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Abstract
The class of flexible functional forms for the utility and cost function has been char-
acterized by the pioneering work of Gorman (Some Engel curves. In: Deaton A (ed) 
Essays in the theory and measurement of consumer behaviour. Cambridge Univ. 
Press, Cambridge, 1981), known as the Gorman polar form. Despite several dec-
ades have elapsed, the economic literature has not found the most general functional 
form that satisfies Gorman’s theorem. This note provides a new general theoretical 
and parametric formulation of demand functions, labeled general expenditure sys-
tem (GES), satisfying the Gorman requirement that the Engel curve cannot exceed a 
polynomial of third degree in expenditure. Estimates show that the GES is a signifi-
cant generalization of previous popular flexible functions.

Keywords  Integrable demand functions · General expenditure system · Gorman 
polar form

JEL Classification  D01 · D11 · C30

1  Introduction

The theory of demand states the theoretical restrictions for a system of equations, 
which have to be derived from rational consumer behavior. The literature has 
addressed several issues relative to the utility function specification, such as func-
tional flexibility, functional separability and Engel function curvature. In reality, 
these have been largely equivalent ways to define and discuss different mathematical 
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formulations to represent the fundamental problem in economic theory, namely the 
rational choice of the optimal vector of consumption quantities, given the vector of 
prices, the expenditure and the preferences (Barnett and Serletis 2008).

Operationally, there are four equivalent ways to represent consumer choice 
according to duality theory, namely, utility maximization, cost minimization, mini-
mization of the distance function and derivation of demand functions from the indi-
rect utility function (Deaton and Muellbauer 1980; Blackorby et  al. 1978; Chavas 
and Baggio 2010). In this paper, we adopt the last method, assuming that consum-
ers’ preferences can be represented with the indirect utility function and use Roy’s 
identity to derive the Marshallian demand functions.

In this framework, the necessary conditions to parametrize a mathematical func-
tion, consistent with the restrictions of the economic theory, are set in the Gorman’s 
theorem (1961, 1981). This theorem states the so-called Gorman polar form in the 
literature. However, despite several decades have elapsed, the economic literature 
has not found a unified general functional form that satisfies Gorman’s theorem.

The aim of this paper is to propose a new functional form, which is the most gen-
eral formulation of a demand system satisfying the Gorman theorem. We attempt to 
provide such formulation, using the minimal requirement stated by Gorman (1981); 
namely, that the functional form of the system of Engel curves can be a polynomial 
with a coefficient matrix of at most rank three. In other words, the matrix of Engels 
curve coefficients cannot have rank. We provide the mathematical function and we 
estimate a demand system and discuss the results in comparison with previous popu-
lar flexible functions.

The paper proceeds as follows. Section 2 provides a brief review of the literature. 
Section 3 describes the theoretical model. Section 4 provides data and estimation 
results. Section 5 concludes the paper.

2 � Literature review

The literature on the characterization of the demand system for empirical estimation 
is huge. One of the pioneering contributions dates back to the linear expenditure sys-
tem (LES), characterized by Klein and Rubin (1947) and estimated by Stone (1954), 
Pollak and Wales (1969) and others. The LES is characterized by a Cobb–Douglas 
(CD) utility function, which is derived by the introduction of the committed quanti-
ties. From a mathematical point of view, in the LES the Engel curves are homothetic 
but are not forced to pass through the origin, like in the CD case. Clearly, the LES is 
linear in expenditure.

A pioneering nonlinear formulation, the Addilog System, was proposed by Houth-
akker (1960). A more flexible formulation was based on the idea to construct a sec-
ond order Taylor approximation of an unknown function. This originated the popular 
Translog, or transcendental-logarithmic, demand system (TL), estimated by Chris-
tensen et al. (1975). A more flexible form, the generalized translog (GTL), was intro-
duced and estimated by Pollak and Wales (1980). The idea of a second order function 
in expenditure was the inspiration for a different function, which has to be quadratic 
in expenditure. This idea gives rise to the quadratic expenditure system (QES), which 
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has been estimated by Pollak and Wales (1978) and discussed by Howe et al. (1979). 
The prices independent generalized linearity (PIGL) demand system has been proposed 
by Muellbauer (1975), who was among the first to address the definition of a func-
tion allowing the exact aggregation across consumers. Recall that the exact aggrega-
tion entails that the individual demands summation yields a tractable parametric closed 
form of aggregate demand.

