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Abstract

Purpose Corneal diseases are the fourth reason for blindness around the world which can be treated with corneal transplanta-
tion as a gold standard approach. However, alternative strategies get more valuable to peruse due to the challenges of donor
shortage and failing the corneal transplantation procedure. This study aims to find the trend of biological products introduced
to the market for corneal regeneration.

Methods Biological products introduced by different companies were evaluated in this review. The available and under-
evaluation products introduced to market are reported in this review. This search was done by keywords related to corneal/
product, corneal/biological scaffold, corneal/biological product, corneal/allograft, corneal/xenograft, eye drops, biological
eye drops, and amniotic membrane/cornea.

Results Decellularized products of xenogeneic or allogeneic cornea and amniotic membrane matrixes were mostly employed
as corneal scaffold. In addition, biological eye drops, gels, and (platelet-rich plasma) PRP are used in several reports as
bioactive ingredients.

Conclusion Herein, the most important issue about biological products that researchers are involved in is preserving the most
active ingredients after decellularization or extraction process with minimum modification along with reasonable final cost.
Lay Summary Although at first glance cornea appears as simple avascular collagenous tissue, corneal diseases are the fourth
leading cause of blindness according to the WHO reports. Currently, corneal transplantation has been chosen as a gold
standard treatment. In recent years, the rising growth of smart biomaterials can be considered as a turning point in modern
medicine by using smart scaffolds, a hydrogel with self-healing properties that could be potentially loaded with a drug,
autologous cells, or stem cells. Here, we review available and under evaluation products introduced to the market to some
extent overcome the cornea transplantation side effects.
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Introduction

The transparent and avascular cornea is the anterior segment
of the ocular with a thickness of about 575 pm. The cornea
is formed in three layers (see Fig. 1); the outer layer is the
non-keratinized epithelium that covers the middle layer of
stromal connective tissue, and the innermost layer is a cuboi-
dal endothelium. Bowman’s layer and Descemet’s mem-
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Fig.1 Corneal structure

stroma leads to permanent opaque scars [4]. About 80-90%
of corneal structure belongs to the stromal layer with 500 pm
thickness with keratocytes entrapped within aligned collagen
fibers [3]. Stromal layers of the cornea disable to regenerate
extensive damage into these layers and lead to scar formation
which disturbs the hydration of the cornea followed by loss

of transparency [3]. One layer of endothelial cells covers the
innermost layer of the cornea which pumps out excess fluid
diffused by the anterior cornea to avoid the opacity of the
cornea; this layer of cornea is unable to repair any damage
[3, 4]. The functionality of each layer can be affected by
different disorders that are mentioned in Table 1 [1, 5-8].

According to the World Health Organization (WHO), the
fourth leading cause of blindness is due to corneal diseases
[4, 9]. The most important function of the cornea is due to
its radian and perfect transparency for light transmission into
the eye which is related to the specific structure of collagen-
ous fibers and the avascular character of the cornea that can
be impressed by burn, infection, and trauma [10]. In com-
parison to other causes of blindness, younger populations
are more affected by corneal blindness which is associated
with increasing years of disability [11].

Corneal blindness is considered a reversible blindness
disease with cornea transplantation [12]. In spite of progress
toward corneal transplantation, the rate of undergoing sur-
gery for treatable cases is about one out of seventy people
which can be affected by different factors like social, eco-
nomic, and political factors [11].

The first corneal transplantation was performed by Zirm
in 1905 with full-thickness corneal transplantation (pen-
etrating keratoplasty (PK)) which gradually progresses into
partial corneal transplantation for selected diseased layers

Table 1 Disorders related to

c Diseased layer
different corneal layers

Disorders

Corneal epithelial defects

Stromal defects

Corneal endothelial defects

- Limbal stem cell deficiency (LSCD): congenital aplasia of stem
cells, Stevens—Johnson syndrome, and ocular cicatricial pemphigoid

- Chemical or thermal burn, mechanical trauma, overuse of contact
lens, lagophthalmos, foreign body intrusion

- Neurotrophic injuries such as severe dry eye, keratitis, nerve dam-
age, diabetes mellitus

- Inflammation such as peripheral ulcerative keratitis, autoimmune
diseases, infectious keratitis, rheumatoid arthritis, graft-versus-host
disease

- Systemic or genetic disorders such as dystrophies, Sjogren’s syn-
drome, thyroid eye diseases, and ectodermal dysplasia caused by
P63 mutations.

