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Abstract
Skeletal muscles have the intrinsic ability to regenerate after minor injury, but under certain circumstances such as severe trauma from
accidents, chronic diseases, or battlefield injuries the regeneration process is limited. Skeletal muscle regenerative engineering has
emerged as a promising approach to address this clinical issue. The regenerative engineering approach involves the convergence of
advanced materials science, stem cell science, physical forces, insights from developmental biology, and clinical translation. This article
reviews recent studies showing the potential of the convergences of technologies involving biomaterials, stem cells, and bioactive factors
in concert with clinical translation, in promoting skeletal muscle regeneration. Several types of biomaterials such as electrospun
nanofibers, hydrogels, patterned scaffolds, decellularized tissues, and conductive matrices are being investigated. Detailed discussions
are given on how these biomaterials can interact with cells andmodulate their behavior through physical, chemical, andmechanical cues.
In addition, the application of physical forces such as mechanical and electrical stimulation is reviewed as strategies that can further
enhance muscle contractility and functionality. The review also discusses established animal models to evaluate regeneration in two
clinically relevantmuscle injuries: volumetricmuscle loss (VML) andmuscle atrophy upon rotator cuff injury. Regenerative engineering
approaches using advanced biomaterials, cells, and physical forces, developmental cues alongwith insights from immunology, genetics,
and other aspects of clinical translation hold significant potential to develop promising strategies to support skeletal muscle regeneration.

Lay Summary
Skeletal muscle has robust regeneration properties, but in extreme conditions, the regeneration ability is hindered. It remains a
common clinical problem that could lead to long-term disability. The available treatments such as muscle flap transposition
present various limitations. To address these limitations, promising strategies based on regenerative engineering are being
developed. This review article discusses the different approaches to tissue regeneration using the regenerative engineering
paradigm. A specific discussion involves biomaterials and their interactions with cells and bioactive molecules. In addition,
the advantages of physical and mechanical stimulation in muscle regeneration are discussed.
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Introduction

Skeletal muscle is a critical component of the human body,
consisting of 40–45% of an adult’s body mass [1]. It is mainly
responsible for generating forces which facilitate voluntary
movement and locomotion [2]. When moderate injury occurs,
skeletal muscle has the robust ability to regenerate after minor
injury through the activation of muscle progenitor cells, also
termed as satellite cells [3]. These satellite cells play a vital
role in muscle regeneration as they not only participate during
myogenesis but can also undergo a self-renewal process to
maintain an undifferentiated population in the tissue niche
[4]. The mechanism is that in response to injury, dormant
satellite cells are activated. They will undergo proliferation
and subsequently differentiate into myoblasts and further fuse
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to form multinucleated myofibers. These myofibers will then
integrate into the functional muscle tissue [5].

However, there is a limit to regeneration by satellite cell
activation. Such mechanisms fail, for example when large
volumes of muscle are lost due to trauma or chronic disease.
The current standard approach for treating volumetric muscle
loss involves either tissue debridement or muscle transposi-
tion. Both procedures present a host of issues such as donor
site morbidity and incomplete recovery of pre-injury muscle
strength and functionality [2]. Regenerative engineering is a
transdisciplinary approach that uses the convergence of ad-
vanced materials sciences, stem cell sciences, physics, devel-
opmental biology and clinical translation for the regeneration
of complex tissues and organ systems. This emerging field has
the potential to address muscle loss in moderate injuries with
minimal to no scar formation and may also offer a regenera-
tion strategy in the case of large volume muscle loss [6–10].

In this paper, we discuss cell therapy treatment for muscle
repair and regeneration, as well as compare and contrast the
benefits of employing different types of biomaterials.
Biomaterials have the ability to protect loaded cells from di-
rect exposure to the immune environment, provide three-
dimensional structure, physicochemical properties, and me-
chanical cues to modulate regeneration process [5]. In addi-
tion, the review explores the incorporation of small molecules
and drug release concepts for muscle regeneration strategies,
and discusses the impact of physical forces such as mechani-
cal and electrical stimulation on regeneration. Translational
studies involving volumetric muscle loss model and rotator
cuff muscle injury will be discussed. These studies examine
the potential of regenerative engineering strategies to result in
clinically meaningful results.

Cell Therapy

Cell therapy approaches for degenerative muscle diseases are
based on the delivery of cells that can contribute to skeletal
muscle regeneration and repair. The cells used for transplan-
tation can either be genetically corrected autologous cells from
the patient or allogeneic from healthy donors [11]. In this
section, we review the various cells that have been investigat-
ed in a pre-clinical or clinical setting for the treatment of mus-
cular dystrophies.

Muscular dystrophies are genetic myopathies, character-
ized by progressive muscle wasting and degeneration. The
most common and severe form is Duchenne muscular dystro-
phy (DMD), which is caused by mutations in the dystrophin
gene. Dystrophin is a structural component of myocytes and is
responsible for the maintenance of muscle fiber integrity, me-
diation of cytoplasmic signaling cascades, and muscle func-
tions [11]. The lack of functional dystrophin causes fragility of
muscle fibers during contraction. Damaged fibers may be

repaired by proliferation and fusion with activated proliferat-
ing progenitor cells called myoblasts. However, the repaired
fibers still lack dystrophin, leaving them vulnerable to injury
through successive contractions. This progressive and contin-
uous faulty loop of degeneration and repair causes the myo-
blasts to rapidly senescence [12]. DMD patients lose mobility
between 10 and 12 years of age and die from respiratory and/
or cardiac failure by the third decade of life [13].
Unfortunately, there is still no cure for DMD. Themost widely
used animal model for DMD is the mdx mouse. The mdx
mouse carries a null mutation of the dystrophin gene resulting
in the absence of the protein and fragility and necrosis of the
muscle. Due to ease of breeding, genetic uniformity, cost-ef-
ficiency, and convenience for laboratory experiments, the mdx
mouse model is extensively used to study DMD [14].