Almost at the same time, the idea of starting from all the desirable properties that 
a demand system should possess has motivated the parametrization of the almost 
ideal (AI) demand system, proposed and estimated by Deaton and Muellbauer 
(1980). A generalized version, the generalized almost ideal (GAI), was proposed 
and estimated by Bollino (1987). Another generalization into a Box Cox transfor-
mation of the AI model was proposed by Matsuda (2006). A generalization of TL 
and AI was proposed by Lewbel (1987) and subsequently generalized by Bollino 
(1987) into the generalized almost ideal and translog (GAITL). Banks et al. (1997) 
proposed another generalization of the AI, including a quadratic term of the log of 
income, called quadratic almost ideal demand system (QUAIDS).

From a mathematical point of view, all of these studies share a common 
approach, namely, the use of theoretical restrictions as a maintained hypothesis for 
the construction of a parametric function suitable for empirical estimation. In other 
words, a parametric representation of the demand functions is postulated to charac-
terize the consumer reaction to given price-expenditure situations. The fundamental 
restrictions that a demand system must satisfy are three. First, there is additivity, i.e. 
the sum of expenditures for the desired goods must add up to the total expenditure. 
Second, there is homogeneity of degree zero in price-expenditure space, i.e. an equi-
proportional variation of all prices and expenditures must leave the goods choice 
unchanged. Third, there is symmetry, i.e. the compensated demand elasticity values 
must be symmetric, reflecting the symmetry of the Slutsky matrix.

In the literature, the development of new functional forms has followed three 
main operational approaches to specify the number of independent parameters char-
acterizing a demand system. The first is the approach of flexibility of the utility 
function from which it is possible to derive the systems of demand functions (e.g., 
Diewert 1974; Christensen et al. 1975; Berndt and Khaled 1979; Appelbaum 1979; 
Deaton and Muellbauer 1980). The second approach is the functional separability 
(e.g., Houthakker 1960; Blackorby et al. 1978) which defines boundaries of the con-
sumer choice problem. In this way, it is possible to justify that the consumer choice 
of sugar is related to the choice of coffee, but it is unrelated to the choice of, say, air 
conditioning equipment in the house. The third approach consists in defining how 
expenditure enters the demand equations. This approach leads to the definition of 
the degree of curvature of the Engel curve (e.g., Muellbauer 1975; Lyssiotou 2012; 
Howe et al. 1979; Bollino 1987; Lewbel 1987).

3 � Theoretical model

The theoretical model is the polynomial demand system due to Gorman (1981):
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where hi is the quantity demand for good i (where i = 1,2,…,n), p is a vector of 
prices, m is income, fik and gik are functions of prices and expenditure, respectively. 
The functional form of (1) is a general polynomial sum of K terms in income. The 
Gorman theorem states that if the system (1) is descending from a rational utility 
maximization behavior, then the maximum rank of the matrix of expenditure coef-
ficients is equal to 3 (Russell and Farris 1998). This means that the sum in Eq. (1) 
cannot exceed three independent terms in expenditure (in other words, K in the sum 
is at most K = 3) otherwise there is violation of the integrability conditions (addi-
tivity, homogeneity and symmetry restrictions) as shown in Lewbel (1990). From 
an empirical viewpoint, the rank of the demand system establishes the shape of the 
parametric representation of the Engel curves. For instance, a rank 1 system imposes 
linear Engel curves, a rank 2 system imposes a second order non-linear shape to 
Engel curve. Thus, the rank is a property that allows for different degrees of flex-
ibility of the parametrization of Engel curve used to fit the data. The main advantage 
of a flexible parametrization is that it does not impose a specific functional form. For 
instance, Pendakur and Sperlich (2010) used Canadian household surveys to analyze 
the case of the S-shaped curvature of the expenditure share for private transporta-
tion, with flatter portions at the bottom and top of the sample distribution. For an 
interesting discussion about the empirical measurement of the rank (which is beyond 
the scope of this article), see Gill and Lewbel (1992), Perali (2003) and Menon et al. 
(2018).

There are special cases of Eq. (1) in the literature.

(i)	 the LES is rank 1, i.e. linear in expenditure: 

Notice that the first term is known as the committed quantity, while the second 
term necessarily involves a real price term for each good i. Imposing that the 
committed quantities are zero yields the CD demand system.

