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Abstract
Purpose Researchers have actively investigated different treatment strategies to heal bone diseases and injuries. Small 
molecule–based compounds enhancing osteogenesis have been adapted as one of the promising approaches to treat vari-
ous bone disorders. Recent studies have been demonstrated several small molecule–based compounds were able to induce 
long-lasting osteogenic effects (i.e., up to 21 days) following a relatively short 24-h exposure. For instance, previous work 
from our group revealed that 24-h forskolin exposure induced in vitro osteoblastic differentiation of adipose-derived stem 
cells (ADSCs) and bone marrow–derived stem cells (BMSCs). However, the molecular link underlying the aforementioned 
studies has not been described.
Methods Osteoprogenitor MC3T3-E1 cells were used to study the molecular mechanisms by which the short intervention 
of forskolin could lead to long-lasting osteogenesis.
Results We report here the observed effects were associated with upregulation of phosphorylated cAMP-response element 
binding protein (pCREB) and β-catenin. We also found a number of osteogenic genes were upregulated via PKA-dependent 
and PKA-independent pathways. We also discovered that the 24-h forskolin treatment scheme could induce osteoprogenitor 
MC3T3-E1 cells to endogenously produce their own osteogenic and angiogenic growth factors such as insulin-like growth 
factor 1 (IGF-1) and vascular endothelial growth factor (VEGF).
Conclusion We propose that an early specific signal mechanism (i.e., cAMP signaling in this study) is important for triggering 
a bone-regenerating program. In addition, the small molecule forskolin may be capable of inducing cell differentiation towards 
osteogenic lineage utilizing growth factor–based inductive paracrine and autocrine loops. Thus, these two mechanisms may 
contribute to the aforementioned observation of the short-term forskolin–mediated bone regeneration.
Lay Summary Small molecule–based therapeutics have emerged as an alternative to traditional growth factor treatments 
such as recombinant human bone morphogenetic proteins (rhBMPs). In order to reduce the side effects of these treatments, 
researchers have evaluated approaches focusing on reducing the dosage and frequency of administration. This study describes 
the underlying behavior of this small molecule treatment approach in promoting bone formation within cells.
Future Work Future studies will focus on investigating the instructive set of signals (e.g., using RNA-seq or DNA micro-
array) that specifically trigger of MSCs upon short-term treatment of forskolin.
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Introduction

Bone fractures can affect people at all ages, often too severe 
to heal by itself [1, 2]. A few protein-based therapeutics are 
currently used to treat bone injuries and disorders; however, 
these approaches are often associated with many undesirable 

side effects [3–5]. Small molecule–based bone regenerative 
engineering has been proposed as a promising strategy to 
repair various musculoskeletal tissues [6–8]. Advanced 
materials coupled with small molecule technologies, stem 
cell sciences, and controlled drug-delivery approaches can 
be utilized to facilitate bone regeneration [9]. However, large 
dosages and prolonged administration of small molecules 
can result in undesired adverse effects [10]. A new concept 
has been postulated, in which a short-term treatment (i.e., 
less than 24 h of exposure) of cells with osteogenic small 
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molecules was recently envisioned [11]. The findings sug-
gest that early, targeted interventions may overcome the 
need for ongoing therapies. Recent work has demonstrated 
the capability of regenerating an amputated adult African 
clawed frog hind limb using a five-small molecule drug 
cocktail after just 24 h of exposure [12]. This short-term 
treatment scheme enhanced the endogenous regenerative 
capability of the frogs over an 18-month time period, result-
ing in the regrowth of a functional limb.

Activation of the cyclic AMP pathway with various 
cyclic AMP (cAMP) analogues or cAMP stimulators has 
been shown to enhance osteogenic differentiation both 
in vitro and in vivo [13, 14]. However, the major limitation 
of using these compounds is their potential cytotoxicity, as 
well as inhibitory effect, on the proliferation of stem cells 
[15]. Thus, there is a strong need to identify an improved 
approach that can augment bone-healing efficacy while min-
imizing the adverse effects and costs. Previous studies from 
our group have investigated whether fine-tuning the timing 
of cAMP signaling activation could enhance bone formation 
with minimal cytotoxicity effects in cells [16–18]. Interest-
ingly, recent studies revealed that the exposure of forskolin, 
an inducer of intracellular cAMP, for 1 day promoted a long-
lasting osteogenic effect on rabbit MSCs in vitro [19]. It is 
known that forskolin increases the intracellular concentra-
tion of cAMP by activating the enzyme, adenylate cyclase 
[20]. Forskolin has also been used an herbal supplement as 
a natural remedy for treatment in obesity, cancer, glaucoma, 
asthma, and allergies [21, 22]. However, the underlying 
mechanisms responsible for the aforementioned observa-
tions towards osteogenic differentiation remain unclear. In 
this paper, we investigate the mechanisms by which the brief 
exposure of forskolin could lead to long-term in vitro bone 
regeneration and growth.