Satellite Cells/Myoblasts

Myoblasts were the first candidate cell types that were
considered to treat muscular dystrophies. Myoblasts are
satellite cell-derived progenitors with the ability to gener-
ate skeletal muscle. Studies performed in mdx mice dem-
onstrated that intramuscular injection of myoblasts result-
ed in their fusion with host cells to form new or hybrid
fibers, thus restoring dystrophin expression [15]. These
encouraging results led to a number of clinical trials in
the 1990s, however, failed to show significant clinical
benefit. The major factors contributing to this unfavorable
outcome were poor cell survival, limited cell migration,
and immune rejection of the transplanted cells, which
drastically reduced their engraftment [16]. Over the years,
numerous studies have addressed these challenges and
worked towards overcoming them. Increasing the number
of transplanted myoblasts [17], improving their survival
[18], migration and engraftment [19], and immunosup-
pression [20] have been some of the approaches utilized
to improve the therapeutic potential of myoblast trans-
plantation. A recent phase I/IIa clinical trial found that
local injection of autologous myoblasts in the pharyngeal
muscles of patients with oculo-pharyngeal muscular dys-
trophy (OPMD) is safe and efficient [21]. Therefore, myo-
blast cell therapy holds great promise as an effective treatment
for localized and less extended muscular dystrophies.

Muscle-Derived Stem Cells

Several other cell populations, other than satellite cells/myo-
blasts, from the muscle were subsequently investigated.
Muscle-derived stem cells (MDSCs) are postnatal stem cells
identified and distinguished from satellite cells by their rela-
tively low level of commitment to the myogenic lineage [22,
23]. These cells are isolated from the skeletal muscle by the
preplate technique, which enriches the population of slowly
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adhering muscle-derived stem cells by eliminating the popu-
lations of more adherent cell types [24]. These cells offer
several advantages over myoblasts such as high proliferative
and self-renewal capability, multi-potency, and immune-
privileged behavior resulting in an overall improved trans-
plantation efficacy compared with myoblasts/satellite cells
[23, 25]. Notably, a population of poorly adherent MDSCs
(known as MuStem cells) has been shown to contribute to
myofiber regeneration, satellite cell replenishment, and long-
term dystrophin expression in golden retriever muscular dys-
trophy dogs (the clinically relevant large model of DMD).
When systemically injected, these cells contributed to partial
remodeling of the skeletal muscle and enhanced regeneration
resulting in a persistent stabilization of the dog’s clinical status
and major improvement in locomotion features [26, 27].
There have been reports identifying the human analog of these
muscle-derived cells [28, 29]. However, further studies will be
needed before they can be evaluated for their therapeutic
potential.

CD133+ Cells

CD133 is a transmembrane protein expressed on a subpopu-
lation of circulating human hematopoietic/endothelial progen-
itors. Torrente et al. showed that a subpopulation of CD133+

circulating cells express early myogenic markers. When
injected systemically or intramuscularly in scid/mdx mice,
they were found to contribute to muscle regeneration, replen-
ishment of the satellite cell pool, and recovery of force [30].
Furthermore, their local injection appears to accelerate skeletal
muscle regeneration through increased vasculogenesis [31].
CD133+ cells have also been isolated from human skeletal
muscle. When injected intramuscularly in immunodeficient
mice, these cells were more efficient in regenerating skeletal
muscle than human myoblasts mainly due to their great-
er migratory potential and contribution to the satellite
cell pool [32]. In addition, a double-blinded phase I
clinical trial assessing the safety of autologous trans-
plantation of human muscle-derived CD133+ stem cells
in DMD patients found no local or systemic side effects
[33].

Mesoangioblasts

Mesoangioblasts are vessel-associated stem cells that can dif-
ferentiate into several mesoderm cell types including skeletal
muscle [34]. In inflammatory conditions, such as in DMD,
they have been shown to cross the vessel wall and colonize
dystrophic muscles. This makes them cell candidates to be
delivered systemically. Intra-arterial delivery of murine and
canine mesoangioblasts has been shown to produce morpho-
logical and functional improvements in models of muscular
dystrophy [35–38]. The human equivalent of mesoangioblasts

expresses markers of pericytes, a subpopulation of muscle-
resident cells. Human mesoangioblasts have also been shown
to cross the vessel wall and participate in muscle regeneration
in dystrophic muscles, restoring dystrophin expression [36].
Genetically corrected mesoangioblasts/pericytes isolated from
DMD models have shown to produce dystrophin-positive
muscle fibersin vivo [39, 40]. Based on these pre-clinical
studies, a phase I/II clinical trial for intra-arterial delivery of
HLA-identical allogeneic mesoangioblasts to patients with
DMD under immunosuppression was performed. The study
proved to be relatively safe; however, minimal efficacy was
observed and the outcome was inconclusive in terms of mus-
cle function. Further studies are needed to determine the clin-
ical benefit of mesoangioblasts for DMD patients [41].

Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) isolated from several
sources such as the bonemarrow [42–47], synovial membrane
[48, 49], umbilical cord [50], and adipose tissue have been
identified for their myogenic potential. However, the ability
of bone marrowmesenchymal stem cells to contribute to mus-
cle regeneration and improve muscle function in vivo has not
been conclusively established and requires further studies [43,
45].

On the other hand, adipose-derived mesenchymal stem
cells (ADSCs) isolated from the adipose tissue are considered
as one of the most promising and progressing stem cell pop-
ulations for tissue regeneration. ADSCs offer several advan-
tages for cell therapy. They can be easily isolated from an
accessible source of adipose tissue with little patient discom-
fort or donor site morbidity and expanded in large quantities
[51] and have been shown to have multipotent differentiation
capacity [52], immunomodulatory properties, and anti-
inflammatory and paracrine effects [53]. Rodriguez et al. were
the first to report on the use of multipotent adipose-derived
stem cells (hMADs) for skeletal muscle regeneration in vivo.
When injected into mdx mice, hMADs were able to restore
dystrophin expression but failed to form myotubes [54]. Their
myogenic potential can be improved by forced expression of
MyoD; however, the clinical safety of lentiviral vectors has
yet to be fully proven [55]. Adipose tissue-derived cells have
also been shown to promote regeneration in other types of
muscular disorders such as hind-limb ischemia, limb girdle
muscle dystrophy (LGMD), or collagen VI-related muscle
disorder [56–58]. Furthermore, human adipose-derived stro-
mal cells have been shown to migrate, engraft, and differenti-
ate intomuscle cells expressing dystrophin when administered
intravenously into GRMD dogs, without immunosuppression
[59]. The immuno-privileged behavior of adipose tissue-
derived cells could be a significant clinical advantage for al-
logeneic cell therapy. The unique traits of MSCs such as anti-
inflammatory and immunomodulatory properties [60],
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availability from various tissues, and trophic effects that indi-
rectly have a positive influence on repair and regeneration
[61], makes them potential candidates for muscle cell therapy.