- Infection

- Inflammation

- Keratoconus

- Neurodegeneration
- Neovascularization
- Corneal dystrophies

- Endothelial dysfunction caused by penetrating or blunt trauma

- Corneal decompensation: Fuchs’ endothelial corneal dystrophy
(FECD), aphakic or pseudophakic bullous keratopathy (ABK/PBK),
posterior polymorphous corneal dystrophy (PPCD)

- Congenital hereditary endothelial dystrophy (CHED)

- Iridocorneal endothelial (ICE) syndrome

- Refractory glaucoma

- Previous failed corneal grafts

- Herpes simplex virus endotheliitis.
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Fig. 2 Biological products in market to regenerate cornea

referred to as partial lamellar corneal surgery [12] which
is associated with anterior lamellar keratoplasty (SALK!,
ALTK?, and DALK?) and posterior lamellar keratoplasty
(DSAEK* and DMEK?®) [12, 13] with relatively similar out-
comes to PK about the complications of pseudophakic bul-
lous keratopathy (PBK), inflammation, and vascularization
[13]. In spite of rather satisfying results for these procedures
to overcome corneal blindness, there are some noticeable
challenges to consider; the shortage of corneas to graft, graft
failure, corneal infection, wound dehiscence, and the need
for specialized centers to perform this procedure [13-15].

Applying keratoprosthesis is another strategy for corneal
diseases that its primary studies began by Doane et al. in
1996 [16]. The artificial cornea was introduced to overcome
the shortage of cornea donors and its related complications;
however, these constructs are not able to integrate into native
tissue and stimulate the biological function of corneal epi-
thelial [2]. In spite of progresses in keratoprosthesis’s engi-
neering, a half-life of 3 years was reported for Boston kera-
toprosthesis [13]; also, complications were reported such
as retroprosthetic membrane formation, glaucoma, corneal
melting, infectious keratitis, scleritis, suprachoroidal hem-
orrhages, retinal detachment, endophthalmitis, vitritis, and
choroidal effusions and hypotony [17].

Due to the challenges that are ahead for current strategies
to restore vision, biological scaffolds have emerged as the
decellularized cornea, decellularized amniotic membrane,
collagen, umbilical cord, and biological eye drops which are
discussed in this review with a glimpse of products.

! Superficial anterior lamellar keratoplasty

2 Automated lamellar therapeutic keratoplasty
3 Deep anterior lamellar keratoplasty
Descemet’s stripping automated endothelial keratoplasty

Descemet’s membrane endothelial keratoplasty
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Materials and Methods

This study provided an overview of the commercially
available biological products; however, the cell therapy
approaches are excluded from this study as it has been dis-
cussed by previous studies [18-20]. This search was done
by keywords related to corneal/product, corneal/biological
scaffold, corneal/biological product, corneal/allograft, cor-
neal/xenograft, eye drops, biological eye drops, and amniotic
membrane/cornea. In this regard, any biological product for
cornea which presented as a commercial product is reported
in this review. Though, most of the reported products are
not FDA-approved and have entered into clinical trials or
product markets with desired preclinical results.

Result and Discussion

The quest was performed for commercially available bio-
logical products including scaffolds and small molecules for
corneal regeneration, except cell-based therapies. Commer-
cially available corneal scaffolds with biological origin are
categorized into, allogeneic amniotic membrane, allograft
cornea, xenograft cornea, collagen-based matrix, and umbil-
ical cord matrix (Fig. 2) which are discussed in this review
(Table 2). In addition, small molecules are presented as bio-
logical eye drops and are mostly derived from autologous or
allogeneic serum, umbilical cord blood serum, platelet-rich
plasma, amniotic extract, amniotic fluid extract, and sodium
hyaluronate.