Materials and Methods

Reagents

Forskolin and dimethyl sulfoxide (DMSO) were purchased 
from MilliporeSigma (St. Louis, MO). H-89 dihydrochlo-
ride was purchased from Fisher Scientific (Pittsburgh, PA). 
Phospho-CREB (Ser133), CREB (48H2), phospho-β-catenin 
(Ser552), and β-catenin (6B3) were purchased from Cell 
Signaling Technology (Danvers, MA). Goat anti-rabbit 
IgG H&L (HRP) (ab6721) and goat anti-mouse IgG H&L 
(HRP) (ab6789) were purchased from Abcam (Cambridge, 
UK). Phosphate-buffered saline (PBS), alpha minimum 
essential medium (α-MEM), fetal bovine serum (FBS), 
penicillin–streptomycin (P/S), and 0.25% trypsin–EDTA 
solution were purchased from Gibco (Grand Island, NY). 
Chemiluminescent substrate for the detection of HRP and 

X-ray films was purchased from Thermo Fisher Scientific 
(Waltham, MA).

Cell Culture

Osteoblast‐like MC3T3‐E1 cells (passages 22–32; ATCC, 
Manassas, VA) were used for the in vitro cell studies. The 
cells were cultured in α‐MEM supplemented with 10% FBS 
and 1% antibiotics (100 U/ml penicillin G and 100 mg/ml 
streptomycin), and maintained in a humidified incubator at 
37 °C containing 5%  CO2. Forskolin at 100 µM was added 
to the culture medium at the time of cell seeding. For the 
intracellular cAMP and western blotting studies, the cells 
were treated with forskolin for 30 min before cell lysis. For 
the qRT-PCR and ELISA studies, the cells were treated with 
forskolin for 24 h and the medium was replaced with fresh 
culture medium without the drug supplement. The medium 
was changed 3–4 days until each experimental time point 
was reached. In the PKA inhibition experiments, the cells 
were pre-treated with H-89 (30 µM) for 30 min before sup-
plementation with forskolin. Forskolin was dissolved with 
DMSO; therefore, DMSO treatment was used as the negative 
control group.

Measurement of Intracellular cAMP Levels

The levels of intracellular cAMP produced by the MC3T3-
E1 cells after treatment with forskolin were measured 
through a cAMP Parameter Assay Kit (R&D Systems, Min-
neapolis, MN) according to manufacturer’s instructions. 
After completion of the assay, the plates were read at an 
absorbance of 450 nm using a plate reader (BioTek, Win-
ooski, VT). The concentration of the produced cAMP (pmol/
ml) was determined from a standard curve.

Polyacrylamide Gel Electrophoresis (PAGE) 
and Western Blotting

PAGE and western blotting was performed as previously 
described [23].

Quantitative Real‑Time PCR (qRT‑PCR)

The gene expression of runt-related transcription factor 
(runx2), alkaline phosphatase (ALP), collagen I (col1a1), 
and osteopontin (spp1) of MC3T3-E1 cells after short-term 
treatment with forskolin was measured using the quantitative 
reverse transcription polymerase chain reaction (qRT-PCR). 
The cells were washed once with 1 × PBS and the total RNA 
was isolated using the RNeasy Mini Kit (Qiagen, Hilden, 
Germany) according to manufacturer’s instructions. After 
isolation, the complementary DNA was synthesized using 
the RNA to cDNA EcoDry Premix (Clontech, Mountain 
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View, CA). Real-time PCR was performed using a light 
cycler instrument (Bio-Rad iCycler iQ System, Hercules, 
CA) along with Taqman Gene Expression Assays (Applied 
Biosystems, Guilford, CT) and SuperMix Premix (Biorad, 
Hercules, CA). The relative fold expression of the genes of 
interest normalized to the housekeeping gene, GAPDH, was 
calculated using the ΔΔCT method.

Enzyme‑Linked Immunosorbent Assay (ELISA)

The secretion of VEGF and IGF-1 from the MC3T3-E1 cells 
after 24 h treatment with forskolin was quantified using a 
mouse VEGF and human IGF-I/IGF-1 Quantikine ELISA 
Kit (R&D Systems, Minneapolis, MN) according to manu-
facturer’s instructions. The absorbance of the assay product 
solution was measured using a plate reader (BioTek, Win-
ooski, VT) at a wavelength of 450 nm. The resulting absorb-
ance was converted to VEGF or IGF-1 concentration (pg/ml) 
using the provided standards in the kits.