Embryonic Stem Cells and Induced Pluripotent Cells

Pluripotent embryonic stem (ES) cells have the ability to dif-
ferentiate into cells of all three germ layers and generate large
numbers of specific cell populations, possibly overcoming the
major obstacle of obtaining sufficient numbers of cells for cell
therapy. There have been a number of studies focused on
deriving muscle precursor cells from ES cells that would be
suitable for transplantation [62–68]; however, given the ethi-
cal concerns surrounding the use of ES cells, attention has
shifted towards using induced pluripotent cells (iPSCs).
Studies have reported on the successful generation of human
and mice iPSC-derived myogenic progenitors [2, 69]. Darabi
et al. demonstrated that the myogenic progenitors generated
from human iPSCs can be obtained in large quantities and
efficiently engraft into the dystrophic muscle of mdx mice,
restoring dystrophin expression for over 11 months [66].
Furthermore, transplantation of patient-derived genetically
corrected iPSCs offers the possibility of autologous cell ther-
apy, reducing concerns of immune rejection and donor avail-
ability. Tedesco et al. transplanted genetically corrected iPSC-
derived progenitors from patients with LGMD intomice of the
same disease and found functional amelioration of the dystro-
phic phenotype and restoration of the depleted progenitors
[70]. Despite these promising results, there are safety and
efficacy issues that still need to be fully addressed before these
cells can be used clinically. The development and application
of standardized protocols to safely generate iPSCs and iPSC-
derived myogenic progenitors, together with screening for
genome stability, tumorigenic potential, transgene expression,
and immunological studies will be necessary to further ad-
vance the use of these cells.

Challenges and Future Directions for Cell-Based
Muscle Therapies

Considerable progress has been made in the field of cell ther-
apy for muscular disorders. A number of cells have been in-
vestigated for pre-clinical and clinical use offering invaluable
insight into the biology and reparative mechanisms of skeletal
muscle. Nonetheless, further studies are required to better un-
derstand the inflammatory, fibrotic, and immune responses.
The skeletal muscle is the largest organ in the body that is
systemically affected in degenerative muscular disorders. A
successful cell-based treatment would require systemically
delivering a large number of cells that are capable of targeting
and migrating towards the compromised muscle groups as
opposed to local intramuscular injections. Multiple cell types
are being explored for cell therapy with each holding great

therapeutic promise. The optimal cell candidate would need
to be highly proliferative and have high survival, homing, and
engraftment abilities. Therefore, it is instrumental to optimize
cell expansion and transplantation conditions, and determine
the mechanisms of migration and homing to ensure efficient
regeneration. Moreover, although this review focused on cell
therapy for the treatment of degenerative muscular diseases,
the use of combinatory therapeutic strategies such as gene
therapy and/or pharmacotherapy may be pivotal to augment-
ing the regenerative outcome.

Delivery of Bioactive Factors in Skeletal
Muscle Regenerative Engineering

In skeletal muscle regeneration, signaling molecules play an
important role in guiding the differentiation and proliferation
of satellite cells into myoblasts, and eventually to multinucle-
ated myofibers [71]. A common strategy in musculoskeletal
regenerative engineering is the delivery of bioactive factors to
stimulate the development of engineered tissue [11]. These
signaling molecules can be incorporated within biomaterial-
based scaffold systems to enhance the proliferation and differ-
entiation of stem cells and progenitor cells. Based on the prop-
erties of each factor and molecule, different encapsulation
techniques may be used to modulate the release profile and
maximize their desired therapeutic effect [72]. Two standard
approaches are physical encapsulation, where the molecules
are embedded within the biomaterial matrix during the scaf-
fold fabrication process, and chemical immobilization, where
the bioactive factors are adsorbed or covalently bonded onto
the surface of the structure [73, 74].

Growth Factors

Growth factors are signaling proteins that through interaction
with certain binding receptors, activate signal transduction
pathways [8, 73]. Major growth factors present throughout
the skeletal muscle regeneration process include hepatocyte
growth factor (HGF), insulin-like growth factor (IGF), fibro-
blast growth factor (FGF), transforming growth factor-β
(TGF-β), and vascular endothelial growth factor (VEGF)
[75–77]. (Figure 1) illustrates the contribution of these growth
factors during each stage of muscle regeneration [75].

Studies have shown the capability of incorporating growth
factors within engineered skeletal muscle constructs to en-
hance regeneration both in vitro and in vivo. TGF-β1 plays
an important role in myogenesis through regulating satellite
cell proliferation and differentiation, as well as promoting en-
dothelial cell activity [77, 78]. Weist et al. investigated the
effect of TGF-β1 in improving the functionality of 3D skeletal
muscle constructs. The muscle construct was derived from an
adult rat tail tendon seeded with satellite cells [79]. At a
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Fig. 1 Schematic representation of growth factor contribution to the three stages of muscle regeneration. The black and orange ovals represent the nuclei
of the pre-existing and regenerated skeletal muscle fibers, respectively. Adapted from Ref [75] with permission from Elsevier
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TGF-β1 concentration of 2.0 ng/mL, a significant increase in
the differentiation, contractility, and extracellular matrix depo-
sition by the cells was observed. Studies have also shown that
HGF and FGF-2 signaling play an important role in stimulat-
ing satellite cell activation and proliferation, and when deliv-
ered in unison, the therapeutic effects are significantly im-
proved [80–82]. Hill et al. were able to develop an HGF and
FGF-2 dual delivery system using G4RGDSP peptide-
modified alginate polymer scaffolds in order to study their
effects on myoblast migration and survival in vitro [18].
HGF and FGF-2 (250 ng) were added to the alginate solutions
and subsequently gelled to form the scaffold. The percent
viability and migration of the myoblasts at day 5 within the
peptide-modified scaffolds were significantly higher than the
control and the HGF/FGF-2 alone groups. Similarly, VEGF
has been studied as a potential factor to stimulate
neoangiogenesis and vascularization [83, 84]. Analogous to
HGF, IGF-1 can be utilized to trigger satellite cell differentia-
tion and proliferation through the PI3K/Akt and Ras/Raf-1/
ERK MAP kinase signaling pathways [85, 86]. Borselli et al.
explored the synergetic capability of delivering VEGF and
IGF-1 to promote the repair of injured muscle within the is-
chemic hindlimbs of mice [87]. The mice were injected with
50 μL of alginate gel containing 3 μg of VEGF and/or IGF-1
either alone or in combination. Subsequent data analysis illus-
trated that the sustained delivery of both growth factors re-
stored the functionality of the skeletal muscle, with a reduc-
tion in ischemia.