Amniotic Membrane

Reconstructing the ocular surface by human amniotic mem-
brane (HAM) in symblepharon was the first usage of HAM
in ophthalmology. Since that, the application of HAM
has been increasing for corneal reconstruction in differ-
ent situations like limbal stem cell deficiency, conjunctival
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reconstruction, glaucoma surgeries, ex vivo expansion of
limbal stem cells, and sclera melt and perforation [21].

The semi-transparent HAM with a thickness of 0.02-0.05
mm is the innermost layer of the placenta which is consisted
of three layers; epithelium, basement membrane, and an
avascular stroma. The epithelial cells of HAM are responsi-
ble for the homeostasis of amniotic fluid along with secre-
tory activity. The permeability of HAM to water and soluble
compounds is an important characteristic of this membrane.
In addition, secretion of different growth factors, cytokines,
and vasoactive peptides (EGF®, bFGF’, HGF®, KGF’, TGF'?
a, TGF b-1, b-2, and b-3 isoforms, IL-6, IL-8, amniotic IFN-
C) makes it an interesting bioactive membrane for its anti-
inflammatory, anti-angiogenic, and anti-microbial effects
along with promoting epithelialization. Also, HAM is not
an immunogenic structure that makes it a proper transparent
graft to be transplanted without irritating the immune system
to heal corneal wounds while retaining the physiologically
moist environment. Following these facts, HAM presented
as a suitable substrate for epithelial cells to growth, migra-
tion, and adhesion [21-23]. In addition to growth factors
and cytokines, other special matrix components in HAM are
high molecular weight hyaluronic acid (HA), heavy chain-
HA complex, and Pentraxin 3 in a complex (HC-HA/PTX3)
that are responsible for the therapeutic effects of HAM. Lim-
bal epithelial stem cells can be expanded ex vivo by main-
taining stem cell quiescence in the presence of the complex
of HC-HA/PTX3, proving the potential of this complex
to reconstruct the limbal stem cell niche [24, 25]. In addi-
tion, the anti-inflammatory and anti-scaring properties of
HC-HA/PTX3 were proven for ophthalmology applications
[26]. Taking the mentioned advantage of HAM, different
commercially available HAMs are presented to be used for
ocular surface diseases [27-30]. In addition, HAM is intro-
duced as a suitable substrate for in vitro and ex vivo expan-
sion of corneal epithelial cells or a cell vehicle for cultivated
limbal stem cells to be transplanted [31-33]. AmnioGraft®
is a cryopreserved amniotic membrane presented by BioTis-
sue, Inc. to promote the healing process in corneal ulcers,
dry eye, pterygium, chemical burns, excision of tumors, and
Stevens—Johnson syndrome [34]. PROKERA® is a biologic
cornea bandage that is another cryopreserved product by
BioTissue, Inc., based on HAM to reduce inflammation and
scar formation during the healing of the damaged cornea
[35].

% Epithelial growth factor

7 Basic fibroblast growth factor
8 Hepatocyte growth factor

® Keratinocyte growth factor

19 Tumor growth factors

BioTissue, Inc. company uses the Cryo Tek technology
besides the Steri Tek® preservation technique to bring FDA-
approved products of decellularized HAM into the market
[36]. However, other processing techniques were introduced
by other companies to dehydrate HAM like the PURION
Process presented by IOP Ophthalmics, Inc. which prepares
the AmbioDisK as a dehydrated and acellular HAM graft
[37]. The Tereo® process is another patented process to
prepare a dried HAM which is presented by NuVision for
products of Omnigen/OmniLenz [38]. Preservation of the
biomedical properties of HAM with minimum damage to
its structure is the most important issue to consider. It is
reported by Cooke et al. [86] that the technology of CRY-
OTEK® (cryopreservation technology) can preserve the
HC-HA/PTX3 as an important biofunctional component that
retains the proper functionality of HAM and human umbili-
cal cord (HUC), instead of the dehydration preservation
method [34]. However, the dried form of HAM has advan-
tages too; a dried HAM can be stored at room temperature
for 2-5 years in free-standing status, but a cryopreserved
HAM must be stored at —80°C while attached to a nitro-
cellulose paper [39]. Though, a recent study by Mao et al.
[36] reported the superiority of decellularized dried HAM
(Biovance®3L Ocular (Celularity, Florham Park, NJ)) in
comparison to dried HAM (AMBIO2® (Katena, Parsippany,
NJ)) and cryopreserved HAM (AmnioGraft® (BioTissue,
Miami, FL)) in in vitro evaluation for human corneal epithe-
lial cell (HCEC) activity. Different eye banks such as Veneto
Eye Bank and Barcelona Tissue Bank provide HAM to graft
damaged cornea, however not under a specific trade name.