Statistical Analysis

GraphPad Prism 6 (GraphPad Software; San Diego, CA) 
was used for statistical analysis and graph design. Sample 
sizes of at least n = 3 were used per study. Quantitative data 
was reported as mean ± standard deviation. Comparisons 
between two groups was determined using the unpaired Stu-
dent’s t-test. Comparisons between more than two groups 
were conducted using one-way ANOVA with Tukey post 
hoc test. Statistical significance was evaluated at *p < 0.05, 
**p < 0.01; ***p < 0.001, and ****p < 0.0001.

Results

Short‑Term Treatment of Forskolin Increases 
Intracellular cAMP Production and Induces 
Phosphorylation of CREB and β‑Catenin Through 
PKA‑Dependent Signaling

Forskolin has been shown to increase intracellular cAMP 
through the activation of the catalytic enzyme, adenylyl 
cyclase, in mammalian cells [20]. To confirm the produc-
tion of intracellular cAMP within MC3T3-E1 osteoblast-like 
cells after short-term exposure of forskolin, a cAMP param-
eter assay of the collected cell lysate was conducted (Fig. 1). 
After 30 min of forskolin treatment, there was a statistically 
significant increase in intracellular cAMP concentration 
compared to the DMSO control. Approximately 93.60 pmol/
ml of cAMP was produced in the forskolin-treated cells, 
while approximately 5.09 pmol/ml of cAMP was observed 
in the DMSO group, representing the basal levels of cAMP 
within the cell.

The protein kinase A (PKA) and wingless-related inte-
gration site (Wnt) signaling cascades are fundamental path-
ways that are important in the production of mineralized 
bone. To determine whether the phosphorylation of CREB 
and β-catenin in MC3T3-E1 cells was mediated through the 
PKA-dependent signaling pathway as evidence for PKA 
and Wnt signaling crosstalk has been reported both during 
osteogenesis, western blot analysis with the PKA inhibi-
tor, H-89, was performed (Fig. 2). H-89 is a competitive 
antagonist of the ATP binding sites on the catalytic subunits 
of PKA, which prevents the subsequent phosphorylation of 
PKA substrate targets [24]. When compared to the DMSO-
treated control, a higher amount of pCREB was detected in 
the MC3T3-E1 cell when treated with forskolin for 30 min 
(Fig. 2a). However, when the cells were pre-treated with 
H-89, and then subsequently treated with forskolin, the 
amount of pCREB returned to the DMSO control levels. 
A similar trend was observed in the phosphorylation of 
β-catenin (Fig. 2b). Upon exposure to forskolin, a significant 
upregulation of phospho-β-catenin was observed compared 
to the DMSO-treated cells. In contrast, when the PKA activ-
ity of the cells was inhibited with H-89, there was no signifi-
cant difference in the levels of phospho-β-catenin compared 
to the control group.

Fig. 1  Short-term treatment of forskolin increased intracellular cAMP 
production in MC3T3-E1 cells. The cells were treated with DMSO 
or forskolin (100 µM) for 30 min. The cells were lysed and the con-
centration of cAMP produced within the cells was measured through 
ELISA (n = 3). Bars are sample means, and error bars denote standard 
deviation. Comparison between the two means was determined using 
the unpaired Student’s t-test (*p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001)
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Forskolin Modulates Osteogenic Gene Expression 
of MC3T3‑E1 Cells Through Short‑Term 
Administration

To investigate whether the short-term treatment of forsko-
lin modulates osteogenic gene expression in MC3T3-E1 
cells through PKA-dependent signaling, qRT-PCR of the 
collected cell lysates was conducted (Fig. 3). ALP is one 
of the earliest markers of osteogenic differentiation [25]. 
At day 3, a statistically significant increase in ALP gene 
expression was observed in the cells treated with forskolin 
for 24 h compared to the DMSO control group (Fig. 3a). 
However, upon the addition of H-89 to inhibit PKA activity, 
a statistically significant decrease in ALP gene expression 
was observed at day 3. At day 7, there was also a significant 
reduction in ALP gene expression in the H-89 and forsko-
lin-treated cells compared to the cells treated with forskolin 
alone. This data suggested that the gene expression of ALP 
is PKA dependent. Runt-related transcription factor (runx2) 
is another early-stage marker that is expressed during the 
onset of osteogenesis [26]. At day 3, a significant decrease 
in runx2 expression was observed in the forskolin-treated 
cells compared to the DMSO control, followed by a more 
pronounced decrease upon the addition of H-89 (Fig. 3b). At 
day 7, the reverse trend in runx2 expression was detected, 
with a statistically significant increase in the cells treated 
with forskolin alone, as well as with H-89, compared to the 
DMSO-treated cells. In addition to runx2, collagen type I 
alpha 1 (co1a1) is an early-stage marker of osteoprogeni-
tor cells [27]. At day 3, there was a statistically significant 
decrease in col1a1 expression when the cells were treated 
with H-89 and forskolin compared to the DMSO or forsko-
lin alone treatment groups, respectively (Fig. 3c). At day 7, 
there was a significant increase in col1a1 gene expression 
in both the forskolin groups with and without H-89 treat-
ment compared to the DMSO control. Osteopontin (OPN) 
is a late-stage marker of osteogenic differentiation [28]. At 
both day 3 and day 7, there was a statistically significant 
increase in OPN expression in the MC3T3-E1 cells upon 
exposure to forskolin for 24 h (Fig. 3d). After the addition 