	 (ii)	 the PIGL is rank 2: 

 where ρ is a real number (ρ ≠ 1). The terminology PIGL means prices inde-
pendent generalized linearity and it is attributed by Muellbauer (1975) to the 
characteristic of the second income term raised to the power ρ.

	 (iii)	 the AI is rank 2: 

 and it is characterized by logarithmic Engel curves.
	 (iv)	 the QES is rank 3, being quadratic in expenditure: 

(1)
hi(p,m) =

∑

k=(1,K)

f ik(p) gik(m),

(2)hi(p,m) = Ai(p) + Bi(p)m.

(3)hi(p,m) = Bi(p)m + Ci(p)m�,

(4)hi(p,m) = Bi(p)m + Ci(p) log (m),



1075

1 3

Economia Politica (2020) 37:1071–1088	

Howe et  al. (1979) argued that there is no objection in principle to systems 
“locally quadratic in expenditure”, if we confine ourselves to a sub region of all pos-
sible price-expenditure situations. These regions would be spanned by the “commit-
ted quantities” vector, which is generally defined as the minimum subsistence bun-
dle of the household. Moreover, the collinearity of several total expenditure terms 
in demand functions is not a problem more serious than the usual price collinearity, 
provided that suitable parametric restrictions are imposed on the demand functions, 
as it is done in the translog system.

(v)	 the QUAIDS is also rank 3, being a quadratic extension of the AI: 

QUAIDS was proposed by Banks et  al. (1997) and it has the property that the 
Engel curves are quadratic in the logarithm of expenditure. It is immediate to derive 
the AI from (6) as a special case setting Gi(p)= 0.

An effective approach along the line of the Gorman theorem was proposed by 
Lebwel (1987, 1990) and LaFrance et al. (2006), who presented and labeled other 
alternative systems of rank 3, with the third term in expenditure being a monomial 
power, a log or a trigonometric function. Some issues appear unsolved, since in case 
of some systems of demand functions it is not possible to describe explicitly all the 
possible utility functions (Lewbel 1987).

In this article we propose a simpler and more compact way to apply the Gorman 
theorem. We define a new functional form in three terms, labeled general expendi-
ture system (GES):

where Ai, Bi and Ci are functions independent of income. The polyno-
mial representation of Eq.  (1) can be cast as a Taylor–McLaurin expansion, 
hi(p,m) =

∑

n=(1,n) c
i
n
(m − f (p))n , with suitable restrictions to obtain the most gen-

eral formulation of a polynomial in three terms in expenditure, given in Eq.  (7). 
Theorem 1 below shows that the GES represents in a unified way all the existing 
demand functions proposed in the literature, which satisfy the Gorman theorem. 
In this article we do not consider the rank 4 and 5 special constructions of EASI 
demand systems (Lewbel and Pendakur 2009) because they do not strictly satisfy 
the theoretical restrictions of utility maximization problem. The EASI is character-
ized by “implicit Marshallian demands”, whereas the cost function is an affine trans-
formation of the Stone index of deflated log nominal expenditures.

We show a simple general class of functional form for a demand system, which 
is integrable, i.e. a well-behaved utility function that can be recovered from the 
utility maximization problem. In other words, we characterize a general polyno-
mial function of income and show that it obeys the Gorman theorem, which is 
generally used to solve differential equations and recover the underlying utility 

(5)hi(p,m) = Ai(p) + Bi(p)m + Ci(p)m2.

(6)hi(p,m) = Bi(p)m + Ci(p) log (m) + Gi(p)
[

log (m)
]2
.

(7)hi(p,m) = Ai(p) + Bi(p)m + Ci(p)m1+� ,



1076	 Economia Politica (2020) 37:1071–1088

1 3

function from a system of demand functions. A simple way to appreciate this 
point is to recall that not all the empirical demand functions have this property. 
For instance, a linear demand system in price and income is not integrable in a 
utility function (Lau 1976). This motivates the definition of the GES as a gen-
eral demand system derived from a utility maximization problem or, equivalently, 
from the indirect utility function.