Allogeneic and Xenogeneic Cornea

Corneal transplantation has been a promising technique for
years to restore one’s vision, though the risk of failure of
transplantation due to immunogenic responses is a concern.
In a healthy condition, the risk of immunological rejection
for transplanted cornea decreases due to the avascular nature
of the cornea and the ocular immune privilege; however, a
damaged environment is susceptible to rejecting the trans-
planted allogeneic cornea due to inflammation and infec-
tion [40]. Different decellularization methods have been
proposed by various studies to decrease the rejection rate of
the transplanted allogeneic or xenogeneic cornea, which is
more important in the case of xenogeneic tissues. However,
it is important to preserve the native structure and biologi-
cal factors during any manipulation. Reported strategies for
decellularized xenogeneic cornea can be divided into 3 cat-
egories: (1) physical methods (high hydrostatic pressure,
N2 gas, freeze-thaw, supercritical CO2, electrophoresis),
(2) chemical agents (sodium dodecyl sulfate (SDS), Triton
X-100, sodium deoxycholate, hypertonic saline, peracetic
acid, formic acid, glycerol with chemical cross-linking),

@ Springer



182

Regenerative Engineering and Translational Medicine (2024) 10:172-188

Reported strategies to decellularize xenogenic cornea

/
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The decellularization agents for human cornea
— Phospholipase A2
— Hypertonic NaCl
— sodium dodecylsulfate (SDS)
—Triton X-100
—Trypsin-EDTA
— Sodium deoxycholate
— Liquid nitrogen
— Poly(ethylene glycol)
— Nuclease

Fig. 3 Different decellularization methods to remove allogeneic or xenogeneic cell components from cornea

(3) biological agents (phospholipase A2, trypsin, dispase,
human serum, nucleases) [41, 42]. The decellularization
methods for human cornea that were evaluated with different
studies are hypertonic NaCl, sodium dodecylsulfate (SDS),
Triton X-100 [43—46], trypsin-EDTA [45], sodium deoxy-
cholate [40], liquid nitrogen [43], poly(ethylene glycol) [43],
and nuclease [46].

In a comparison study by Huh et al. [45], the superior-
ity of hypotonic trypsin-EDTA to SDS proved for complete
decellularization and preserved recellularization of human
corneal lenticule. In addition, it is reported by Shafiq et al.
[43] that the NaCl decellularized cornea lenticule can sup-
port the growth of both epithelial and fibroblast cells, in
comparison to SDS-treated cornea that can support the
growth of fibroblasts [43, 46]. In a study by Mertsch, sodium
deoxycholate monohydrate (NaDC) solution followed by
DNase was used for decellularization of the corneal cell
sheet derived from human corneal fibroblasts. This decel-
lularized corneal sheet had the property to be implanted into
the cornea as a substrate [47].

Different studies compared these methods toward inves-
tigation for a proper decellularization method that can con-
serve transparency and microstructure of decellularized
cornea along with the complete removal of cells (Fig. 3).
These methods are mostly based on using chemical agents
that might damage the extracellular matrix (ECM) and their

@ Springer

residuals are toxic. The technology of supercritical carbon
dioxide (scCO,) extraction is presented as a great alternative
method that can remove cells without toxicity and damage
to ECM [48].

