse cities to capture 
the driving behavior variability.
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