of H-89, there was also a significant increase detected in 
the OPN expression compared to the DMSO control. Inter-
estingly, osteocalcin (OCN) was not upregulated at days 3 
and 7 in the presence of forskolin in the groups both with 
and without H-89 treatment compared to the DMSO control 
(Fig. 3e). Taken together, these data suggest that the expres-
sions of runx2, co1a1, and OPN are modulated through a 
PKA-independent pathway.

PKA‑Dependent Secretion of VEGF and IGF‑1 
from Forskolin‑Induced MC3T3‑E1 Cells

To assess the role of PKA-dependent signaling on VEGF 
and IGF-1 production in MC3T3-E1 cells, we treated the 
cells with forskolin for 24 h both in the presence and absence 
of H-89 pre-treatment (Fig. 4). The activation of cAMP sign-
aling has been shown to promote VEGF and IGF-1 secretion 
from osteoprogenitor cells in vitro [15, 18, 29, 30]. ELISA 
data from the collected cell medium revealed that forskolin 
at a concentration of 100 µM significantly promoted both 
VEGF and IGF-1 secretion compared to the DMSO-treated 
cells. Yet, when forskolin was administered to the H-89 pre-
treated cells, there was a statistically significant decrease in 
VEGF and IGF-1 secretion comparable to the DMSO con-
trol levels.

Discussion

The goal of our research is to develop a simple, safe, and 
cost-effective method to heal bone disorders and injuries 
including bone fractures. We have first proposed that short-
term treatment (less than 24 h) of a number of selected small 
molecule drugs induces long-lasting osteogenic effects of 
osteoprogenitor MC3T3-E1 cells [16, 18, 31, 32]. This find-
ing may provide a very promising approach to mitigate risks 
associated with small molecule–based drugs, such as non-
specificity and toxicity [33, 34]. However, the underlying 
molecular mechanism responsible for these observations 
remains unclear. Our study examined the potential molecular 

Fig. 2  Short-term treatment of forskolin induces the phosphorylation 
of a CREB and b β-catenin in osteoblast-like cells through the PKA 
signaling pathway. Western blot analysis was used to detect the levels 

of pCREB (Ser133), phospho-β-catenin (Ser552), CREB (48H2), and 
β-catenin (6B3) in the cell lysates. The total CREB and β-catenin lev-
els were used to confirm equal protein loading
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Fig. 3  Gene expression of a alkaline phosphatase (ALP), b runt-
related transcription factor (runx2), c collagen I (col1a1), d osteo-
pontin (spp1), and e osteocalcin (bglap) of osteoblast-like MC3T3-E1 
cells after short-term treatment with forskolin. Cells were treated with 
DMSO, forskolin (100  µM), or forskolin (100  µM) + H-89 (30  µM) 

for 24  h. After 24  h, the medium was replaced with fresh growth 
medium and the gene expression was measured at days 3 and 7 
(n = 4). Bars are sample means, and error bars denote standard devia-
tion (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)