Small Molecules

The capability of harnessing the therapeutic potential of small
molecules for musculoskeletal regenerative engineering appli-
cations has also raised interest [13]. Small molecules are or-
ganic compounds with a molecular weight less than 1000 Da.
They are able to rapidly diffuse through the cellular membrane
and regulate certain biological processes [88]. The inherent
properties of these small molecules have resulted in improved
stability, low production cost, and lower levels of immuno-
genic response comparedwith their growth factor counterparts
[89, 90].

Several small molecules have gained a significant level of
interest within the realm of skeletal muscle regeneration.
Sphingosine 1-phosphate (S1P) is a sphingolipid biomolecule
responsible for the modulation of several functions in muscle
progenitor cells varying from the differentiation of myoblasts
to the motility and division of satellite cells [91, 92]. Danieli-
Betto et al. studied the in vivo activity of S1P in skeletal
muscle repair through injecting a 50 μM concentration of
S1P into the damaged soleus muscle of rats and mice [93].
A significant increase in the cross-sectional area of the
myofibers and the expression of MyoD and myogenin were
observed in the treated muscle tissues [94]. Retinoic acid

(RA), a derivative of vitamin A, was studied to understand
their ability to differentiate stem cells to a myogenic lineage.
Kennedy et al. treated P19 and mouse embryonic stem cells
with RA [95, 96]. Significant increase in the expression of
MyoD, myogenin, Meox1, and Pax3 was observed in the
treated embryonic stem cells, implying the potential of RA
as a therapeutic option in skeletal muscle regeneration. Lee
et al. used a combination approach to screen the skeletal mus-
cle regeneration potential of a range of small molecules [63,
97]. Two small molecules, skeletal muscle inducer 1 and 2
(SMI 1 and 2), have been identified due to their ability to
enhance Pax3 expression through the upregulation of the
Wnt and suppression of the Shh and Smad 2/3 signaling
pathways.

Challenges in the Usage of Growth Factors and Small
Molecules for Skeletal Muscle Regeneration

In spite of pre-clinical and clinical success with growth factor-
mediated regeneration, certain limitations still exist. These
include their high production cost, immunogenicity,
supraphysiological dosage requirement, elevated market cost,
and instability during the drug delivery formulation process
[98, 99]. In order to overcome these issues, alternative ap-
proaches geared toward the reduction of growth factor usage
have been investigated. Of these options, small molecules
have gained considerable interest due to their favorable intrin-
sic physical properties. However, due to the potential of non-
specific side effects, the route of administration and dosage
amount must be taken into account to maximize their pharma-
cological effect. Therefore, modulating the spatial control and
release kinetics of these bioactive factors from advanced bio-
material delivery systems is key in their potential therapeutic
capabilities.

Biomaterial-Based Strategies for Skeletal
Muscle Regeneration

Biomaterial-based strategies have progressed tremendously
over the past few decades. The ultimate biomaterial needs to
be biocompatible and biodegradable, have appropriate me-
chanical stability and long-term in vivo functionality and pro-
vide a conductive structure for cellular proliferation and dif-
ferentiation [100]. A combination of both biomaterials and
cells can potentially improve the therapeutic effects of cells
for muscle regeneration [2].

Electrospun Nanofiber Scaffolds

It is highly desirable to engineer scaffolds that mimic the nat-
ural extracellular matrix (ECM) as they can provide structural
support as well as regulate a variety of important cell functions
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such as assembling cells into various tissues and organs, reg-
ulating growth, and cell–cell communication [101]. Laurencin
and his colleagues were the first to describe the use of
electrospun nanofibers for tissue regeneration purposes
[102]. Their work has continued to demonstrate the promise
of the electrospinning technique and electrospun fibers for
tissue regeneration [103–111]. Electrospun nanofibrous scaf-
folds are beneficial because of their similarity to native muscle
fibers [104]. For example, Choi et al. used aligned co-
electrospun poly(ε-caprolactone) (PCL) and collagen nanofi-
bers to evaluate their potential for skeletal muscle regenera-
tion. The study showed the ability of the scaffolds to support
alignment and myotube formation of skeletal muscle cells,
implying the substrate’s potential to treat patients with large
muscle losses [112]. This was further demonstrated by Aviss
et al. using aligned poly(lactic-co-glycolic acid) (PLGA)
nanofiber scaffolds seeded with C2C12 murine myoblasts.
The myoblasts not only showed aligned morphology but also
had significantly higher expression of muscle differentiation
markers such as fast myosin heavy chain compared with ran-
dom oriented fibers [113]. In addition to substrate alignment,
electrical cues have also shown to promote myotube forma-
tion. Electrically conductive random and align matrices were
prepared by adding different weight percentages of
polyaniline (PANi) into PCL. The study showed that substrate
alignment along with electrical stimulation can favorably af-
fect skeletal muscle regeneration [114, 115].