We preliminarily state the following results in two Lemmas. Lemma 1 shows 
the properties of a theoretically plausible demand system, which obeys the fol-
lowing properties: adding up, symmetry, homogeneity of degree zero in real 
prices. Lemma 2 establishes under which conditions a translation procedure 
maintains the properties of the demand system. Translation means to introduce 
a new origin of reference for the utility in the good space {z1, z2, zN} so that 
the consumer derives utility from consumption of goods quantities above the 
minimum level (hi–zi). The quantities zi are known in the literature as committed 
quantities, as labeled by Klein and Rubin (1947) in the discussion of LES. This 
clarifies that the LES is a translation of a CD, as CD utility function can be writ-
ten as: U = Σ ai ln(hi) likewise the utility function of the LES can be written as: 
U = Σ ai ln(hi − zi). Analogously, the GAI is a translation of the AI.

The relevance of Lemma 2 for empirical work is that it does not force all 
the Engel curves through the origin. Usually, empirical data do not report zero 
income observations, so that the Engel curve is not observed at the origin, but 
rather at low levels of income where necessary goods are usually prevailing 
and luxury goods may be absent in the consumption allocation. For a necessary 
good, a positive committed quantity implies a positive consumed quantity at 
zero income level. Conversely, for a luxury good, a negative committed quantity 
implies a positive consumed quantity beyond a certain level of income.

In the following, for simplicity of notation we have suppressed the argument of 
the function and use function subscripts to denote partial derivatives of the varia-
ble. So, for instance, given the functions Bi(p) and Ci(p), we use Bi and Ci and we 
denote �Bi(p)∕�pj with Bi

j
and �Ci(p)∕�pj with Ci

j
 , respectively.

Lemma 1  If Eq. (6) is theoretically plausible, then:

Proof  The budget identity yields 
∑

pjh
j =

∑

piA
i(p) +

∑

piB
i(p)m

+
∑

piC
i(p)m1+� which establishes (8), because the budget identity implies that ∑ 

pjhj= m, or that ∑ piCi= 0 ∑ piBi= 1 ∑ pi Ai= 0, while non negativity Ai > 0 and ∑ pi 
Ai= 0 establishes Ai= 0.

(8)
∑

piC
i = 0

∑

piB
i = 1Ai = 0,

(9)Ci
j
+ �BjAi = C

j

i
+ �BiAj,

(10)Bi
j
+ BjBi = B

j

i
+ BiBj.
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Slutsky symmetry condition kij =  kji, where kij = (1 + �)CiCjm2a+1

+

[

Ci
j
+ CjBi + (1 + �)BjAi

]

m1+a +

(

Bi
j
+ BjBi

)

 establishes (9) and (10).

Lemma 2  Translation with committed quantities zi of a theoretically plausible 
system of demand functions hi(p,m) yields the theoretically plausible system h*i 
(p,m)= zi+ hi (p,m*), where m* = m − ∑pjzj.

Proof  Consider the indirect utility function F(p,m). Applying Roy’s identity yields:

A transformation F(p,m)= F(p,m*) yields:

Theorem 1  Any GES of the form (6) can be written as:

with the indirect utility function given by:

where f(p) and g(p) are homogeneous of degree α.

Proof  There exists n functions ki such that (11) can be written as hi (p,m)= ki 
m + Ci(p) m 1+α with α ≠ 0; this implies ki= Bi.

There exists a function g(p) homogeneous of degree α such that: ki= gi/(α g).
Define qi(p, z) = ki(p)z to get ∶ qi

j
+ qjqiz = ki

j
z + kjkiz = z

(

ki
j
+ kjki

)

= z

(

Bi
j
+ BiBj

)

 which is symmetric in virtue of (10). Using (9), we get: ∑ pk gk/a 
g = ∑ pk Bk= 1, proving the homogeneity of g(p): ∑pkgk= a g.

There exists a function f(p) homogeneous of degree a such that: Ci=(fi− f gi/g)/(a 
g2), or:

Define: yi(p,z)= α g2 Ci+ z gi/g, yielding:

hi(p,m) = −Fi(p,m)∕Fm(p,m).

h∗i(p,m) = −
[

Fi(p,m
∗) + Fm∗ (p,m∗) dm∗∕dpi

]

∕Fm∗ (p,m∗) dm∗∕dm

= −dm∗∕dpi−Fi∕Fm∗

= zi + hi(p,m).