Currently, some allogeneic or xenogeneic decellular-
ized corneas are qualified to be commercially available. In
ACRO Biomedical Inc., the scCO, technology is used to
decellularize porcine cornea to prepare ABCcolla® collagen
ophthalmic matrix. This corneal scaffold is prepared in dif-
ferent thicknesses (20pm, S0pm, 80 pm) to be useable for
different corneal transplantation techniques. Also, this com-
pany provided decellularized corneal powder for bioprinting
applications for 3D structured cornea [49].

ACORNEA® (AcuHerb Marketing International Cor-
poration (AMIC)) is another decellularized porcine cornea
that is presented by AMIC ACUHERB Inc.; this product
is recommended for cornea ulceration without perfora-
tion and replacement of the impaired tissue of Bowman’s
membrane. Trends toward using allograft cornea instead
of xenograft led to the emergence of OptiGraft® cornea
by Lions Eye Institute. OptiGraft® (Lions Eye Institute
for Transplant and Research’s (LEITR)) is a sterile gamma
irradiated cornea with a decreased rate of immunological
rejection and a long shelf life of up to 2 years. The Cor-
neaGen company introduced another cryogenically treated
allogeneic cornea with gamma irradiation sterilization
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(VisionGraft) as a substitute for corneal surgery [50].
Mostly, eye banks and institutes introduced acellular allo-
geneic cornea for corneal transplantation and related sur-
geries which are not represented as commercially available
products.

Collagen

The most abundant structural protein in the cornea is col-
lagen type I; however, other types of collagen are present in
fewer amounts. About 70% of the weight in the dry cornea
is collagen, because of this fact, collagen is one of the most
important choices to be used in corneal tissue engineering.
Different studies evaluated different kinds of collagen-based
scaffolds. However, there are some challenges ahead for col-
lagenous scaffolds for the cornea as poor mechanical prop-
erties and the absence of native fibril structure of corneal
stromal, considering the fact that the specific organization
of fibrils has a crucial rule in transparency [51].

Previous studies evaluated the efficiency and safety of the
human recombinant collagen type III (FibroGen, Inc., San
Francisco, USA) for cornea stromal reconstruction [52, 53].
These recombinant collagenous scaffolds are not suscepti-
ble to rejection by the immune system and also are safe for
disease transmission which is a concern in allografts and
xenografts [52, 54, 55]. However, this product is not widely
used for cornea stromal reconstruction.

Other sources of collagen which have been used for cor-
neal scaffolds are the porcine cornea and fish scale which
have commercially available products. The Ologen® bio-
cornea [56] is a corneal patch based on collagen type I
derived from a fish scale that is presented to patch tempo-
rarily the perforated cornea for hours to days till a proper
donor cornea can be transplanted [57]. Ologen® collagen
matrix and implants are derived from the porcine cornea
and are presented for different ophthalmic surgeries [58—62].
Xenia® is another collagen-based matrix derived from the
porcine cornea that is introduced for keratoconus; this prod-
uct can be transplanted into the cornea instead of custom-
ary cornea transplantation. The Xenia can be prepared for
individual patient, as a custom-made device with a rationally
simple procedure to implant [63].

Umbilical Cord

The therapeutic effects of human umbilical cord (HUC)
blood for cancer and other hematopoietic disorders were
proven by different studies and this biologic product
is approved by the US Food and Drug Administration
(FDA) for lymphomas, leukemia, sickle cell disease,
and Wiskott—Aldrich syndrome. However, the biological
application of HUC tissue was evaluated later. Similar to

HAM, the HUC contains growth factors and cytokines
that can promote the proliferation and differentiation of
cells along with tissue regeneration and growth [64]. It
was the first time in the 1970s that Irving and Herbert
used the segments of HUC for skin grafts, science that
other studies emerged to introduce other applications of
this biocompatible structure for vascular lesion repair,
gastroschisis, spina bifida defects, and wound repair [64].
In the case of ophthalmologic surgeries, the efficiency
of the HAM-HUC patch was evaluated in reducing the
glaucoma shunt tube exposure and showed the properties
of low immunogenicity, and high tensile strength with
good integration of host-tissue [65].