Hydrogels

Hydrogels are prepared from both natural and synthetic poly-
mers with high water content [116]. They have been exten-
sively used in the biomedical field [117, 118]. Rossi et al. used
an in situ photo-cross linkable hyaluronan-based hydrogel to
deliver satellite cells or muscle progenitor cells to treat partial-
ly ablated tibialis anterior (TA) mice. Results showed a major
improvement when the injured tibialis was treated with freshly
isolated satellite cells encapsulated in the hydrogels. Alginates
cannot specifically interact with mammalian cells. Rowley
et al. studied the effect of hydrogel chemistry. Alginates with
different monomeric ratios were used to covalently bond
RGD-containing cell adhesion ligands. RGD has been exten-
sively incorporated in synthetic non-biological systems with-
out cell adhesion motifs to increase cell adhesion. The study
showed a significant effect of the alginate monomeric ratio or
the density of RGD ligands attached at the surface of substrate
on myoblast proliferation and differentiation [100].

Using alginate scaffolds, Borselli et al. showed that
transplanted myoblasts combined with localized delivery of
VEGF and IGF-1 could enhance muscle regeneration and an-
giogenesis [119]. Nichol et al. demonstrated that gelatin meth-
acrylate (GelMA) was beneficial in creating cell-responsive
microtissues, such as endothelialized microvasculature. The

hydration and mechanical properties of GelMA can be tuned
via methacrylation degree and gel concentration making it a
suitable hydrogel for various applications [120]. Another
study investigated the role of biomaterials as mechanically
competent matrices for skeletal muscle. The matrix was pre-
pared by encapsulating different proteins (collagen I/fibrin/
Matrigel) with neonatal rat skeletal muscle cells to form bun-
dles. This resulted in an increased contractile force derived
mainly from cell-matrix interactions. In summary, biomate-
rials play a pivotal role in modulating cellular response for
effective skeletal muscle regeneration [121, 122].

Patterned Scaffolds

In addition to the different types of materials, cell behavior can
also be altered via substrate surface features [123]. Patterning
is a popular technique to modify biomaterial surface proper-
ties. It generally involves the use of an elastomeric master
such as PDMS, which is easy to mold or emboss and can be
used directly as a substrate for biomedical applications [5]. A
unique study by Yang et al. showed that muscle-derived cells
cultured on gelatin-coated nanopatterned PLGA substrates
showed enhanced myogenic maturity in vivo compared with
cells grown on flat PLGA substrates after 4 weeks of trans-
plantation [124]. The group further demonstrated that by com-
bining electrical and topographical cues, nanopatterned
electroconductive substrates created by capillary force lithog-
raphy can mimic highly aligned collagen bundles from the
ECM of skeletal muscle tissue. The combination of both to-
pographical and electrical cues can enhance myogenic differ-
entiation and maturation [125]. Various types of materials
such as polystyrene [126], agarose [127], and methacrylated
gelatin [128] have been fabricated with these topographical
cues and have been shown to influence skeletal muscle for-
mation. For example, Yang et al. used electron beam deposi-
tion (Fig.2) to achieve a thin layer of either gold or titanium on
nanopatterned substrates to create electroconductive sub-
strates with thin layers of either gold or alumina. It was found
that biomimetic nanotopography combined with these coat-
ings promotes myogenic differentiation and maturation
[125]. Together, they all play an important role in the
formation of functional myotubes in vitro [129, 130].
Patel et al. used acid catalyzed sol-gel process to produce
silica coating on carbon nanotube (CNT)-grafted hierar-
chical substrates. The generated CNT carpets were depos-
ited on both interconnected microporous carbon foams as
well as aligned carbon fiber mats. The results showed that
the foam structure did not support myotube formation
whereas the aligned carbon mats supported myocyte fu-
sion to form multinucleated myotubes. The study showed
the specific effects of nanostructure in modulating cell
behavior [131].
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Decellularized Tissues

Biologic scaffolds that are composed of ECM have been used
to reinforce or replace damaged tissues in clinical applications
[132]. Decellularized ECM provides a promising alternative
to synthetic scaffolds and a foundation for regenerative efforts
[133]. Immobilization of ECM molecules on synthetic matri-
ces has also shown to favorably modulate cellular perfor-
mance [134]. Decellularized tissues are able to maintain their
ECM structure as well as their vascular network and have
mechanical properties resembling native tissue [2]. In a study
done by Wolf et al., a decellularized skeletal muscle ECM
scaffold was shown to provide bioactive compounds such as
growth factors, glycosaminoglycans, and basement mem-
brane structural proteins that are typically missing from non-
muscle ECM derived from the small intestine (SIS). The
decellularized skeletal muscle ECM was shown to support
myogenic cell proliferation in vitro. In vivo implantation in a
rat abdominal wall injury model showed a constructive re-
modeling response along with scaffold degradation, even
though it showed no statistical difference in remodeling out-
come compared with SIS-induced ECM [135]. Another study
by Ward et al. tested the hypothesis that muscle functional
efficacy can be retained by using lesser amounts of autologous
muscle grafts via a collagen hydrogel. The study showed that
using approximately 50% of the minced graft, suspended in a
collagen hydrogel, can improve muscle functionality similar
to the 100% minced graft repair. More studies are required to
identify optimal carrier materials for efficient regeneration
[136].

Valentin et al. tested four types of grafts in a rat injury
model: porcine small intestinal submucosa SIS-ECM,
carbodiimide-crosslinked porcine SIS-ECM, autologous tis-
sue, and a polypropylene mesh. The graft (1.5 cm × 1.5 cm)
was placed on the defect in the ventral lateral abdominal wall
musculature (Fig. 3). The three biological scaffolds supported
functional skeletal muscle reconstruction. The regenerated tis-
sue did not mimic the native tissue; however, there was

abundant vascularization and innervation. The regenerated
muscle also showed the presence of types I and II muscle
fibers [132].