(11)hi(p,m) =
[

gi(p) ∕(� g(p))
]

m +
[

1∕
(

� g(p)2
)] {

f i(p)−
[

gi(p)i∕ g(p)
]

f (p)
}

m1+� ,

(12)F(p,m) = − g(p)∕m� − f (p)∕g(p),

fi = �g2Ci + f gi∕g.
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which is symmetric in virtue of (10) and direct inspection of the last two terms.
The f(p) is homogeneous using (9): ∑ pk fk = a g2 ∑ pk Ak+ a f ∑ pk Bk= a f.
The demand system (11) is derived from (12), via Roy’s identity.
The operational parameterization of the GES demand functions (using Lemmas 

1, 2 and Theorem 1 to characterize the integrability properties, in the spirit of Nocke 
and Schutz 2017) yields any non-linear form in expenditure:

for any real value of α, corresponding to the indirect utility function:

where m ∗= (m − g(p));g(p) =
∑

pkak;x(p) = �
∏

pk
�b
k
;w(p) = (1 + �)x(p)2∕

∏

pk
�c
k

 . In Eqs. (13), (14), several restrictions can be applied to obtain many previ-
ously known systems. The restriction α = 1 yields the QES of Eq.  (5), α =− 1 and 
ai = 0–∨ i , yields the QUAIDS of Eq. (6), α =− 1, δ = (1 + α) and ai = 0–∨ i yields 
the AI1 of Eq.  (4), while the restriction α = 0, which trivially implies ci = bi–∨ i , 
yields the LES of Eq.  (2). In addition, the restriction ai = 0–∨ i yields the PIGL, 
which belongs to the class of (3). It is also similar to the model of Lafrance (2008) 
of exactly aggregable demand system.

From an empirical point of view, the GES seems to be a manageable functional 
form since it adds only one parameter to the QES sharing with this latter the character-
istic of being “parsimonious” in the parameters required as the number of commodi-
ties increases. GES contains 3n independent parameters. In comparison, among other 
nonlinear systems, we find that the BTL requires the estimation of (n2 + 3n − 2)/2 inde-
pendent parameters whereas the GTL—a system of the translog family obtained by 
introducing “committed quantities” in the BTL—contains (n2 + 5n − 2)/2 parameters.

In addition, the GES parametrization has committed quantities, like QES, GAI 
and LES. Conversely, CD, AI, PIGL and QAIDS do not have committed quantities.

yi
j
+ yjyiz = a

(

g2Ci
j
+ 2gCigj

)

+ z∕g2
(

gijg− gigj
)

+ a (g2Cj + z gi∕(ag) gi∕g

= a
[

g2Ci
j
+ 2g2aCigi∕(ag)

]

+ ag2Cjgi∕(ag) + zgij∕g

= a g2
[(

Ci
j
+ aCiBj

)

+ a
(

CiBj + CjBi
)

]

+ zgij∕g,

(13)hi(p,m) = ai + m∗∕pi[bi +
(

ci − bi
)

∕�
∏

pk
−�c
k

(m∗�)],

(14)F(p,m) = −x(p)∕m∗�−w(p)∕x(p),

1  Recall that log (m) =
(

m1+�
)

∕(1 + �) for � → −1.
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4 � Data and estimation

We use data on household consumption for 109 countries in the world, aggregated 
in a two-good bundle, the composite good (h1) and the energy services (h2), with 
capital stock constraint, taken from Atalla et  al. (2018). Inclusion of capital stock 
avoids the risk of empirical bias (Deaton and Muellbauer 1981) and takes account of 
the energy services impact (Schaffrin and Reiblin 2015).

We have parametrized the effect of the capital stock as an additional term to 
the demand equations of the form: ki * K, where K is a measure of the capital 
stock and ki are demand specific parameters. This data consists of the aggregate 
household expenditure for the goods and the respective prices for a group of 109 
countries for the period 1978–2012, for a total of 1891 observations, represent-
ing more than 95% of world population. The panel is unbalanced, because data 
periods differ across countries. Atalla et al. (2018) estimated a model of aggre-
gate residential and commercial energy demand using a GAI parametrization. He 
discussed also the non-linear and globally stationary characteristics of the data. 
Table 2 shows the results of the Kapetanios et  al. (2003) non-linear test, which 
detects non-stationarity hypothesis against non-linear but globally stationary 

Table 1   Estimation and tests of model

LogL value of log of likelihood, LR likelihood ratio test (Chi-square), df degrees of freedom of the Chi-
square test

Model estimation Log L values and LR test = 2(logL0 − logL1)