The AmnioGuard® (BioTissue, Inc.) is an umbilical
cord—derived graft that is presented for different ocular sur-
geries. The high tensile strength and thickness of the Ami-
noGuard® make it easy to handle and suture-able for the
reconstruction of the cornea, conjunctiva, socket, sclera,
and eyelid [66]. The CRYOTEK® cryopreservation tech-
nology is used to prepare the AminoGuard® with preserved
properties to reduce inflammation and scar formation along
with promoting regenerative healing. Another HUC prod-
uct is a topical gel, eye drop form of AMUC that is pre-
sented by BioTissue/Tissue Tech Inc. with the trade name
of Regenesol™, this product should be administrated twice
a day for patients with dry eye and after phototherapeutic
keratectomy (PTK), EPI-off cross-linking, and photorefrac-
tive keratectomy (PRK) [23, 67].

Biological Eye Drops

The crucial rule of growth factors in corneal epithelial
regeneration is proven in different studies [68]. Biological
eye drops that are rich in growth factors and cytokines from
autologous serum [69], allogeneic serum [70], amniotic
membrane extract [71], amnion fluid [23], umbilical cord
[72], and finger-prick autologous blood [73] can promote
corneal regeneration.

The similarity of components in blood serum to natural
tears led to the production of serum eye drops for corneal
regeneration. The presence of EGF, TGF-p, fibronectin, and
vitamin A in serum eye drops promotes corneal regenera-
tion [69]. Rehabilitation of the corneal epithelium occurred
via applying the autologous serum eye drop (ASED) to
the limbal stem cell deficiency patients [74—76]. In addi-
tion to promoting the healing process of corneal epithelial
after ocular surgeries [77] and epithelium-off cross-linking
[78], the efficiency of ASED is proven with various studies
for different ocular surface diseases like graft-versus-host
disease (GVHD), dry eye, keratoconjunctivitis, Sjogren’s
disease [75].

Human platelet derivatives such as platelet-rich plasma
(PRP) eye drops, platelet gels, and human platelet lysate are
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rich in growth factors (PDGF“, TGF, EGF, bFGF, IGF-I,
HGF, NGF, VEGF'?) to regenerate the damaged limbal niche
[79]. Other bioactive factors for corneal niche reconstruction
are based on umbilical cord serum and HAM derivatives.
In the case of umbilical cord serum eye drops, substance
P, EGF, NGF, and TGF-p are responsible for regenerative
effects on the corneal epithelium [72, 80]. Amniotic mem-
brane extracts eye drops are prepared by homogenizing the
AM and centrifugation for gathering the supernatant that is
full of growth factors [89].

OptiSerum by Next Biosciences is an eye drop derived
from umbilical cord blood serum that is rich in growth fac-
tors, proteins, and neurotrophic factors to promote corneal
healing. The preparation method for OptiSerum is centrifug-
ing the clotted cord blood to separate cellular fractions of
serum fraction.

There are different strategies to prepare the HAM eye
drops. One of these methods is given step by step as follows:
(1) washing the AM (normal saline containing penicillin and
streptomycin), (2) using a scalpel blade for chopping into
small pieces, (3) submerging in liquid nitrogen, (4) homog-
enization and centrifugation, (5) collection of the superna-
tant, (6) centrifugation, (7) sterilizing using a 0.25 mm filter.
In other methods, the cryopreserved or dehydrated HAM
can be pulverized, micronized, or morselized to prepare the
proper HAM extraction as an eye drop. The importance of
different processing methods is due to the different amounts
of remaining bioactive components in the final products
[23]. Another desired biofunction component in eye drops is
hyaluronic acid (sodium hyaluronate) which can promote the
healing process of corneal wounds by improving cell migra-
tion of corneal epithelial cells [81, 82]. Tisseel and Tissucol
are two tissue adhesive agents introduced for corneal ulcers
to improve healing [83].