Fig. 3 Representative image of a tissue flap. Top: the musculoskeletal
defect was created by excising the external and internal oblique layers of
the abdominal wall, leaving the transversalus fascia intact. Middle: the
test article was implanted in the defect site and secured with Prolene
sutures at each of the four corners. Bottom: 26-weeks post-implantation,
a flap of tissue was created which contained the site of test article place-
ment, identified by the preplaced Prolene sutures. The tissue flap main-
tained the integrity of the muscular arteries and the thoracic spinal nerve
branches that supplied the site of tissue remodeling. The dense connective
tissue at the insertion site at the linea alba was connected to the force
transducer with silk suture and positioned such that the direction of the
contractile function testing was aligned parallel to the rib origin. Platinum
electrodes were placed across the flap proximal and distal to the scaffold
placement site [132]. Adapted from Ref [132] with permission from
Elsevier

Fig. 2 Fabrication of unpatterned
and patterned poly urethane
acrylate (PUA) substrates (a) and
electron beam evaporation
deposition of Au and Ti onto
PUA substrates (b) [125].
Adapted from Ref [125] with
permission from Elsevier
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The creation of the very first tissue engineered muscle re-
pair (TEMR) construct showed a significant improvement in
enhancing myotube numbers and functionality. The TEMR
construct was implanted in a 2-month-old murine latissimus
dorsi muscle injury model [127, 128]. The bladder acellular
matrix (BAM) was used as a matrix to culture muscle-derived
cells for 10 days allowing for cell growth and differentiation.
The construct was then preconditioned in a bioreactor with
cyclic unidirectional stretch as described [137]. Another study
investigated the role of preconditioning muscle-derived cells
with a uniaxial mechanical strain on decellularized ECM with
TEMR-positive responders. The study demonstrated that the
combination approach significantly increased functional re-
covery in skeletal muscle compared with the construct alone
in VML injury. The study showed the greater regenerative
capacity of using stem or progenitor cells in combination with
a scaffold [138].

Electrically Conductive Materials

Electrically conductive biomaterials are considered as one of
the most promising new generations of materials that can pro-
vide direct delivery of electrical, electrochemical, or electro-
mechanical stimulation from a substrate to cells [134, 139].
With the development of biocompatible electrically
conducting materials, several biomedical applications have
been identified [134, 140, 141]. Polypyrrole [142–144],
PANi [143, 145], polythiophene, and their derivatives [146,
147] have been evaluated in bone, neural, or skin regenera-
tion. For example, Gilmore et al. studied the benefits of mod-
ified polypyrrole on skeletal muscle growth and differentia-
tion. Polypyrrole was doped with the major components of the
ECM such as hyaluronic acid (HA) and chondroitin sulfate A
as well as non-biological active molecules such as dodecyl
benzene sulphonic acid and para-toluene sulphonic acid
(pTS). The modified polymers supported moderate myoblast
differentiation and myofiber formation. The various dopants
affected the various stages in skeletal muscle myogenesis dif-
ferently. It was found that the physical properties of the
polypyrrole/ HA or polypyrrole/pTS films were better
suited for facilitating the different stages in skeletal mus-
cle myogenesis [148]. As mentioned in the BElectrospun
Nanofiber Scaffolds^ section, electrical stimulation
through the incorporation of PANi into PCL electrospun
fibers improved myoblast differentiation [114, 115]. The
presence of the conducting polymer significantly in-
creased myotube maturity and the expression of myogenic
genes such as myogenin, troponin T, and MHC [114,
115].

Ahadian et al. incorporated different concentrations of
multi-walled carbon nanotubes (MWCNTs) into gelatin fi-
bers. Incorporation of MWCNTs improved the mechanical
properties, demonstrated by an increase in the Young’s

modulus from 509 ± 37 kPa to 1077 ± 266 kPa and 1170 ±
168 kPa for gelatin nanofibers containing 0 mg/ml, 0.5 mg/ml,
and 5 mg/ml MWCNTs, respectively. The stiffer matrices
were subsequently shown to improve myotube formation
and maturation due to the increased mechanotransduction in
these substrates [149].

External Stimulation to Enhance Muscle
Regeneration

Biophysical stimulation such as mechanical and electrical
forces plays an important role in modulating muscle cell
growth and differentiation [150, 151].

Mechanical Stimulation to Enhance Myoblast
Differentiation

Mechanical stimulation can potentially be a very effective
approach to support muscle regeneration [1] (Fig. 4). Du
et al. demonstrated the unique advantage of using appropriate
mechanical forces to precondition primary human muscle cell
scaffold constructs in vitro. The constructs were subjected to
cyclic strain in a computer-controlled bioreactor system. The
retrieved constructs generated tetanic and twitch contractile
responses with a specific force of 1% and 10%, unlike the
native tissue constructs, demonstrating the advantage of exog-
enous mechanical forces [153]. Vandenburgh et al. used a cell
stimulator device to dynamically stretch embryonic skeletal
muscle cells by maintaining the cells in a horizontal position
during mechanical stretching for up to 400% of substratum
length. The dynamic stretch increased cell proliferation and
orientation. More importantly, it stimulated the myoblasts to
fuse into robust and abundant arrays of myotubes, which were
two to four times longer than those grown under static culture
conditions [154].

Ultrasound has also been used as a physical force to en-
hance skeletal muscle regeneration. The EPI® technique is an
ultrasound guided technique that can generate a galvanic cur-
rent transmitted through an acupuncture needle. Abat et al.
used the EPI technique to treat tendon muscle lesions in a rat
model and observed a significant increase in the expression of
anti-inflammatory and angiogenic proteins [155]. This shows
the potential of mechanical stimulation in treating muscle in-
juries and enhancing regeneration.

Electrical Stimulation of Myoblast Differentiation

Electrical signals play an essential role in the development,
function, and repair of tissues and organs [156–158]. Various
groups have investigated applying electrical stimulation to
enhance cellular functions [158]. Overall, the ability to en-
hance myotube formation and maturity has been demonstrated
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upon electrical stimulation [159, 160]. Fujita et al. demonstrat-
ed robust and evident contractile activity of C2C12 cells when
they were subjected to electrical stimulation (40 V/60 mm,
2 ms, 1 Hz) [159]. The study showed the efficacy of electrical
stimulation to produce contraction-inducible myokines that
could favorably modulate metabolic and immune responses,
and angiogenesis [160]. In addition, other studies have also
reported the ability of electrical stimulation to support muscle
cell elongation and secretion of bioactive factors such as IGF-
1 [161, 162].