Systems without committed quantities
 CD LogL = − 49,369
 AI LogL = − 46,867

Test of AI vs CD:
LR = (49,369–46,249) × 2 = 6240; df = 2

Systems with committed quantities
 LES LogL = − 39,844

Test of LES vs CD:
LR = (49,369–39,844) × 2 = 19,050; df = 216

 GAI LogL = − 39,719
Test of GAI vs AI:
LR = (46,249–39,719) × 2 = 13,060; df = 216

 QES LogL = − 39,753
Test of QES vs LES
LR = (39,844–39,753) × 2 = 182; df = 2

 GES LogL = − 39,523
Test of GES vs GAI
LR = (39,719–39,523) × 2 = 392; df = 1
Test of GES v QES
LR = (39,753–39,523) × 2 = 460; df = 1
Test of GES vs LES
LR = (39,844–39,523) × 2 = 642; df = 3
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ESTAR (Exponential Smooth Transition Autoregressive) model. According to the 
tests, the demand variables exhibit a stationary but non-linear behavior. This is 
the main motivation for the choice of this data set. We want to apply a general 
functional form allowing non-linear Engel curves and we apply it to data that 
show relevant non-linearity.

The estimation of several functional forms, from the most restrictive to the 
general, CD, LES, AI, GAI, QES and GES, with a non-linear FIML procedure, 
is conducted on the 1891 observations (Table 1). Notice that we focused on sys-
tems with committed quantities and we report only CD and AI for comparison 
with their respective generalizations. All structural parameters are significant 
(Table 2). We do not report the country specific committed quantity parameters. 
The zero restriction on the capital stock parameters is rejected. In the GES, α has 
been estimated with a grid search in the range {− 4, + 4}, obtaining the maximum 
of the likelihood function at α = − 2, with the scale parameter δ = 1.

The estimated systems are nested, in the sense that imposing appropri-
ate restrictions on the parameters (13) yields more restrictive forms (see also 
Lafrance et al. 2006). Below, some examples as follows:

The restriction α = 1 yields the parametrization of the QES:

Imposing α = − 1 and δ = (1 + α) and trivially di= ci = bi–∨ i yields the parametri-
zation of the GAI:

where P* = ∑ wj ln(pj) and wj are the budget shares.
The restriction α = 0, which trivially implies ci = bi = 0–∨ i , yields the para-

metrization of the LES

(15)hi(p,m) = ai + m∗∕pi

[

bi +
(

ci − bi
)

∕�
∏

pk
−ac
k

(m∗)
]

.

(16)hi(p,m) = ai + m∗∕pi

[

bi +
∑

cj ln
(

pj
)

+ dim
∗∕P ∗

]

,

Table 2   Detailed parameter estimates

**Significant at 1%; Rsq refer to equations of good 1 and 2, respectively

CD AI LES GAI QES GES

b1 0.939** 0.472** 0.983** 0.811** 0.953** 0.994**
a1 242,644 − 239,104 265,699 − 249,375
a2 2067** 778** 2084** 2124**
k1 0.911E−04** − 0.641E−04** − 0.234E−04** − 0.467E−05** − 0.134E−04**
k2 0.107E−03** 0.222E−04** 0.199E−04** 0.392E−04** 0.129E−04**
c1 0.0388** 0.0209** 0.8835** 1.14748**
d1 0.0346** 0.012**
a 1 − 3**
δ 0.148E−07** 1**
Rsq Eq. 1 0.989 0.999 0.999 0.999 0.999
Rsq Eq. 2 0.706 0.995 0.997 0.994 0.997
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The log likelihood and the related LR tests (Table  1) show that the GES 
provides a better fit than the GAI, AI, QES, LES, CD, as the LR test rejects 
the restrictions of these latter systems. All parameters are significant. All the 
systems with committed quantities show significant estimations. Precisely, the 
test of GES against QES and against GAI yields LR = 460 and LR = 392 with 1 
degree of freedom, respectively. In addition, the tests of GAI against AI and of 
LES against CD show the significance of the committed quantities. The rejec-
tion of LES suggests the existence of non-linearity. Given that both GAI and 
QES are nested in the parametric form of GES, these tests confirm that GES is a 
significant generalization of previous known systems.

We estimated the sample average income and price elasticities (Table 3). We 
report the estimated quantities (Fig.  1) and the estimated Engel curves for the 
selected functional forms and the countries (Fig. 2).