Fig. 4  PKA-dependent secretion 
of a VEGF and b IGF-1 from 
osteoblast-like MC3T3-E1 cells 
after short-term treatment with 
forskolin. The cultured cells 
were stimulated with DMSO, 
forskolin (100 µM), or forskolin 
(100 µM) + H-89 (30 µM) for 
24 h. The media was collected 
and analyzed through ELISA 
(n = 3). Bars are sample means, 
and error bars denote standard 
deviation (*p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001)
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mechanism responsible for short-term forskolin–mediated 
osteogenic differentiation of MC3T3-E1 cells. A plausible 
mechanism has been described consisting of the activa-
tion of PKA, a key modulator of the cAMP signaling, that 
upregulates the phosphorylation of CREB and results in the 
induction of osteoblast-associated gene transcription (e.g., 
ALP) downstream [35–39]. The cAMP/PKA/CREB is also 
known as a molecular signaling pathway that is actively 
involved in embryogenesis, which helps the body take shape 
[40–42]. Thus, activation of this signaling pathway could 
allow the burden of growth and differentiation to be han-
dled by the cells themselves [43]. Intriguingly, it appeared 
that the produced intracellular cAMP from forskolin may 
regulate a number of osteogenic gene transcriptions (runx2, 
OPN, Col1) via other cAMP/PKA-independent pathway(s). 
At days 3 and 7, runx2 was both downregulated and upregu-
lated upon treatment with forskolin after PKA knockdown 
with H-89. Thus, suggesting runx2 expression is modulated 

by a PKA-independent mechanism. It is also interesting to 
note that OCN was not upregulated at both time points. This 
observation is consistent with the reported data that OCN is 
rarely expressed at the early stages of osteoblastic differen-
tiation, and that OCN can be detected in the mineralization 
of bone matrix [44]. A single-dose, short-term treatment 
of forskolin and the PKA-independent targeting analogue, 
8-Br-cAMP, have both been shown to promote in vitro min-
eralization of MC3T3-E1 osteoblastic-like cells [18, 19]. 
Therefore, it is expected at later stages of osteogenic differ-
entiation, OCN may be detected. The growth factors, IGF-1 
and VEGF, have been shown to be important for modulating 
the osteoblastic and endothelial commitment of MSCs [45]. 
The present study also examined how short-term forskolin 
treatment could affect IGF-1 and VEGF production and 
secretion, which would both critical for osteogenesis and 
efficient vascularization of engineered scaffolds for bone tis-
sue engineering applications [46].

Fig. 5  Schematic representation of proposed short-term forsko-
lin signaling pathway involved in osteogenesis of osteoblast-like 
MC3T3-E1 cells. The small molecule forskolin passes through the 
cell membrane and activates the enzyme, adenylyl cyclase, which 
catalyzes the conversion of ATP into cAMP. The intracellular cAMP 
activates PKA in the cytoplasm, which leads to the phosphorylation 
of CREB and β-catenin. pCREB and phospho-β-catenin will trans-
locate from the cytoplasm to the nucleus. pCREB and phospho-β-

catenin will then directly modulate the transcription of ALP and 
induce production of VEGF and IGF-1. The secreted VEGF and 
IGF-1 can function within an autocrine/paracrine loop to interact 
with the host or surrounding cells. Alternatively, the produced intra-
cellular cAMP from forskolin may also interact with other cAMP/
PKA-independent pathways to upregulate or downregulate other 
osteogenic gene transcription within the cell’s nucleus. Created with 
BioRender.com
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The fact that it required only a short treatment of the 
small molecule forskolin to jumpstart a weeklong in vitro 
bone regenerative process suggests that mesenchymal stem 
cells may have latent regenerative capabilities that can be 
called up for action [19, 47, 48]. The results presented in 
this paper also suggested that small molecule forskolin 
could trigger long-lasting osteogenic effects on cells that 
is carried out by the induction of cell-based osteogenic and 
angiogenic growth factors production and secretion (Fig. 4). 
Specifically, small molecule forskolin is capable of induc-
ing cell differentiation down to osteogenic lineages utiliz-
ing protein growth factor–based inductive paracrine and 
autocrine loops (Fig. 5). Thus, we speculate that a single 
dose of forskolin for 24 h is capable of inducing the cells 
to produce and secrete sufficient amounts of growth factors 
in the medium, towards inducing osteogenic differentiation 
via autocrine and paracrine loops [49]. Further studies will 
evaluate the dynamic of the secreted growth factors in the 
culture media. Taken together, we propose that 2-stage pro-
cess may be required to jumpstart bone regeneration: (1) 
an early initiating signal mechanism (i.e., cAMP signaling) 
that specifically triggers a bone-regenerating program and 
(2) harnessing the repertoire of factors secreted by cells may 
provide necessary long-lasting autocrine and paracrine sign-
aling for bone regeneration.

Conclusion

Over the past few decades, many natural small mole-
cule–based compounds with the potential of regenerating 
bone tissue have been reported [32, 33]. To our knowledge, 
this paper provides the first evidence towards understanding 
the underlying mechanism of a short-term exposure of the 
natural small molecule forskolin towards osteoblastic dif-
ferentiation of osteoprogenitor cells in vitro. Future studies 
will focus on investigating the instructive set of signals (e.g., 
using RNA-seq) that specifically trigger of cells upon short-
term treatment of forskolin.
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