Langelaan et al. compared the efficacy of C2C12 cells with
primary cell culture under electrical stimulation by utilizing a
collagen type I/Matrigel™ hydrogel. Under electrical stimu-
lation, both 2D and 3D culture accelerated sarcomere assem-
bly formation. The primary cell source was preferred as they
were more susceptible to the electrical stimulus [163].
Pedrotty et al. evaluated the effect of electrical current flux
on the mitogenic activity of skeletal muscle-derived cells
in vitro. The cells were seeded on 3D polyglycolic acid mesh
scaffolds and were subjected to cardiac-like electrical current
flux treatments, or conditioned media obtained from mature
cardiomyocytes. The study showed that both electrical stimu-
lation and cardiac-derived soluble factors could stimulate cell
proliferation [164].

Burch et al. compared gene expression in electrically stim-
ulated muscle cell culture with non-electrically stimulated

muscle cells. The electrically stimulated C2C12 cells showed
qualitative transcriptional adaptations similar to those in
trained muscle, but muscle gene expression differed from
those with acute effects of exercise. It is therefore important
to study the molecular mechanisms that regulate exercise ad-
aptation in muscle [165]. Furthermore, Trumble et al. have
shown that long-term stimulation of rabbit muscles could
change muscle fiber types and remodel the ECM indicated
by the presence of collagen type I and fibrillin [166].
Furthermore, the ability of chronic low-frequency stimulation
to induce the formation of slow muscle fibers and enhance
glucose uptake in skeletal muscle has been demonstrated
[147, 167].

Volumetric Muscle Loss

Although skeletal muscle has the intrinsic ability to regener-
ate, massive defects such as volumetric muscle loss (VML)
cannot be regenerated [168]. In a cohort of battlefield-injured
soldiers, muscle conditions were found to account for more
than 65% of the disabilities. Furthermore, 92% of the muscle
conditions were identified as VML [169].

The current standard approach to treat VML is to use func-
tional free muscle transfer and advanced bracing [170].
Although it looks promising, the procedure is very complex

Fig. 4 Biphasic ferrogels and
pressure cuffs generate cyclic
mechanical compressions.
Experimental design showing
injury, implant, and stimulation
profile (a). Schematic of biphasic
ferrogel implant in mouse
hindlimb depicting the orientation
of ferrogel relative to the skin,
muscle tissue, and magnet (left)
(b). Pressure profile of biphasic
ferrogel undergoing repeated
magnetic stimulations (right).
Schematic of pressure cuff on
mouse hindlimb depicting the
orientation of balloon and poly-
carbonate cuff relative to skin and
muscle tissue (left) (c). Pressure
profile of balloon cuff undergoing
repeated inflations and deflations
(right). Adapted from Ref [152]
with permission from Elsevier
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and successful outcomes depend on the surgical team.
Moreover, using free muscle transfer may not be viable in
patients with combat extremity injuries [170]. Advances in
biomaterial scaffolds and stem cells suggest a promising so-
lution. These materials can be surgically implanted at the site
of VML, encouraging local muscle regeneration and improv-
ing function in clinical settings [171]. To this end, different
animal models and various biomaterial scaffolds have been
utilized to study VML [168, 172].

VML Animal Model

Tomimic VML in animal models, the defect is achieved using
an aseptic technique. In a murine model, the VML injury was
created by surgically removing approximately 50% of the
lattissimus dorsi muscle area [173]. Briefly, after a longitudi-
nal incision along the midline of the back, the trapezius mus-
cle that covers the lattissimus dorsi muscle was lifted. Then,
the medial half of the muscle was removed indicated by suture
markers using a scissor [137]. In a rat model, the defect di-
mension (10 mm× 7 mm× 3 mm) was first labeled and re-
moved using a scalpel from the medial and lateral margins of
the muscle [174]. A surgical defect was created in the middle
third of the TA muscle and a large portion of the estimated TA
muscle weight was removed [171, 172, 174, 175].

Corona et al. used three different BAM collagen scaffolds
seeded with muscle-derived cells (the BHydrogels^ section) to
create a TEMR construct in a mouse model. Based on the
histological and molecular results, the TEMR constructs
helped promote muscle regeneration at different rates and
magnitudes. Functional recovery via regeneration of function-
al muscle fibers occurred either at the interface of the construct
and the native tissue or within the BAM scaffold independent of
the native tissue [176]. The same group further evaluated the
efficacy of syngeneic muscle-derived ECM (mECM) seeded
with bone marrow-derived MSCs in treating rat TA muscle in
a VML injury. The study showed recovery of one-third of the
original functional deficit using mECM two-months post-sur-
gery. Moreover, the presence of mECM decreased further mus-
cle damage in the remaining muscle (Fig. 5). The study dem-
onstrated the potential of biological ECM scaffolds in
preventing prolonged overload of injured muscle [128].

Longitudinal (scale bar = 1.0 cm) (a) and cross-sections
(scale bars = 50 lm) (b–e) from the remaining muscle mass
(b, c) and defect area (d, e) were probed for sarcomeric myo-
sin and GFP co-localization. TA, tibialis anterior; VML, vol-
umetric muscle loss [136] Adapted from Ref [128] with per-
mission from Elsevier.

Badylak et al. used a canine model to demonstrate the ef-
ficacy of ECM-based scaffolds in treating VML in a large
animal model. The study showed that an ECM-based scaffold
helped promote functional restoration of the distal gastrocne-
mius musculotendinous junction after complete resection of

the tissue [177]. Another study evaluated the efficacy of non-
cross-linked ECM derived from porcine SIS in a canine model
of complex quadriceps muscle injury. Although the initial re-
modeling appeared promising, at later stages there was fibro-
sis, dense collagenous tissue, and a small portion of nonfunc-
tional muscle. Further studies are required to understand the
efficacy of these biological matrices in treating VML [173].
Sicari et al. evaluated ECM scaffolds using a mouse VML
model and showed the ability of the matrix in supporting
skeletal muscle formation as well as innervation. This was
followed by a clinical study using this matrix in five patients
with VML. Six-months post-implantation, all patients showed
signs of new muscle formation and vascular structures at the
implantation site. Three of the five patients showed 20% or
greater improvement in limb strength during physical therapy.
The two patients without functional changes did report im-
provements in non-functional tasks, such as balance, as well
as an improvement in quality of life. Because of the wide-
spread availability and known safety of cell-free ECM-based
materials, they hold promise as a candidate material in treating
VML [171]. Despite the promising outcomes of ECM-based
scaffolds, there are contradicting results in their usage [177].
This may be due to the differences in scaffold fabrication as
well as surgical models (TA muscle vs. lateral gastrocnemius)
[173].