Note that in the GES, the estimated price elasticity of the composite good (h1) 
is close to unity, while the energy good (h2) is price inelastic, with the absolute 
value lowest for LES and highest for GAI. The values for GES, around to 0.03 is 
consistent with the literature. In addition, the income elasticity of h1 is greater 
than one, in the range 1.25–1.32, while income elasticity of energy is small and 
significantly lower than 1. This is consistent with the negative worldwide trend 
of energy intensity, which has declined by around 1.1% per year. The elasticity 
to capital stock is generally negative for the composite good and positive for the 
energy good, which are plausible values.

Note that the estimations are quite accurate. The world sample actual and the 
estimated values are reported in the top graphs of Fig. 1, along with the pattern 
for emerging (lower income) and developed countries (higher income). Focus-
ing on energy (h2), note that there are some appreciable differences at higher 
income levels between the LES and the other non-linear systems. This is also 
evident for the Engel curves, showing a non-linear pattern for h2 in some coun-
tries (Fig.  2). It is interesting to note that the composite good h1 is a luxury 
for Russia and China. Concerning the energy good there are some differences: 

(17)hi(p,m) = ai + m∗∕pibi.

Table 3   Estimated price and 
income elasticities—sample 
averages

All values are significant at 1%
ELP11 own price elasticity of good h1; ELP2 = own price elasticity 
of good h2, ELY1 income elasticity of good h1, ELY2 income elastic-
ity of good h2, ELK1 capital stock elasticity of good h1, ELK2 capital 
stock elasticity of good h2

ELP11 ELP22 ELY1 ELY2 ELK1 ELK2

LES − 0.980 − 0.014 1.296 0.256 − 0.002 0.006
QES − 0.955 − 0.034 1.257 0.609 − 0.001 0.002
GAI − 0.986 − 0.109 1.318 0.013 − 0.037 0.214
GES − 0.981 − 0.027 1.301 0.010 − 0.007 0.094
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energy is generally a necessary good, except in the case of QES for Germany, 
UK and US. In general, the GES estimated curves represent accurately the Engel 
curve pattern.

A further comparison between the linear and non-linear systems is shown 
in Fig.  3, which presents the ratio of the estimated Engel curves of GES QES 
and GAI to the Engel curves of LES. The horizontal axis is ordered by coun-
try income level. Note that the most appreciable difference from the linear case 
occurs for the lower income countries. In particular, in the case of GES, the 
ratio to LES is slightly above 1 for energy in the middle and in the high-income 
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Fig. 1   Estimated quantities for goods h1 and h2 for the sample and selected groups of countries. h1 and 
h2 = actual values; suffix: les, qes, ges, gai = estimated values of the systems
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levels. The differences are relatively more appreciable at the high income levels, 
as shown in the bottom graph of Fig. 3.

5 � Conclusions

This paper has proposed a new demand system that is the most general formulation 
of the Gorman polar form. We have named this function general expenditure system 
GES.
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The parametrization of GES is a statistically significant generalization of previ-
ously known demand systems of rank 2 and 3, in accordance with Gorman’s defini-
tion, such as the quadratic expenditure system, and the almost ideal demand system.

The empirical relevance of these results is that we find a more flexible functional 
form to fit non-linear Engel curve behavior, which is crucial in assessing the differ-
ent responses to income for consumers with different income levels. We find that 
the most appreciable differences from the linear case occurs for the lower income 

0

500000

1000000

1500000

2000000

500000 1000000 1500000 2000000 2500000

UK good h1

H1LES H1QES H1GES H1GAI

0

10000

20000

30000

40000

500000 1000000 1500000 2000000 2500000

UK good  h2

H2LES H2QES H2GES H2GAI

0

5000000

10000000

15000000

500000 5500000 10500000 15500000

US good h1

H1LES H1QES H1GES H1GAI

0

50000

100000

150000

200000

250000

500000 5500000 10500000 15500000

US good h2

H2LES H2QES H2GES H2GAI

Fig. 2   (continued)



1086	 Economia Politica (2020) 37:1071–1088

1 3

countries. This is relevant for a policy making perspective, because it shows that, if 
income effects are non-linear, the use of linear Engel curves could bias the estimated 
welfare. As an example, consider a tax on energy or a poverty support program. A 
linear Engel curve tends to result in overestimation of welfare loss for low-income 
consumers on the other hand in underestimation of welfare loss for high-income 
consumers. Hence, the new flexible GES is proved to be a relevant tool for the anal-
ysis and provides a more accurate empirical basis for policy-making.
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