Discussion and Conclusion

The scarcity of donor cornea for corneal transplantation as a
global issue causes the development of alternative approaches
to donor cornea. Regarding the important role of special fea-
tures in collagen fibers with hexagonal space lattice ultrastruc-
ture for presenting the unique optical and mechanical properties
of the stromal cornea, most studies rely on allograft or xeno-
graft corneal substitutes. However, these biological scaffolds
must be modified toward a proper construct for corneal trans-
plantation to carry the properties of the natural cornea. The
main purpose of product processing is to reduce potential risks
along with increasing the biofunctionality, biocompatibility,

! Platelet-derived growth factor

12 Vascular endothelial growth factor
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and biomechanical characteristics. Different decellulariza-
tion methods are applied to the allogeneic cornea to reduce
immune rejection, while the proper method must protect the
natural ECM components and architecture of the cornea. The
importance of decellularization is more concerned in the case
of xenogeneic corneal grafts [48, 49, 84]. In addition, cross-
linking was introduced to improve the mechanical and func-
tional behavior of a decellularized cornea [85]. In the case of
HAM, a proper decellularization method along with a preserva-
tion method is crucial to protect the functionality of biofunc-
tional components of HAM [86]. Collagen scaffolds are other
introduced alternatives for cornea transplantation. Although
fish and porcine collagen are used for commercially available
corneal implants, recombinant human collagen can be consid-
ered to be a less immunogenic source of biomaterials for cor-
neal implants [52, 53, 56, 61, 87]. Though, the trend of recent
preclinical studies can bring insight into the development of
natural hydrogels as a corneal substitute, especially hydrogels
composed of corneal ECM [88, 89]. Developing bioadhesive
hydrogels which can be photo-cross-link to fulfill a defect of
cornea is another research near to clinic, known as the suture-
less approach, in preclinical research reported as GelCore
with satisfying results in rabbit corneal defect [90]. Another
promising preclinical study for corneal reconstruction is based
on a 3D fiber hydrogel construct. Synthetic polymers of poly
(e-caprolactone)-poly (ethylene glycol) microfibrous are used
to mimic the topological structure of the cornea and improve
the mechanical properties of gelatin methacrylate (GelMA)
hydrogel [91]. Besides a proper scaffold, the rehabilitation of
damaged cornea can be achieved via eye drops and gels with
regenerative biomolecules. However, most of these products
are encountered high production costs and accessibility to good
tissue practice (GTP) or good manufacturing practice (GMP)
facilities, which are the main limitations of these products; in
this regard, a novel intervention by the use of finger-prick autol-
ogous blood (FAB) as an accessible alternative for corneal sur-
face diseases is introduced recently [73, 92, 93]. The safety and
effectiveness of FAB were proved for severe dry eye disease
[73, 92], and the same results were reported by other studies
for persistent epithelial defect [93, 94], though, this approach is
not categorized as a commercially available product. In spite of
introducing several approaches for corneal substitutes, mimick-
ing the specific ultrastructure of corneal stroma or conserving
this structure during processing steps is still a crucial concern.

Future Perspective

According to the rising growth of promising results reported
in stem cell therapy, smart biomaterials, and artificial intel-
ligence, the integration of these emerging technologies
with conventional treatments in corneal disease seems to
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be inevitable. Although at first glance the cornea appears
as simple avascular collagenous tissue, the improvement
of these limited biomaterials introduced to the market has
evoked great expectations due to the lack of long-time func-
tionality or failure transplantation. Stem cell therapies have
become a very promising and advanced scientific research
topic. A wide variety of possibilities makes this cutting-edge
a turning point in modern medicine, such as using smart
scaffolds with self-healing properties loaded with autolo-
gous cells or stem cells. The role of synthetic biomaterials
especially hydrogels with enhanced functional and compat-
ible properties for the improvement of the biological prod-
ucts market also seems to be neglected. Thereupon, a pos-
sible snapshot of future commercially available products to
overcome the cornea transplantation side effects could be a
graft containing a combination of biomimetic synthetic and
natural polymers that at least act as transparent mechanical
and structural support and cell, drug, and protein carriers.
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