Muscle Atrophy in Rotator Cuff Injury

Rotator cuff tear is one of the most frequent orthopedic con-
ditions, and repair of rotator cuff tears is a common procedure
[178, 179]. With aging, the rotator cuff becomes more prone
to degenerative tears. It was estimated that 40% of individuals
aged over 60 suffer from rotator cuff issues. The repair failure
rate ranges from 20 to 70%, thus resulting in a significant
clinical challenge [180].

Tears that are greater than 4 cm are called massive rotator
cuff tears (RCTs) which usually lead to atrophy and fatty
infiltration in the supraspinatus and infraspinatus muscles
[181]. This leads to poor recovery outcome due to the inelas-
ticity and poor function of the muscle-tendon unit which can
lead to shoulder dysfunction [182, 183]. Gladstone et al. dem-
onstrated that lower skeletal muscle quality, especially in the
infraspinatus muscle region, negatively affects the outcome. It
has also been shown that a successful rotator repair can sig-
nificantly decrease the likelihood of fatty infiltration and mus-
cle atrophy [184].

Overall, chronic RCTs lead to pain and suffering in patients
[181]. So far, studies have been focused on developing im-
proved repair techniques [185] using biologic factors [186,
187] or biomaterials [188, 189] to improve tendon to bone
healing. Implantation of aligned electrospun PCL scaffolds
led to better cellular infiltration [190]. Thangarajah et al. used
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demineralized bone matrix (DBM) derived from cortical bone
to treat female Wistar rats that underwent unilateral detach-
ment of the supraspinatus tendon three-weeks post-surgery.
Compared with treatment with the commercially available
GraftJacket, DBM led to a shorter gap between the tendon
and bone. There was also a more organized structure with
less abnormal collagen fibers. However, the use of DBM
scaffolds did not improve the healing of the enthesis [189].
Peach et al. created hybrid polymer matrices by modifying
the surface of PCL nanofibers with polyphosphazene
poly[(ethyl alanato)1(p-methyl phenoxy)1] phosphazene
to improve matrix hydrophilicity for rotator cuff augmen-
tation. Loading the scaffolds with bone-derived MSCs ac-
celerated tendon remodeling in an acute rat rotator cuff
injury model [191]. Zheng et al. used 3D aligned
collagen/silk scaffolds in a rabbit tendon tear model. The
aligned matrices improved cellular infiltration and en-
hanced tenogenic differentiation [192].

To study the progression of muscle atrophy, rats, rabbits,
and sheep models have been used. These models allow for a
better understanding of the timely changes that take place in
the supraspinatus muscle region after tendon detachment
[192, 193]. Tendon detachment leads to lack of loading and
significant loss of muscle weight. Using a rat rotator cuff
model, Barton et al. observed consistent fiber shift throughout
the study, rapid loss of muscle volume as well as scar tissue
formation in the muscle bed [194]. In another study on acute
and chronic rotator cuff repair, it was shown that failure to
repair the tendon at the time of tear will lead to continuous
progression of fatty degeneration. This is commonly seen in
some patients that receive rotator cuff repair [195]. Rowshan
et al. used a rabbit denervation rotator cuff injury model and
found that denervation worsens muscle atrophy and fatty de-
generation. Six-weeks post-surgery, the complete tear and
complete tear with nerve transection groups had significantly
lower muscle wet mass and increase in fat content [196].

Fig. 5 Contribution of donor-
derivedmyogenic cells to de novo
fiber regeneration after VML in-
jury. TA muscle minced grafts
derived from donor GFP-Lewis
rats were transplanted to the site
of VML injury at a 100% tissue
replacement.
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In larger animal models, signs of muscle atrophy and fatty
infiltration after injury are more obvious. In a sheep rotator
cuff injury model, these symptoms occurred 6 months after
the injury. The repaired group showed increased expression of
muscle atrophy, fatty infiltration, and fibrosis-related genes.
This demonstrates the clinical importance of addressing fatty
infiltration and fibrosis upon rotator cuff tear [197].
Biomaterial-based strategies for improving muscle atrophy
in rotator cuff injuries have not been studied well. Tang et al.
investigated the potential effects of electrospun nanofibers
containing the conducting polymer PEDOT: PSS on stimulat-
ing muscle regeneration, and thereby suppressing fatty expan-
sion [198].

Concluding Remarks

Skeletal muscle injuries, especially large muscle injuries and
chronic degenerative diseases, remains a clinical concern.
Muscle conditions can also be secondary but have a vital
influence on the surgical outcome in cases such as in rotator
cuff injury [194]. Various strategies are being investigated to
treat muscle injury. This review discussed the use of regener-
ative engineering technologies for addressing the challenges
of skeletal muscle injury repair and regeneration. A variety of
biomaterial scaffolds such as electrospun nanofibers,
hydrogels , and decel lular ized t issues have been
investigated for muscle regeneration. Understanding stem cell
science, physical forces and their interactions with cells are
important. Biomaterial scaffolds not only serve as vehicles to
deliver cells, growth factors, or small molecules but also act as
substrates to control cellular functions to enhance muscle re-
generation. Moreover, the muscle contractility and function-
ality can be significantly enhanced by using physical forces
such as mechanical and electrical stimulation. It is critically
important to focus future research efforts on developing novel
biomaterials and understanding cellular responses towards
these materials to develop translational approaches for skeletal
muscle regeneration.
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